// include: shell.js // The Module object: Our interface to the outside world. We import // and export values on it. There are various ways Module can be used: // 1. Not defined. We create it here // 2. A function parameter, function(Module) { ..generated code.. } // 3. pre-run appended it, var Module = {}; ..generated code.. // 4. External script tag defines var Module. // We need to check if Module already exists (e.g. case 3 above). // Substitution will be replaced with actual code on later stage of the build, // this way Closure Compiler will not mangle it (e.g. case 4. above). // Note that if you want to run closure, and also to use Module // after the generated code, you will need to define var Module = {}; // before the code. Then that object will be used in the code, and you // can continue to use Module afterwards as well. var Module = typeof Module != 'undefined' ? Module : {}; // --pre-jses are emitted after the Module integration code, so that they can // refer to Module (if they choose; they can also define Module) // Sometimes an existing Module object exists with properties // meant to overwrite the default module functionality. Here // we collect those properties and reapply _after_ we configure // the current environment's defaults to avoid having to be so // defensive during initialization. var moduleOverrides = Object.assign({}, Module); var arguments_ = []; var thisProgram = './this.program'; var quit_ = (status, toThrow) => { throw toThrow; }; // Determine the runtime environment we are in. You can customize this by // setting the ENVIRONMENT setting at compile time (see settings.js). // Attempt to auto-detect the environment var ENVIRONMENT_IS_WEB = typeof window == 'object'; var ENVIRONMENT_IS_WORKER = typeof importScripts == 'function'; // N.b. Electron.js environment is simultaneously a NODE-environment, but // also a web environment. var ENVIRONMENT_IS_NODE = typeof process == 'object' && typeof process.versions == 'object' && typeof process.versions.node == 'string'; var ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; // `/` should be present at the end if `scriptDirectory` is not empty var scriptDirectory = ''; function locateFile(path) { if (Module['locateFile']) { return Module['locateFile'](path, scriptDirectory); } return scriptDirectory + path; } // Hooks that are implemented differently in different runtime environments. var read_, readAsync, readBinary; if (ENVIRONMENT_IS_NODE) { // `require()` is no-op in an ESM module, use `createRequire()` to construct // the require()` function. This is only necessary for multi-environment // builds, `-sENVIRONMENT=node` emits a static import declaration instead. // TODO: Swap all `require()`'s with `import()`'s? // These modules will usually be used on Node.js. Load them eagerly to avoid // the complexity of lazy-loading. var fs = require('fs'); var nodePath = require('path'); if (ENVIRONMENT_IS_WORKER) { scriptDirectory = nodePath.dirname(scriptDirectory) + '/'; } else { scriptDirectory = __dirname + '/'; } // include: node_shell_read.js read_ = (filename, binary) => { // We need to re-wrap `file://` strings to URLs. Normalizing isn't // necessary in that case, the path should already be absolute. filename = isFileURI(filename) ? new URL(filename) : nodePath.normalize(filename); return fs.readFileSync(filename, binary ? undefined : 'utf8'); }; readBinary = (filename) => { var ret = read_(filename, true); if (!ret.buffer) { ret = new Uint8Array(ret); } return ret; }; readAsync = (filename, onload, onerror, binary = true) => { // See the comment in the `read_` function. filename = isFileURI(filename) ? new URL(filename) : nodePath.normalize(filename); fs.readFile(filename, binary ? undefined : 'utf8', (err, data) => { if (err) onerror(err); else onload(binary ? data.buffer : data); }); }; // end include: node_shell_read.js if (!Module['thisProgram'] && process.argv.length > 1) { thisProgram = process.argv[1].replace(/\\/g, '/'); } arguments_ = process.argv.slice(2); if (typeof module != 'undefined') { module['exports'] = Module; } process.on('uncaughtException', (ex) => { // suppress ExitStatus exceptions from showing an error if (ex !== 'unwind' && !(ex instanceof ExitStatus) && !(ex.context instanceof ExitStatus)) { throw ex; } }); quit_ = (status, toThrow) => { process.exitCode = status; throw toThrow; }; Module['inspect'] = () => '[Emscripten Module object]'; } else // Note that this includes Node.js workers when relevant (pthreads is enabled). // Node.js workers are detected as a combination of ENVIRONMENT_IS_WORKER and // ENVIRONMENT_IS_NODE. if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { if (ENVIRONMENT_IS_WORKER) { // Check worker, not web, since window could be polyfilled scriptDirectory = self.location.href; } else if (typeof document != 'undefined' && document.currentScript) { // web scriptDirectory = document.currentScript.src; } // blob urls look like blob:http://site.com/etc/etc and we cannot infer anything from them. // otherwise, slice off the final part of the url to find the script directory. // if scriptDirectory does not contain a slash, lastIndexOf will return -1, // and scriptDirectory will correctly be replaced with an empty string. // If scriptDirectory contains a query (starting with ?) or a fragment (starting with #), // they are removed because they could contain a slash. if (scriptDirectory.indexOf('blob:') !== 0) { scriptDirectory = scriptDirectory.substr(0, scriptDirectory.replace(/[?#].*/, "").lastIndexOf('/')+1); } else { scriptDirectory = ''; } // Differentiate the Web Worker from the Node Worker case, as reading must // be done differently. { // include: web_or_worker_shell_read.js read_ = (url) => { var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); xhr.send(null); return xhr.responseText; } if (ENVIRONMENT_IS_WORKER) { readBinary = (url) => { var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); xhr.responseType = 'arraybuffer'; xhr.send(null); return new Uint8Array(/** @type{!ArrayBuffer} */(xhr.response)); }; } readAsync = (url, onload, onerror) => { var xhr = new XMLHttpRequest(); xhr.open('GET', url, true); xhr.responseType = 'arraybuffer'; xhr.onload = () => { if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0 onload(xhr.response); return; } onerror(); }; xhr.onerror = onerror; xhr.send(null); } // end include: web_or_worker_shell_read.js } } else { } var out = Module['print'] || console.log.bind(console); var err = Module['printErr'] || console.error.bind(console); // Merge back in the overrides Object.assign(Module, moduleOverrides); // Free the object hierarchy contained in the overrides, this lets the GC // reclaim data used e.g. in memoryInitializerRequest, which is a large typed array. moduleOverrides = null; // Emit code to handle expected values on the Module object. This applies Module.x // to the proper local x. This has two benefits: first, we only emit it if it is // expected to arrive, and second, by using a local everywhere else that can be // minified. if (Module['arguments']) arguments_ = Module['arguments']; if (Module['thisProgram']) thisProgram = Module['thisProgram']; if (Module['quit']) quit_ = Module['quit']; // perform assertions in shell.js after we set up out() and err(), as otherwise if an assertion fails it cannot print the message // end include: shell.js // include: preamble.js // === Preamble library stuff === // Documentation for the public APIs defined in this file must be updated in: // site/source/docs/api_reference/preamble.js.rst // A prebuilt local version of the documentation is available at: // site/build/text/docs/api_reference/preamble.js.txt // You can also build docs locally as HTML or other formats in site/ // An online HTML version (which may be of a different version of Emscripten) // is up at http://kripken.github.io/emscripten-site/docs/api_reference/preamble.js.html var wasmBinary; if (Module['wasmBinary']) wasmBinary = Module['wasmBinary']; if (typeof WebAssembly != 'object') { abort('no native wasm support detected'); } // Wasm globals var wasmMemory; //======================================== // Runtime essentials //======================================== // whether we are quitting the application. no code should run after this. // set in exit() and abort() var ABORT = false; // set by exit() and abort(). Passed to 'onExit' handler. // NOTE: This is also used as the process return code code in shell environments // but only when noExitRuntime is false. var EXITSTATUS; // In STRICT mode, we only define assert() when ASSERTIONS is set. i.e. we // don't define it at all in release modes. This matches the behaviour of // MINIMAL_RUNTIME. // TODO(sbc): Make this the default even without STRICT enabled. /** @type {function(*, string=)} */ function assert(condition, text) { if (!condition) { // This build was created without ASSERTIONS defined. `assert()` should not // ever be called in this configuration but in case there are callers in // the wild leave this simple abort() implemenation here for now. abort(text); } } // Memory management var HEAP, /** @type {!Int8Array} */ HEAP8, /** @type {!Uint8Array} */ HEAPU8, /** @type {!Int16Array} */ HEAP16, /** @type {!Uint16Array} */ HEAPU16, /** @type {!Int32Array} */ HEAP32, /** @type {!Uint32Array} */ HEAPU32, /** @type {!Float32Array} */ HEAPF32, /** @type {!Float64Array} */ HEAPF64; function updateMemoryViews() { var b = wasmMemory.buffer; Module['HEAP8'] = HEAP8 = new Int8Array(b); Module['HEAP16'] = HEAP16 = new Int16Array(b); Module['HEAPU8'] = HEAPU8 = new Uint8Array(b); Module['HEAPU16'] = HEAPU16 = new Uint16Array(b); Module['HEAP32'] = HEAP32 = new Int32Array(b); Module['HEAPU32'] = HEAPU32 = new Uint32Array(b); Module['HEAPF32'] = HEAPF32 = new Float32Array(b); Module['HEAPF64'] = HEAPF64 = new Float64Array(b); } // include: runtime_stack_check.js // end include: runtime_stack_check.js // include: runtime_assertions.js // end include: runtime_assertions.js var __ATPRERUN__ = []; // functions called before the runtime is initialized var __ATINIT__ = []; // functions called during startup var __ATEXIT__ = []; // functions called during shutdown var __ATPOSTRUN__ = []; // functions called after the main() is called var runtimeInitialized = false; function preRun() { if (Module['preRun']) { if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']]; while (Module['preRun'].length) { addOnPreRun(Module['preRun'].shift()); } } callRuntimeCallbacks(__ATPRERUN__); } function initRuntime() { runtimeInitialized = true; callRuntimeCallbacks(__ATINIT__); } function postRun() { if (Module['postRun']) { if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']]; while (Module['postRun'].length) { addOnPostRun(Module['postRun'].shift()); } } callRuntimeCallbacks(__ATPOSTRUN__); } function addOnPreRun(cb) { __ATPRERUN__.unshift(cb); } function addOnInit(cb) { __ATINIT__.unshift(cb); } function addOnExit(cb) { } function addOnPostRun(cb) { __ATPOSTRUN__.unshift(cb); } // include: runtime_math.js // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/imul // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/fround // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/clz32 // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/trunc // end include: runtime_math.js // A counter of dependencies for calling run(). If we need to // do asynchronous work before running, increment this and // decrement it. Incrementing must happen in a place like // Module.preRun (used by emcc to add file preloading). // Note that you can add dependencies in preRun, even though // it happens right before run - run will be postponed until // the dependencies are met. var runDependencies = 0; var runDependencyWatcher = null; var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled function getUniqueRunDependency(id) { return id; } function addRunDependency(id) { runDependencies++; Module['monitorRunDependencies']?.(runDependencies); } function removeRunDependency(id) { runDependencies--; Module['monitorRunDependencies']?.(runDependencies); if (runDependencies == 0) { if (runDependencyWatcher !== null) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; } if (dependenciesFulfilled) { var callback = dependenciesFulfilled; dependenciesFulfilled = null; callback(); // can add another dependenciesFulfilled } } } /** @param {string|number=} what */ function abort(what) { Module['onAbort']?.(what); what = 'Aborted(' + what + ')'; // TODO(sbc): Should we remove printing and leave it up to whoever // catches the exception? err(what); ABORT = true; EXITSTATUS = 1; what += '. Build with -sASSERTIONS for more info.'; // Use a wasm runtime error, because a JS error might be seen as a foreign // exception, which means we'd run destructors on it. We need the error to // simply make the program stop. // FIXME This approach does not work in Wasm EH because it currently does not assume // all RuntimeErrors are from traps; it decides whether a RuntimeError is from // a trap or not based on a hidden field within the object. So at the moment // we don't have a way of throwing a wasm trap from JS. TODO Make a JS API that // allows this in the wasm spec. // Suppress closure compiler warning here. Closure compiler's builtin extern // defintion for WebAssembly.RuntimeError claims it takes no arguments even // though it can. // TODO(https://github.com/google/closure-compiler/pull/3913): Remove if/when upstream closure gets fixed. /** @suppress {checkTypes} */ var e = new WebAssembly.RuntimeError(what); // Throw the error whether or not MODULARIZE is set because abort is used // in code paths apart from instantiation where an exception is expected // to be thrown when abort is called. throw e; } // include: memoryprofiler.js // end include: memoryprofiler.js // include: URIUtils.js // Prefix of data URIs emitted by SINGLE_FILE and related options. var dataURIPrefix = 'data:application/octet-stream;base64,'; /** * Indicates whether filename is a base64 data URI. * @noinline */ var isDataURI = (filename) => filename.startsWith(dataURIPrefix); /** * Indicates whether filename is delivered via file protocol (as opposed to http/https) * @noinline */ var isFileURI = (filename) => filename.startsWith('file://'); // end include: URIUtils.js // include: runtime_exceptions.js // end include: runtime_exceptions.js var wasmBinaryFile; wasmBinaryFile = 'qalc.wasm'; if (!isDataURI(wasmBinaryFile)) { wasmBinaryFile = locateFile(wasmBinaryFile); } function getBinarySync(file) { if (file == wasmBinaryFile && wasmBinary) { return new Uint8Array(wasmBinary); } if (readBinary) { return readBinary(file); } throw "both async and sync fetching of the wasm failed"; } function getBinaryPromise(binaryFile) { // If we don't have the binary yet, try to load it asynchronously. // Fetch has some additional restrictions over XHR, like it can't be used on a file:// url. // See https://github.com/github/fetch/pull/92#issuecomment-140665932 // Cordova or Electron apps are typically loaded from a file:// url. // So use fetch if it is available and the url is not a file, otherwise fall back to XHR. if (!wasmBinary && (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER)) { if (typeof fetch == 'function' && !isFileURI(binaryFile) ) { return fetch(binaryFile, { credentials: 'same-origin' }).then((response) => { if (!response['ok']) { throw "failed to load wasm binary file at '" + binaryFile + "'"; } return response['arrayBuffer'](); }).catch(() => getBinarySync(binaryFile)); } else if (readAsync) { // fetch is not available or url is file => try XHR (readAsync uses XHR internally) return new Promise((resolve, reject) => { readAsync(binaryFile, (response) => resolve(new Uint8Array(/** @type{!ArrayBuffer} */(response))), reject) }); } } // Otherwise, getBinarySync should be able to get it synchronously return Promise.resolve().then(() => getBinarySync(binaryFile)); } function instantiateArrayBuffer(binaryFile, imports, receiver) { return getBinaryPromise(binaryFile).then((binary) => { return WebAssembly.instantiate(binary, imports); }).then((instance) => { return instance; }).then(receiver, (reason) => { err(`failed to asynchronously prepare wasm: ${reason}`); abort(reason); }); } function instantiateAsync(binary, binaryFile, imports, callback) { if (!binary && typeof WebAssembly.instantiateStreaming == 'function' && !isDataURI(binaryFile) && // Don't use streaming for file:// delivered objects in a webview, fetch them synchronously. !isFileURI(binaryFile) && // Avoid instantiateStreaming() on Node.js environment for now, as while // Node.js v18.1.0 implements it, it does not have a full fetch() // implementation yet. // // Reference: // https://github.com/emscripten-core/emscripten/pull/16917 !ENVIRONMENT_IS_NODE && typeof fetch == 'function') { return fetch(binaryFile, { credentials: 'same-origin' }).then((response) => { // Suppress closure warning here since the upstream definition for // instantiateStreaming only allows Promise rather than // an actual Response. // TODO(https://github.com/google/closure-compiler/pull/3913): Remove if/when upstream closure is fixed. /** @suppress {checkTypes} */ var result = WebAssembly.instantiateStreaming(response, imports); return result.then( callback, function(reason) { // We expect the most common failure cause to be a bad MIME type for the binary, // in which case falling back to ArrayBuffer instantiation should work. err(`wasm streaming compile failed: ${reason}`); err('falling back to ArrayBuffer instantiation'); return instantiateArrayBuffer(binaryFile, imports, callback); }); }); } return instantiateArrayBuffer(binaryFile, imports, callback); } // Create the wasm instance. // Receives the wasm imports, returns the exports. function createWasm() { // prepare imports var info = { 'env': wasmImports, 'wasi_snapshot_preview1': wasmImports, }; // Load the wasm module and create an instance of using native support in the JS engine. // handle a generated wasm instance, receiving its exports and // performing other necessary setup /** @param {WebAssembly.Module=} module*/ function receiveInstance(instance, module) { wasmExports = instance.exports; wasmMemory = wasmExports['memory']; updateMemoryViews(); wasmTable = wasmExports['__indirect_function_table']; addOnInit(wasmExports['__wasm_call_ctors']); removeRunDependency('wasm-instantiate'); return wasmExports; } // wait for the pthread pool (if any) addRunDependency('wasm-instantiate'); // Prefer streaming instantiation if available. function receiveInstantiationResult(result) { // 'result' is a ResultObject object which has both the module and instance. // receiveInstance() will swap in the exports (to Module.asm) so they can be called // TODO: Due to Closure regression https://github.com/google/closure-compiler/issues/3193, the above line no longer optimizes out down to the following line. // When the regression is fixed, can restore the above PTHREADS-enabled path. receiveInstance(result['instance']); } // User shell pages can write their own Module.instantiateWasm = function(imports, successCallback) callback // to manually instantiate the Wasm module themselves. This allows pages to // run the instantiation parallel to any other async startup actions they are // performing. // Also pthreads and wasm workers initialize the wasm instance through this // path. if (Module['instantiateWasm']) { try { return Module['instantiateWasm'](info, receiveInstance); } catch(e) { err(`Module.instantiateWasm callback failed with error: ${e}`); return false; } } instantiateAsync(wasmBinary, wasmBinaryFile, info, receiveInstantiationResult); return {}; // no exports yet; we'll fill them in later } // Globals used by JS i64 conversions (see makeSetValue) var tempDouble; var tempI64; // include: runtime_debug.js // end include: runtime_debug.js // === Body === // end include: preamble.js /** @constructor */ function ExitStatus(status) { this.name = 'ExitStatus'; this.message = `Program terminated with exit(${status})`; this.status = status; } var callRuntimeCallbacks = (callbacks) => { while (callbacks.length > 0) { // Pass the module as the first argument. callbacks.shift()(Module); } }; /** * @param {number} ptr * @param {string} type */ function getValue(ptr, type = 'i8') { if (type.endsWith('*')) type = '*'; switch (type) { case 'i1': return HEAP8[((ptr)>>0)]; case 'i8': return HEAP8[((ptr)>>0)]; case 'i16': return HEAP16[((ptr)>>1)]; case 'i32': return HEAP32[((ptr)>>2)]; case 'i64': abort('to do getValue(i64) use WASM_BIGINT'); case 'float': return HEAPF32[((ptr)>>2)]; case 'double': return HEAPF64[((ptr)>>3)]; case '*': return HEAPU32[((ptr)>>2)]; default: abort(`invalid type for getValue: ${type}`); } } var noExitRuntime = Module['noExitRuntime'] || true; /** * @param {number} ptr * @param {number} value * @param {string} type */ function setValue(ptr, value, type = 'i8') { if (type.endsWith('*')) type = '*'; switch (type) { case 'i1': HEAP8[((ptr)>>0)] = value; break; case 'i8': HEAP8[((ptr)>>0)] = value; break; case 'i16': HEAP16[((ptr)>>1)] = value; break; case 'i32': HEAP32[((ptr)>>2)] = value; break; case 'i64': abort('to do setValue(i64) use WASM_BIGINT'); case 'float': HEAPF32[((ptr)>>2)] = value; break; case 'double': HEAPF64[((ptr)>>3)] = value; break; case '*': HEAPU32[((ptr)>>2)] = value; break; default: abort(`invalid type for setValue: ${type}`); } } var wasmTableMirror = []; var wasmTable; var getWasmTableEntry = (funcPtr) => { var func = wasmTableMirror[funcPtr]; if (!func) { if (funcPtr >= wasmTableMirror.length) wasmTableMirror.length = funcPtr + 1; wasmTableMirror[funcPtr] = func = wasmTable.get(funcPtr); } return func; }; var ___call_sighandler = (fp, sig) => getWasmTableEntry(fp)(sig); var setErrNo = (value) => { HEAP32[((___errno_location())>>2)] = value; return value; }; var UTF8Decoder = typeof TextDecoder != 'undefined' ? new TextDecoder('utf8') : undefined; /** * Given a pointer 'idx' to a null-terminated UTF8-encoded string in the given * array that contains uint8 values, returns a copy of that string as a * Javascript String object. * heapOrArray is either a regular array, or a JavaScript typed array view. * @param {number} idx * @param {number=} maxBytesToRead * @return {string} */ var UTF8ArrayToString = (heapOrArray, idx, maxBytesToRead) => { var endIdx = idx + maxBytesToRead; var endPtr = idx; // TextDecoder needs to know the byte length in advance, it doesn't stop on // null terminator by itself. Also, use the length info to avoid running tiny // strings through TextDecoder, since .subarray() allocates garbage. // (As a tiny code save trick, compare endPtr against endIdx using a negation, // so that undefined means Infinity) while (heapOrArray[endPtr] && !(endPtr >= endIdx)) ++endPtr; if (endPtr - idx > 16 && heapOrArray.buffer && UTF8Decoder) { return UTF8Decoder.decode(heapOrArray.subarray(idx, endPtr)); } var str = ''; // If building with TextDecoder, we have already computed the string length // above, so test loop end condition against that while (idx < endPtr) { // For UTF8 byte structure, see: // http://en.wikipedia.org/wiki/UTF-8#Description // https://www.ietf.org/rfc/rfc2279.txt // https://tools.ietf.org/html/rfc3629 var u0 = heapOrArray[idx++]; if (!(u0 & 0x80)) { str += String.fromCharCode(u0); continue; } var u1 = heapOrArray[idx++] & 63; if ((u0 & 0xE0) == 0xC0) { str += String.fromCharCode(((u0 & 31) << 6) | u1); continue; } var u2 = heapOrArray[idx++] & 63; if ((u0 & 0xF0) == 0xE0) { u0 = ((u0 & 15) << 12) | (u1 << 6) | u2; } else { u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | (heapOrArray[idx++] & 63); } if (u0 < 0x10000) { str += String.fromCharCode(u0); } else { var ch = u0 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } } return str; }; /** * Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the * emscripten HEAP, returns a copy of that string as a Javascript String object. * * @param {number} ptr * @param {number=} maxBytesToRead - An optional length that specifies the * maximum number of bytes to read. You can omit this parameter to scan the * string until the first 0 byte. If maxBytesToRead is passed, and the string * at [ptr, ptr+maxBytesToReadr[ contains a null byte in the middle, then the * string will cut short at that byte index (i.e. maxBytesToRead will not * produce a string of exact length [ptr, ptr+maxBytesToRead[) N.B. mixing * frequent uses of UTF8ToString() with and without maxBytesToRead may throw * JS JIT optimizations off, so it is worth to consider consistently using one * @return {string} */ var UTF8ToString = (ptr, maxBytesToRead) => { return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : ''; }; var SYSCALLS = { varargs:undefined, get() { // the `+` prepended here is necessary to convince the JSCompiler that varargs is indeed a number. var ret = HEAP32[((+SYSCALLS.varargs)>>2)]; SYSCALLS.varargs += 4; return ret; }, getp() { return SYSCALLS.get() }, getStr(ptr) { var ret = UTF8ToString(ptr); return ret; }, }; function ___syscall_fcntl64(fd, cmd, varargs) { SYSCALLS.varargs = varargs; return 0; } var ___syscall_fstat64 = (fd, buf) => { }; var lengthBytesUTF8 = (str) => { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code // unit, not a Unicode code point of the character! So decode // UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 var c = str.charCodeAt(i); // possibly a lead surrogate if (c <= 0x7F) { len++; } else if (c <= 0x7FF) { len += 2; } else if (c >= 0xD800 && c <= 0xDFFF) { len += 4; ++i; } else { len += 3; } } return len; }; var stringToUTF8Array = (str, heap, outIdx, maxBytesToWrite) => { // Parameter maxBytesToWrite is not optional. Negative values, 0, null, // undefined and false each don't write out any bytes. if (!(maxBytesToWrite > 0)) return 0; var startIdx = outIdx; var endIdx = outIdx + maxBytesToWrite - 1; // -1 for string null terminator. for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code // unit, not a Unicode code point of the character! So decode // UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description // and https://www.ietf.org/rfc/rfc2279.txt // and https://tools.ietf.org/html/rfc3629 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) { var u1 = str.charCodeAt(++i); u = 0x10000 + ((u & 0x3FF) << 10) | (u1 & 0x3FF); } if (u <= 0x7F) { if (outIdx >= endIdx) break; heap[outIdx++] = u; } else if (u <= 0x7FF) { if (outIdx + 1 >= endIdx) break; heap[outIdx++] = 0xC0 | (u >> 6); heap[outIdx++] = 0x80 | (u & 63); } else if (u <= 0xFFFF) { if (outIdx + 2 >= endIdx) break; heap[outIdx++] = 0xE0 | (u >> 12); heap[outIdx++] = 0x80 | ((u >> 6) & 63); heap[outIdx++] = 0x80 | (u & 63); } else { if (outIdx + 3 >= endIdx) break; heap[outIdx++] = 0xF0 | (u >> 18); heap[outIdx++] = 0x80 | ((u >> 12) & 63); heap[outIdx++] = 0x80 | ((u >> 6) & 63); heap[outIdx++] = 0x80 | (u & 63); } } // Null-terminate the pointer to the buffer. heap[outIdx] = 0; return outIdx - startIdx; }; var stringToUTF8 = (str, outPtr, maxBytesToWrite) => { return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite); }; var ___syscall_getcwd = (buf, size) => { }; function ___syscall_ioctl(fd, op, varargs) { SYSCALLS.varargs = varargs; return 0; } var ___syscall_lstat64 = (path, buf) => { }; var ___syscall_mkdirat = (dirfd, path, mode) => { }; var ___syscall_newfstatat = (dirfd, path, buf, flags) => { }; function ___syscall_openat(dirfd, path, flags, varargs) { SYSCALLS.varargs = varargs; } /** @type {function(...*):?} */ function PIPEFS( ) { abort('missing function: $PIPEFS'); } PIPEFS.stub = true; var ___syscall_pipe = (fdPtr) => { }; var ___syscall_rmdir = (path) => { }; var ___syscall_stat64 = (path, buf) => { }; var ___syscall_unlinkat = (dirfd, path, flags) => { }; var readI53FromI64 = (ptr) => { return HEAPU32[((ptr)>>2)] + HEAP32[(((ptr)+(4))>>2)] * 4294967296; }; var ___syscall_utimensat = (dirfd, path, times, flags) => { }; var __embind_register_bigint = (primitiveType, name, size, minRange, maxRange) => {}; var embind_init_charCodes = () => { var codes = new Array(256); for (var i = 0; i < 256; ++i) { codes[i] = String.fromCharCode(i); } embind_charCodes = codes; }; var embind_charCodes; var readLatin1String = (ptr) => { var ret = ""; var c = ptr; while (HEAPU8[c]) { ret += embind_charCodes[HEAPU8[c++]]; } return ret; }; var awaitingDependencies = { }; var registeredTypes = { }; var typeDependencies = { }; var BindingError; var throwBindingError = (message) => { throw new BindingError(message); }; var InternalError; var throwInternalError = (message) => { throw new InternalError(message); }; var whenDependentTypesAreResolved = (myTypes, dependentTypes, getTypeConverters) => { myTypes.forEach(function(type) { typeDependencies[type] = dependentTypes; }); function onComplete(typeConverters) { var myTypeConverters = getTypeConverters(typeConverters); if (myTypeConverters.length !== myTypes.length) { throwInternalError('Mismatched type converter count'); } for (var i = 0; i < myTypes.length; ++i) { registerType(myTypes[i], myTypeConverters[i]); } } var typeConverters = new Array(dependentTypes.length); var unregisteredTypes = []; var registered = 0; dependentTypes.forEach((dt, i) => { if (registeredTypes.hasOwnProperty(dt)) { typeConverters[i] = registeredTypes[dt]; } else { unregisteredTypes.push(dt); if (!awaitingDependencies.hasOwnProperty(dt)) { awaitingDependencies[dt] = []; } awaitingDependencies[dt].push(() => { typeConverters[i] = registeredTypes[dt]; ++registered; if (registered === unregisteredTypes.length) { onComplete(typeConverters); } }); } }); if (0 === unregisteredTypes.length) { onComplete(typeConverters); } }; /** @param {Object=} options */ function sharedRegisterType(rawType, registeredInstance, options = {}) { var name = registeredInstance.name; if (!rawType) { throwBindingError(`type "${name}" must have a positive integer typeid pointer`); } if (registeredTypes.hasOwnProperty(rawType)) { if (options.ignoreDuplicateRegistrations) { return; } else { throwBindingError(`Cannot register type '${name}' twice`); } } registeredTypes[rawType] = registeredInstance; delete typeDependencies[rawType]; if (awaitingDependencies.hasOwnProperty(rawType)) { var callbacks = awaitingDependencies[rawType]; delete awaitingDependencies[rawType]; callbacks.forEach((cb) => cb()); } } /** @param {Object=} options */ function registerType(rawType, registeredInstance, options = {}) { if (!('argPackAdvance' in registeredInstance)) { throw new TypeError('registerType registeredInstance requires argPackAdvance'); } return sharedRegisterType(rawType, registeredInstance, options); } var GenericWireTypeSize = 8; /** @suppress {globalThis} */ var __embind_register_bool = (rawType, name, trueValue, falseValue) => { name = readLatin1String(name); registerType(rawType, { name, 'fromWireType': function(wt) { // ambiguous emscripten ABI: sometimes return values are // true or false, and sometimes integers (0 or 1) return !!wt; }, 'toWireType': function(destructors, o) { return o ? trueValue : falseValue; }, 'argPackAdvance': GenericWireTypeSize, 'readValueFromPointer': function(pointer) { return this['fromWireType'](HEAPU8[pointer]); }, destructorFunction: null, // This type does not need a destructor }); }; var shallowCopyInternalPointer = (o) => { return { count: o.count, deleteScheduled: o.deleteScheduled, preservePointerOnDelete: o.preservePointerOnDelete, ptr: o.ptr, ptrType: o.ptrType, smartPtr: o.smartPtr, smartPtrType: o.smartPtrType, }; }; var throwInstanceAlreadyDeleted = (obj) => { function getInstanceTypeName(handle) { return handle.$$.ptrType.registeredClass.name; } throwBindingError(getInstanceTypeName(obj) + ' instance already deleted'); }; var finalizationRegistry = false; var detachFinalizer = (handle) => {}; var runDestructor = ($$) => { if ($$.smartPtr) { $$.smartPtrType.rawDestructor($$.smartPtr); } else { $$.ptrType.registeredClass.rawDestructor($$.ptr); } }; var releaseClassHandle = ($$) => { $$.count.value -= 1; var toDelete = 0 === $$.count.value; if (toDelete) { runDestructor($$); } }; var downcastPointer = (ptr, ptrClass, desiredClass) => { if (ptrClass === desiredClass) { return ptr; } if (undefined === desiredClass.baseClass) { return null; // no conversion } var rv = downcastPointer(ptr, ptrClass, desiredClass.baseClass); if (rv === null) { return null; } return desiredClass.downcast(rv); }; var registeredPointers = { }; var getInheritedInstanceCount = () => Object.keys(registeredInstances).length; var getLiveInheritedInstances = () => { var rv = []; for (var k in registeredInstances) { if (registeredInstances.hasOwnProperty(k)) { rv.push(registeredInstances[k]); } } return rv; }; var deletionQueue = []; var flushPendingDeletes = () => { while (deletionQueue.length) { var obj = deletionQueue.pop(); obj.$$.deleteScheduled = false; obj['delete'](); } }; var delayFunction; var setDelayFunction = (fn) => { delayFunction = fn; if (deletionQueue.length && delayFunction) { delayFunction(flushPendingDeletes); } }; var init_embind = () => { Module['getInheritedInstanceCount'] = getInheritedInstanceCount; Module['getLiveInheritedInstances'] = getLiveInheritedInstances; Module['flushPendingDeletes'] = flushPendingDeletes; Module['setDelayFunction'] = setDelayFunction; }; var registeredInstances = { }; var getBasestPointer = (class_, ptr) => { if (ptr === undefined) { throwBindingError('ptr should not be undefined'); } while (class_.baseClass) { ptr = class_.upcast(ptr); class_ = class_.baseClass; } return ptr; }; var getInheritedInstance = (class_, ptr) => { ptr = getBasestPointer(class_, ptr); return registeredInstances[ptr]; }; var makeClassHandle = (prototype, record) => { if (!record.ptrType || !record.ptr) { throwInternalError('makeClassHandle requires ptr and ptrType'); } var hasSmartPtrType = !!record.smartPtrType; var hasSmartPtr = !!record.smartPtr; if (hasSmartPtrType !== hasSmartPtr) { throwInternalError('Both smartPtrType and smartPtr must be specified'); } record.count = { value: 1 }; return attachFinalizer(Object.create(prototype, { $$: { value: record, writable: true, }, })); }; /** @suppress {globalThis} */ function RegisteredPointer_fromWireType(ptr) { // ptr is a raw pointer (or a raw smartpointer) // rawPointer is a maybe-null raw pointer var rawPointer = this.getPointee(ptr); if (!rawPointer) { this.destructor(ptr); return null; } var registeredInstance = getInheritedInstance(this.registeredClass, rawPointer); if (undefined !== registeredInstance) { // JS object has been neutered, time to repopulate it if (0 === registeredInstance.$$.count.value) { registeredInstance.$$.ptr = rawPointer; registeredInstance.$$.smartPtr = ptr; return registeredInstance['clone'](); } else { // else, just increment reference count on existing object // it already has a reference to the smart pointer var rv = registeredInstance['clone'](); this.destructor(ptr); return rv; } } function makeDefaultHandle() { if (this.isSmartPointer) { return makeClassHandle(this.registeredClass.instancePrototype, { ptrType: this.pointeeType, ptr: rawPointer, smartPtrType: this, smartPtr: ptr, }); } else { return makeClassHandle(this.registeredClass.instancePrototype, { ptrType: this, ptr, }); } } var actualType = this.registeredClass.getActualType(rawPointer); var registeredPointerRecord = registeredPointers[actualType]; if (!registeredPointerRecord) { return makeDefaultHandle.call(this); } var toType; if (this.isConst) { toType = registeredPointerRecord.constPointerType; } else { toType = registeredPointerRecord.pointerType; } var dp = downcastPointer( rawPointer, this.registeredClass, toType.registeredClass); if (dp === null) { return makeDefaultHandle.call(this); } if (this.isSmartPointer) { return makeClassHandle(toType.registeredClass.instancePrototype, { ptrType: toType, ptr: dp, smartPtrType: this, smartPtr: ptr, }); } else { return makeClassHandle(toType.registeredClass.instancePrototype, { ptrType: toType, ptr: dp, }); } } var attachFinalizer = (handle) => { if ('undefined' === typeof FinalizationRegistry) { attachFinalizer = (handle) => handle; return handle; } // If the running environment has a FinalizationRegistry (see // https://github.com/tc39/proposal-weakrefs), then attach finalizers // for class handles. We check for the presence of FinalizationRegistry // at run-time, not build-time. finalizationRegistry = new FinalizationRegistry((info) => { releaseClassHandle(info.$$); }); attachFinalizer = (handle) => { var $$ = handle.$$; var hasSmartPtr = !!$$.smartPtr; if (hasSmartPtr) { // We should not call the destructor on raw pointers in case other code expects the pointee to live var info = { $$: $$ }; finalizationRegistry.register(handle, info, handle); } return handle; }; detachFinalizer = (handle) => finalizationRegistry.unregister(handle); return attachFinalizer(handle); }; var init_ClassHandle = () => { Object.assign(ClassHandle.prototype, { "isAliasOf"(other) { if (!(this instanceof ClassHandle)) { return false; } if (!(other instanceof ClassHandle)) { return false; } var leftClass = this.$$.ptrType.registeredClass; var left = this.$$.ptr; other.$$ = /** @type {Object} */ (other.$$); var rightClass = other.$$.ptrType.registeredClass; var right = other.$$.ptr; while (leftClass.baseClass) { left = leftClass.upcast(left); leftClass = leftClass.baseClass; } while (rightClass.baseClass) { right = rightClass.upcast(right); rightClass = rightClass.baseClass; } return leftClass === rightClass && left === right; }, "clone"() { if (!this.$$.ptr) { throwInstanceAlreadyDeleted(this); } if (this.$$.preservePointerOnDelete) { this.$$.count.value += 1; return this; } else { var clone = attachFinalizer(Object.create(Object.getPrototypeOf(this), { $$: { value: shallowCopyInternalPointer(this.$$), } })); clone.$$.count.value += 1; clone.$$.deleteScheduled = false; return clone; } }, "delete"() { if (!this.$$.ptr) { throwInstanceAlreadyDeleted(this); } if (this.$$.deleteScheduled && !this.$$.preservePointerOnDelete) { throwBindingError('Object already scheduled for deletion'); } detachFinalizer(this); releaseClassHandle(this.$$); if (!this.$$.preservePointerOnDelete) { this.$$.smartPtr = undefined; this.$$.ptr = undefined; } }, "isDeleted"() { return !this.$$.ptr; }, "deleteLater"() { if (!this.$$.ptr) { throwInstanceAlreadyDeleted(this); } if (this.$$.deleteScheduled && !this.$$.preservePointerOnDelete) { throwBindingError('Object already scheduled for deletion'); } deletionQueue.push(this); if (deletionQueue.length === 1 && delayFunction) { delayFunction(flushPendingDeletes); } this.$$.deleteScheduled = true; return this; }, }); }; /** @constructor */ function ClassHandle() { } var createNamedFunction = (name, body) => Object.defineProperty(body, 'name', { value: name }); var ensureOverloadTable = (proto, methodName, humanName) => { if (undefined === proto[methodName].overloadTable) { var prevFunc = proto[methodName]; // Inject an overload resolver function that routes to the appropriate overload based on the number of arguments. proto[methodName] = function() { // TODO This check can be removed in -O3 level "unsafe" optimizations. if (!proto[methodName].overloadTable.hasOwnProperty(arguments.length)) { throwBindingError(`Function '${humanName}' called with an invalid number of arguments (${arguments.length}) - expects one of (${proto[methodName].overloadTable})!`); } return proto[methodName].overloadTable[arguments.length].apply(this, arguments); }; // Move the previous function into the overload table. proto[methodName].overloadTable = []; proto[methodName].overloadTable[prevFunc.argCount] = prevFunc; } }; /** @param {number=} numArguments */ var exposePublicSymbol = (name, value, numArguments) => { if (Module.hasOwnProperty(name)) { if (undefined === numArguments || (undefined !== Module[name].overloadTable && undefined !== Module[name].overloadTable[numArguments])) { throwBindingError(`Cannot register public name '${name}' twice`); } // We are exposing a function with the same name as an existing function. Create an overload table and a function selector // that routes between the two. ensureOverloadTable(Module, name, name); if (Module.hasOwnProperty(numArguments)) { throwBindingError(`Cannot register multiple overloads of a function with the same number of arguments (${numArguments})!`); } // Add the new function into the overload table. Module[name].overloadTable[numArguments] = value; } else { Module[name] = value; if (undefined !== numArguments) { Module[name].numArguments = numArguments; } } }; var char_0 = 48; var char_9 = 57; var makeLegalFunctionName = (name) => { if (undefined === name) { return '_unknown'; } name = name.replace(/[^a-zA-Z0-9_]/g, '$'); var f = name.charCodeAt(0); if (f >= char_0 && f <= char_9) { return `_${name}`; } return name; }; /** @constructor */ function RegisteredClass(name, constructor, instancePrototype, rawDestructor, baseClass, getActualType, upcast, downcast) { this.name = name; this.constructor = constructor; this.instancePrototype = instancePrototype; this.rawDestructor = rawDestructor; this.baseClass = baseClass; this.getActualType = getActualType; this.upcast = upcast; this.downcast = downcast; this.pureVirtualFunctions = []; } var upcastPointer = (ptr, ptrClass, desiredClass) => { while (ptrClass !== desiredClass) { if (!ptrClass.upcast) { throwBindingError(`Expected null or instance of ${desiredClass.name}, got an instance of ${ptrClass.name}`); } ptr = ptrClass.upcast(ptr); ptrClass = ptrClass.baseClass; } return ptr; }; /** @suppress {globalThis} */ function constNoSmartPtrRawPointerToWireType(destructors, handle) { if (handle === null) { if (this.isReference) { throwBindingError(`null is not a valid ${this.name}`); } return 0; } if (!handle.$$) { throwBindingError(`Cannot pass "${embindRepr(handle)}" as a ${this.name}`); } if (!handle.$$.ptr) { throwBindingError(`Cannot pass deleted object as a pointer of type ${this.name}`); } var handleClass = handle.$$.ptrType.registeredClass; var ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass); return ptr; } /** @suppress {globalThis} */ function genericPointerToWireType(destructors, handle) { var ptr; if (handle === null) { if (this.isReference) { throwBindingError(`null is not a valid ${this.name}`); } if (this.isSmartPointer) { ptr = this.rawConstructor(); if (destructors !== null) { destructors.push(this.rawDestructor, ptr); } return ptr; } else { return 0; } } if (!handle || !handle.$$) { throwBindingError(`Cannot pass "${embindRepr(handle)}" as a ${this.name}`); } if (!handle.$$.ptr) { throwBindingError(`Cannot pass deleted object as a pointer of type ${this.name}`); } if (!this.isConst && handle.$$.ptrType.isConst) { throwBindingError(`Cannot convert argument of type ${(handle.$$.smartPtrType ? handle.$$.smartPtrType.name : handle.$$.ptrType.name)} to parameter type ${this.name}`); } var handleClass = handle.$$.ptrType.registeredClass; ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass); if (this.isSmartPointer) { // TODO: this is not strictly true // We could support BY_EMVAL conversions from raw pointers to smart pointers // because the smart pointer can hold a reference to the handle if (undefined === handle.$$.smartPtr) { throwBindingError('Passing raw pointer to smart pointer is illegal'); } switch (this.sharingPolicy) { case 0: // NONE // no upcasting if (handle.$$.smartPtrType === this) { ptr = handle.$$.smartPtr; } else { throwBindingError(`Cannot convert argument of type ${(handle.$$.smartPtrType ? handle.$$.smartPtrType.name : handle.$$.ptrType.name)} to parameter type ${this.name}`); } break; case 1: // INTRUSIVE ptr = handle.$$.smartPtr; break; case 2: // BY_EMVAL if (handle.$$.smartPtrType === this) { ptr = handle.$$.smartPtr; } else { var clonedHandle = handle['clone'](); ptr = this.rawShare( ptr, Emval.toHandle(() => clonedHandle['delete']()) ); if (destructors !== null) { destructors.push(this.rawDestructor, ptr); } } break; default: throwBindingError('Unsupporting sharing policy'); } } return ptr; } /** @suppress {globalThis} */ function nonConstNoSmartPtrRawPointerToWireType(destructors, handle) { if (handle === null) { if (this.isReference) { throwBindingError(`null is not a valid ${this.name}`); } return 0; } if (!handle.$$) { throwBindingError(`Cannot pass "${embindRepr(handle)}" as a ${this.name}`); } if (!handle.$$.ptr) { throwBindingError(`Cannot pass deleted object as a pointer of type ${this.name}`); } if (handle.$$.ptrType.isConst) { throwBindingError(`Cannot convert argument of type ${handle.$$.ptrType.name} to parameter type ${this.name}`); } var handleClass = handle.$$.ptrType.registeredClass; var ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass); return ptr; } /** @suppress {globalThis} */ function readPointer(pointer) { return this['fromWireType'](HEAPU32[((pointer)>>2)]); } var init_RegisteredPointer = () => { Object.assign(RegisteredPointer.prototype, { getPointee(ptr) { if (this.rawGetPointee) { ptr = this.rawGetPointee(ptr); } return ptr; }, destructor(ptr) { this.rawDestructor?.(ptr); }, 'argPackAdvance': GenericWireTypeSize, 'readValueFromPointer': readPointer, 'deleteObject'(handle) { if (handle !== null) { handle['delete'](); } }, 'fromWireType': RegisteredPointer_fromWireType, }); }; /** @constructor @param {*=} pointeeType, @param {*=} sharingPolicy, @param {*=} rawGetPointee, @param {*=} rawConstructor, @param {*=} rawShare, @param {*=} rawDestructor, */ function RegisteredPointer( name, registeredClass, isReference, isConst, // smart pointer properties isSmartPointer, pointeeType, sharingPolicy, rawGetPointee, rawConstructor, rawShare, rawDestructor ) { this.name = name; this.registeredClass = registeredClass; this.isReference = isReference; this.isConst = isConst; // smart pointer properties this.isSmartPointer = isSmartPointer; this.pointeeType = pointeeType; this.sharingPolicy = sharingPolicy; this.rawGetPointee = rawGetPointee; this.rawConstructor = rawConstructor; this.rawShare = rawShare; this.rawDestructor = rawDestructor; if (!isSmartPointer && registeredClass.baseClass === undefined) { if (isConst) { this['toWireType'] = constNoSmartPtrRawPointerToWireType; this.destructorFunction = null; } else { this['toWireType'] = nonConstNoSmartPtrRawPointerToWireType; this.destructorFunction = null; } } else { this['toWireType'] = genericPointerToWireType; // Here we must leave this.destructorFunction undefined, since whether genericPointerToWireType returns // a pointer that needs to be freed up is runtime-dependent, and cannot be evaluated at registration time. // TODO: Create an alternative mechanism that allows removing the use of var destructors = []; array in // craftInvokerFunction altogether. } } /** @param {number=} numArguments */ var replacePublicSymbol = (name, value, numArguments) => { if (!Module.hasOwnProperty(name)) { throwInternalError('Replacing nonexistant public symbol'); } // If there's an overload table for this symbol, replace the symbol in the overload table instead. if (undefined !== Module[name].overloadTable && undefined !== numArguments) { Module[name].overloadTable[numArguments] = value; } else { Module[name] = value; Module[name].argCount = numArguments; } }; var dynCallLegacy = (sig, ptr, args) => { var f = Module['dynCall_' + sig]; return args && args.length ? f.apply(null, [ptr].concat(args)) : f.call(null, ptr); }; /** @param {Object=} args */ var dynCall = (sig, ptr, args) => { // Without WASM_BIGINT support we cannot directly call function with i64 as // part of thier signature, so we rely the dynCall functions generated by // wasm-emscripten-finalize if (sig.includes('j')) { return dynCallLegacy(sig, ptr, args); } var rtn = getWasmTableEntry(ptr).apply(null, args); return rtn; }; var getDynCaller = (sig, ptr) => { var argCache = []; return function() { argCache.length = 0; Object.assign(argCache, arguments); return dynCall(sig, ptr, argCache); }; }; var embind__requireFunction = (signature, rawFunction) => { signature = readLatin1String(signature); function makeDynCaller() { if (signature.includes('j')) { return getDynCaller(signature, rawFunction); } return getWasmTableEntry(rawFunction); } var fp = makeDynCaller(); if (typeof fp != "function") { throwBindingError(`unknown function pointer with signature ${signature}: ${rawFunction}`); } return fp; }; var extendError = (baseErrorType, errorName) => { var errorClass = createNamedFunction(errorName, function(message) { this.name = errorName; this.message = message; var stack = (new Error(message)).stack; if (stack !== undefined) { this.stack = this.toString() + '\n' + stack.replace(/^Error(:[^\n]*)?\n/, ''); } }); errorClass.prototype = Object.create(baseErrorType.prototype); errorClass.prototype.constructor = errorClass; errorClass.prototype.toString = function() { if (this.message === undefined) { return this.name; } else { return `${this.name}: ${this.message}`; } }; return errorClass; }; var UnboundTypeError; var getTypeName = (type) => { var ptr = ___getTypeName(type); var rv = readLatin1String(ptr); _free(ptr); return rv; }; var throwUnboundTypeError = (message, types) => { var unboundTypes = []; var seen = {}; function visit(type) { if (seen[type]) { return; } if (registeredTypes[type]) { return; } if (typeDependencies[type]) { typeDependencies[type].forEach(visit); return; } unboundTypes.push(type); seen[type] = true; } types.forEach(visit); throw new UnboundTypeError(`${message}: ` + unboundTypes.map(getTypeName).join([', '])); }; var __embind_register_class = (rawType, rawPointerType, rawConstPointerType, baseClassRawType, getActualTypeSignature, getActualType, upcastSignature, upcast, downcastSignature, downcast, name, destructorSignature, rawDestructor) => { name = readLatin1String(name); getActualType = embind__requireFunction(getActualTypeSignature, getActualType); upcast &&= embind__requireFunction(upcastSignature, upcast); downcast &&= embind__requireFunction(downcastSignature, downcast); rawDestructor = embind__requireFunction(destructorSignature, rawDestructor); var legalFunctionName = makeLegalFunctionName(name); exposePublicSymbol(legalFunctionName, function() { // this code cannot run if baseClassRawType is zero throwUnboundTypeError(`Cannot construct ${name} due to unbound types`, [baseClassRawType]); }); whenDependentTypesAreResolved( [rawType, rawPointerType, rawConstPointerType], baseClassRawType ? [baseClassRawType] : [], function(base) { base = base[0]; var baseClass; var basePrototype; if (baseClassRawType) { baseClass = base.registeredClass; basePrototype = baseClass.instancePrototype; } else { basePrototype = ClassHandle.prototype; } var constructor = createNamedFunction(name, function() { if (Object.getPrototypeOf(this) !== instancePrototype) { throw new BindingError("Use 'new' to construct " + name); } if (undefined === registeredClass.constructor_body) { throw new BindingError(name + " has no accessible constructor"); } var body = registeredClass.constructor_body[arguments.length]; if (undefined === body) { throw new BindingError(`Tried to invoke ctor of ${name} with invalid number of parameters (${arguments.length}) - expected (${Object.keys(registeredClass.constructor_body).toString()}) parameters instead!`); } return body.apply(this, arguments); }); var instancePrototype = Object.create(basePrototype, { constructor: { value: constructor }, }); constructor.prototype = instancePrototype; var registeredClass = new RegisteredClass(name, constructor, instancePrototype, rawDestructor, baseClass, getActualType, upcast, downcast); if (registeredClass.baseClass) { // Keep track of class hierarchy. Used to allow sub-classes to inherit class functions. registeredClass.baseClass.__derivedClasses ??= []; registeredClass.baseClass.__derivedClasses.push(registeredClass); } var referenceConverter = new RegisteredPointer(name, registeredClass, true, false, false); var pointerConverter = new RegisteredPointer(name + '*', registeredClass, false, false, false); var constPointerConverter = new RegisteredPointer(name + ' const*', registeredClass, false, true, false); registeredPointers[rawType] = { pointerType: pointerConverter, constPointerType: constPointerConverter }; replacePublicSymbol(legalFunctionName, constructor); return [referenceConverter, pointerConverter, constPointerConverter]; } ); }; var heap32VectorToArray = (count, firstElement) => { var array = []; for (var i = 0; i < count; i++) { // TODO(https://github.com/emscripten-core/emscripten/issues/17310): // Find a way to hoist the `>> 2` or `>> 3` out of this loop. array.push(HEAPU32[(((firstElement)+(i * 4))>>2)]); } return array; }; var runDestructors = (destructors) => { while (destructors.length) { var ptr = destructors.pop(); var del = destructors.pop(); del(ptr); } }; function usesDestructorStack(argTypes) { for (var i = 1; i < argTypes.length; ++i) { // Skip return value at index 0 - it's not deleted here. if (argTypes[i] !== null && argTypes[i].destructorFunction === undefined) { // The type does not define a destructor function - must use dynamic stack return true; } } return false; } function newFunc(constructor, argumentList) { if (!(constructor instanceof Function)) { throw new TypeError(`new_ called with constructor type ${typeof(constructor)} which is not a function`); } /* * Previously, the following line was just: * function dummy() {}; * Unfortunately, Chrome was preserving 'dummy' as the object's name, even * though at creation, the 'dummy' has the correct constructor name. Thus, * objects created with IMVU.new would show up in the debugger as 'dummy', * which isn't very helpful. Using IMVU.createNamedFunction addresses the * issue. Doublely-unfortunately, there's no way to write a test for this * behavior. -NRD 2013.02.22 */ var dummy = createNamedFunction(constructor.name || 'unknownFunctionName', function(){}); dummy.prototype = constructor.prototype; var obj = new dummy; var r = constructor.apply(obj, argumentList); return (r instanceof Object) ? r : obj; } function createJsInvoker(humanName, argTypes, isClassMethodFunc, returns, isAsync) { var needsDestructorStack = usesDestructorStack(argTypes); var argCount = argTypes.length; var argsList = ""; var argsListWired = ""; for (var i = 0; i < argCount - 2; ++i) { argsList += (i!==0?", ":"")+"arg"+i; argsListWired += (i!==0?", ":"")+"arg"+i+"Wired"; } var invokerFnBody = ` return function (${argsList}) { if (arguments.length !== ${argCount - 2}) { throwBindingError('function ${humanName} called with ' + arguments.length + ' arguments, expected ${argCount - 2}'); }`; if (needsDestructorStack) { invokerFnBody += "var destructors = [];\n"; } var dtorStack = needsDestructorStack ? "destructors" : "null"; var args1 = ["throwBindingError", "invoker", "fn", "runDestructors", "retType", "classParam"]; if (isClassMethodFunc) { invokerFnBody += "var thisWired = classParam['toWireType']("+dtorStack+", this);\n"; } for (var i = 0; i < argCount - 2; ++i) { invokerFnBody += "var arg"+i+"Wired = argType"+i+"['toWireType']("+dtorStack+", arg"+i+"); // "+argTypes[i+2].name+"\n"; args1.push("argType"+i); } if (isClassMethodFunc) { argsListWired = "thisWired" + (argsListWired.length > 0 ? ", " : "") + argsListWired; } invokerFnBody += (returns || isAsync ? "var rv = ":"") + "invoker(fn"+(argsListWired.length>0?", ":"")+argsListWired+");\n"; if (needsDestructorStack) { invokerFnBody += "runDestructors(destructors);\n"; } else { for (var i = isClassMethodFunc?1:2; i < argTypes.length; ++i) { // Skip return value at index 0 - it's not deleted here. Also skip class type if not a method. var paramName = (i === 1 ? "thisWired" : ("arg"+(i - 2)+"Wired")); if (argTypes[i].destructorFunction !== null) { invokerFnBody += paramName+"_dtor("+paramName+"); // "+argTypes[i].name+"\n"; args1.push(paramName+"_dtor"); } } } if (returns) { invokerFnBody += "var ret = retType['fromWireType'](rv);\n" + "return ret;\n"; } else { } invokerFnBody += "}\n"; return [args1, invokerFnBody]; } function craftInvokerFunction(humanName, argTypes, classType, cppInvokerFunc, cppTargetFunc, /** boolean= */ isAsync) { // humanName: a human-readable string name for the function to be generated. // argTypes: An array that contains the embind type objects for all types in the function signature. // argTypes[0] is the type object for the function return value. // argTypes[1] is the type object for function this object/class type, or null if not crafting an invoker for a class method. // argTypes[2...] are the actual function parameters. // classType: The embind type object for the class to be bound, or null if this is not a method of a class. // cppInvokerFunc: JS Function object to the C++-side function that interops into C++ code. // cppTargetFunc: Function pointer (an integer to FUNCTION_TABLE) to the target C++ function the cppInvokerFunc will end up calling. // isAsync: Optional. If true, returns an async function. Async bindings are only supported with JSPI. var argCount = argTypes.length; if (argCount < 2) { throwBindingError("argTypes array size mismatch! Must at least get return value and 'this' types!"); } var isClassMethodFunc = (argTypes[1] !== null && classType !== null); // Free functions with signature "void function()" do not need an invoker that marshalls between wire types. // TODO: This omits argument count check - enable only at -O3 or similar. // if (ENABLE_UNSAFE_OPTS && argCount == 2 && argTypes[0].name == "void" && !isClassMethodFunc) { // return FUNCTION_TABLE[fn]; // } // Determine if we need to use a dynamic stack to store the destructors for the function parameters. // TODO: Remove this completely once all function invokers are being dynamically generated. var needsDestructorStack = usesDestructorStack(argTypes); var returns = (argTypes[0].name !== "void"); // Builld the arguments that will be passed into the closure around the invoker // function. var closureArgs = [throwBindingError, cppInvokerFunc, cppTargetFunc, runDestructors, argTypes[0], argTypes[1]]; for (var i = 0; i < argCount - 2; ++i) { closureArgs.push(argTypes[i+2]); } if (!needsDestructorStack) { for (var i = isClassMethodFunc?1:2; i < argTypes.length; ++i) { // Skip return value at index 0 - it's not deleted here. Also skip class type if not a method. if (argTypes[i].destructorFunction !== null) { closureArgs.push(argTypes[i].destructorFunction); } } } let [args, invokerFnBody] = createJsInvoker(humanName, argTypes, isClassMethodFunc, returns, isAsync); args.push(invokerFnBody); var invokerFn = newFunc(Function, args).apply(null, closureArgs); return createNamedFunction(humanName, invokerFn); } var __embind_register_class_constructor = ( rawClassType, argCount, rawArgTypesAddr, invokerSignature, invoker, rawConstructor ) => { var rawArgTypes = heap32VectorToArray(argCount, rawArgTypesAddr); invoker = embind__requireFunction(invokerSignature, invoker); var args = [rawConstructor]; var destructors = []; whenDependentTypesAreResolved([], [rawClassType], function(classType) { classType = classType[0]; var humanName = `constructor ${classType.name}`; if (undefined === classType.registeredClass.constructor_body) { classType.registeredClass.constructor_body = []; } if (undefined !== classType.registeredClass.constructor_body[argCount - 1]) { throw new BindingError(`Cannot register multiple constructors with identical number of parameters (${argCount-1}) for class '${classType.name}'! Overload resolution is currently only performed using the parameter count, not actual type info!`); } classType.registeredClass.constructor_body[argCount - 1] = () => { throwUnboundTypeError(`Cannot construct ${classType.name} due to unbound types`, rawArgTypes); }; whenDependentTypesAreResolved([], rawArgTypes, (argTypes) => { // Insert empty slot for context type (argTypes[1]). argTypes.splice(1, 0, null); classType.registeredClass.constructor_body[argCount - 1] = craftInvokerFunction(humanName, argTypes, null, invoker, rawConstructor); return []; }); return []; }); }; var getFunctionName = (signature) => { signature = signature.trim(); const argsIndex = signature.indexOf("("); if (argsIndex !== -1) { return signature.substr(0, argsIndex); } else { return signature; } }; var __embind_register_class_function = (rawClassType, methodName, argCount, rawArgTypesAddr, // [ReturnType, ThisType, Args...] invokerSignature, rawInvoker, context, isPureVirtual, isAsync) => { var rawArgTypes = heap32VectorToArray(argCount, rawArgTypesAddr); methodName = readLatin1String(methodName); methodName = getFunctionName(methodName); rawInvoker = embind__requireFunction(invokerSignature, rawInvoker); whenDependentTypesAreResolved([], [rawClassType], function(classType) { classType = classType[0]; var humanName = `${classType.name}.${methodName}`; if (methodName.startsWith("@@")) { methodName = Symbol[methodName.substring(2)]; } if (isPureVirtual) { classType.registeredClass.pureVirtualFunctions.push(methodName); } function unboundTypesHandler() { throwUnboundTypeError(`Cannot call ${humanName} due to unbound types`, rawArgTypes); } var proto = classType.registeredClass.instancePrototype; var method = proto[methodName]; if (undefined === method || (undefined === method.overloadTable && method.className !== classType.name && method.argCount === argCount - 2)) { // This is the first overload to be registered, OR we are replacing a // function in the base class with a function in the derived class. unboundTypesHandler.argCount = argCount - 2; unboundTypesHandler.className = classType.name; proto[methodName] = unboundTypesHandler; } else { // There was an existing function with the same name registered. Set up // a function overload routing table. ensureOverloadTable(proto, methodName, humanName); proto[methodName].overloadTable[argCount - 2] = unboundTypesHandler; } whenDependentTypesAreResolved([], rawArgTypes, function(argTypes) { var memberFunction = craftInvokerFunction(humanName, argTypes, classType, rawInvoker, context, isAsync); // Replace the initial unbound-handler-stub function with the appropriate member function, now that all types // are resolved. If multiple overloads are registered for this function, the function goes into an overload table. if (undefined === proto[methodName].overloadTable) { // Set argCount in case an overload is registered later memberFunction.argCount = argCount - 2; proto[methodName] = memberFunction; } else { proto[methodName].overloadTable[argCount - 2] = memberFunction; } return []; }); return []; }); }; function handleAllocatorInit() { Object.assign(HandleAllocator.prototype, /** @lends {HandleAllocator.prototype} */ { get(id) { return this.allocated[id]; }, has(id) { return this.allocated[id] !== undefined; }, allocate(handle) { var id = this.freelist.pop() || this.allocated.length; this.allocated[id] = handle; return id; }, free(id) { // Set the slot to `undefined` rather than using `delete` here since // apparently arrays with holes in them can be less efficient. this.allocated[id] = undefined; this.freelist.push(id); } }); } /** @constructor */ function HandleAllocator() { // Reserve slot 0 so that 0 is always an invalid handle this.allocated = [undefined]; this.freelist = []; } var emval_handles = new HandleAllocator();; var __emval_decref = (handle) => { if (handle >= emval_handles.reserved && 0 === --emval_handles.get(handle).refcount) { emval_handles.free(handle); } }; var count_emval_handles = () => { var count = 0; for (var i = emval_handles.reserved; i < emval_handles.allocated.length; ++i) { if (emval_handles.allocated[i] !== undefined) { ++count; } } return count; }; var init_emval = () => { // reserve some special values. These never get de-allocated. // The HandleAllocator takes care of reserving zero. emval_handles.allocated.push( {value: undefined}, {value: null}, {value: true}, {value: false}, ); emval_handles.reserved = emval_handles.allocated.length Module['count_emval_handles'] = count_emval_handles; }; var Emval = { toValue:(handle) => { if (!handle) { throwBindingError('Cannot use deleted val. handle = ' + handle); } return emval_handles.get(handle).value; }, toHandle:(value) => { switch (value) { case undefined: return 1; case null: return 2; case true: return 3; case false: return 4; default:{ return emval_handles.allocate({refcount: 1, value: value}); } } }, }; /** @suppress {globalThis} */ function simpleReadValueFromPointer(pointer) { return this['fromWireType'](HEAP32[((pointer)>>2)]); } var __embind_register_emval = (rawType, name) => { name = readLatin1String(name); registerType(rawType, { name, 'fromWireType': (handle) => { var rv = Emval.toValue(handle); __emval_decref(handle); return rv; }, 'toWireType': (destructors, value) => Emval.toHandle(value), 'argPackAdvance': GenericWireTypeSize, 'readValueFromPointer': simpleReadValueFromPointer, destructorFunction: null, // This type does not need a destructor // TODO: do we need a deleteObject here? write a test where // emval is passed into JS via an interface }); }; var embindRepr = (v) => { if (v === null) { return 'null'; } var t = typeof v; if (t === 'object' || t === 'array' || t === 'function') { return v.toString(); } else { return '' + v; } }; var floatReadValueFromPointer = (name, width) => { switch (width) { case 4: return function(pointer) { return this['fromWireType'](HEAPF32[((pointer)>>2)]); }; case 8: return function(pointer) { return this['fromWireType'](HEAPF64[((pointer)>>3)]); }; default: throw new TypeError(`invalid float width (${width}): ${name}`); } }; var __embind_register_float = (rawType, name, size) => { name = readLatin1String(name); registerType(rawType, { name, 'fromWireType': (value) => value, 'toWireType': (destructors, value) => { // The VM will perform JS to Wasm value conversion, according to the spec: // https://www.w3.org/TR/wasm-js-api-1/#towebassemblyvalue return value; }, 'argPackAdvance': GenericWireTypeSize, 'readValueFromPointer': floatReadValueFromPointer(name, size), destructorFunction: null, // This type does not need a destructor }); }; var integerReadValueFromPointer = (name, width, signed) => { // integers are quite common, so generate very specialized functions switch (width) { case 1: return signed ? (pointer) => HEAP8[((pointer)>>0)] : (pointer) => HEAPU8[((pointer)>>0)]; case 2: return signed ? (pointer) => HEAP16[((pointer)>>1)] : (pointer) => HEAPU16[((pointer)>>1)] case 4: return signed ? (pointer) => HEAP32[((pointer)>>2)] : (pointer) => HEAPU32[((pointer)>>2)] default: throw new TypeError(`invalid integer width (${width}): ${name}`); } }; /** @suppress {globalThis} */ var __embind_register_integer = (primitiveType, name, size, minRange, maxRange) => { name = readLatin1String(name); // LLVM doesn't have signed and unsigned 32-bit types, so u32 literals come // out as 'i32 -1'. Always treat those as max u32. if (maxRange === -1) { maxRange = 4294967295; } var fromWireType = (value) => value; if (minRange === 0) { var bitshift = 32 - 8*size; fromWireType = (value) => (value << bitshift) >>> bitshift; } var isUnsignedType = (name.includes('unsigned')); var checkAssertions = (value, toTypeName) => { } var toWireType; if (isUnsignedType) { toWireType = function(destructors, value) { checkAssertions(value, this.name); return value >>> 0; } } else { toWireType = function(destructors, value) { checkAssertions(value, this.name); // The VM will perform JS to Wasm value conversion, according to the spec: // https://www.w3.org/TR/wasm-js-api-1/#towebassemblyvalue return value; } } registerType(primitiveType, { name, 'fromWireType': fromWireType, 'toWireType': toWireType, 'argPackAdvance': GenericWireTypeSize, 'readValueFromPointer': integerReadValueFromPointer(name, size, minRange !== 0), destructorFunction: null, // This type does not need a destructor }); }; var __embind_register_memory_view = (rawType, dataTypeIndex, name) => { var typeMapping = [ Int8Array, Uint8Array, Int16Array, Uint16Array, Int32Array, Uint32Array, Float32Array, Float64Array, ]; var TA = typeMapping[dataTypeIndex]; function decodeMemoryView(handle) { var size = HEAPU32[((handle)>>2)]; var data = HEAPU32[(((handle)+(4))>>2)]; return new TA(HEAP8.buffer, data, size); } name = readLatin1String(name); registerType(rawType, { name, 'fromWireType': decodeMemoryView, 'argPackAdvance': GenericWireTypeSize, 'readValueFromPointer': decodeMemoryView, }, { ignoreDuplicateRegistrations: true, }); }; var __embind_register_std_string = (rawType, name) => { name = readLatin1String(name); var stdStringIsUTF8 //process only std::string bindings with UTF8 support, in contrast to e.g. std::basic_string = (name === "std::string"); registerType(rawType, { name, // For some method names we use string keys here since they are part of // the public/external API and/or used by the runtime-generated code. 'fromWireType'(value) { var length = HEAPU32[((value)>>2)]; var payload = value + 4; var str; if (stdStringIsUTF8) { var decodeStartPtr = payload; // Looping here to support possible embedded '0' bytes for (var i = 0; i <= length; ++i) { var currentBytePtr = payload + i; if (i == length || HEAPU8[currentBytePtr] == 0) { var maxRead = currentBytePtr - decodeStartPtr; var stringSegment = UTF8ToString(decodeStartPtr, maxRead); if (str === undefined) { str = stringSegment; } else { str += String.fromCharCode(0); str += stringSegment; } decodeStartPtr = currentBytePtr + 1; } } } else { var a = new Array(length); for (var i = 0; i < length; ++i) { a[i] = String.fromCharCode(HEAPU8[payload + i]); } str = a.join(''); } _free(value); return str; }, 'toWireType'(destructors, value) { if (value instanceof ArrayBuffer) { value = new Uint8Array(value); } var length; var valueIsOfTypeString = (typeof value == 'string'); if (!(valueIsOfTypeString || value instanceof Uint8Array || value instanceof Uint8ClampedArray || value instanceof Int8Array)) { throwBindingError('Cannot pass non-string to std::string'); } if (stdStringIsUTF8 && valueIsOfTypeString) { length = lengthBytesUTF8(value); } else { length = value.length; } // assumes 4-byte alignment var base = _malloc(4 + length + 1); var ptr = base + 4; HEAPU32[((base)>>2)] = length; if (stdStringIsUTF8 && valueIsOfTypeString) { stringToUTF8(value, ptr, length + 1); } else { if (valueIsOfTypeString) { for (var i = 0; i < length; ++i) { var charCode = value.charCodeAt(i); if (charCode > 255) { _free(ptr); throwBindingError('String has UTF-16 code units that do not fit in 8 bits'); } HEAPU8[ptr + i] = charCode; } } else { for (var i = 0; i < length; ++i) { HEAPU8[ptr + i] = value[i]; } } } if (destructors !== null) { destructors.push(_free, base); } return base; }, 'argPackAdvance': GenericWireTypeSize, 'readValueFromPointer': readPointer, destructorFunction(ptr) { _free(ptr); }, }); }; var UTF16Decoder = typeof TextDecoder != 'undefined' ? new TextDecoder('utf-16le') : undefined;; var UTF16ToString = (ptr, maxBytesToRead) => { var endPtr = ptr; // TextDecoder needs to know the byte length in advance, it doesn't stop on // null terminator by itself. // Also, use the length info to avoid running tiny strings through // TextDecoder, since .subarray() allocates garbage. var idx = endPtr >> 1; var maxIdx = idx + maxBytesToRead / 2; // If maxBytesToRead is not passed explicitly, it will be undefined, and this // will always evaluate to true. This saves on code size. while (!(idx >= maxIdx) && HEAPU16[idx]) ++idx; endPtr = idx << 1; if (endPtr - ptr > 32 && UTF16Decoder) return UTF16Decoder.decode(HEAPU8.subarray(ptr, endPtr)); // Fallback: decode without UTF16Decoder var str = ''; // If maxBytesToRead is not passed explicitly, it will be undefined, and the // for-loop's condition will always evaluate to true. The loop is then // terminated on the first null char. for (var i = 0; !(i >= maxBytesToRead / 2); ++i) { var codeUnit = HEAP16[(((ptr)+(i*2))>>1)]; if (codeUnit == 0) break; // fromCharCode constructs a character from a UTF-16 code unit, so we can // pass the UTF16 string right through. str += String.fromCharCode(codeUnit); } return str; }; var stringToUTF16 = (str, outPtr, maxBytesToWrite) => { // Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed. maxBytesToWrite ??= 0x7FFFFFFF; if (maxBytesToWrite < 2) return 0; maxBytesToWrite -= 2; // Null terminator. var startPtr = outPtr; var numCharsToWrite = (maxBytesToWrite < str.length*2) ? (maxBytesToWrite / 2) : str.length; for (var i = 0; i < numCharsToWrite; ++i) { // charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP. var codeUnit = str.charCodeAt(i); // possibly a lead surrogate HEAP16[((outPtr)>>1)] = codeUnit; outPtr += 2; } // Null-terminate the pointer to the HEAP. HEAP16[((outPtr)>>1)] = 0; return outPtr - startPtr; }; var lengthBytesUTF16 = (str) => { return str.length*2; }; var UTF32ToString = (ptr, maxBytesToRead) => { var i = 0; var str = ''; // If maxBytesToRead is not passed explicitly, it will be undefined, and this // will always evaluate to true. This saves on code size. while (!(i >= maxBytesToRead / 4)) { var utf32 = HEAP32[(((ptr)+(i*4))>>2)]; if (utf32 == 0) break; ++i; // Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing. // See http://unicode.org/faq/utf_bom.html#utf16-3 if (utf32 >= 0x10000) { var ch = utf32 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } else { str += String.fromCharCode(utf32); } } return str; }; var stringToUTF32 = (str, outPtr, maxBytesToWrite) => { // Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed. maxBytesToWrite ??= 0x7FFFFFFF; if (maxBytesToWrite < 4) return 0; var startPtr = outPtr; var endPtr = startPtr + maxBytesToWrite - 4; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. // See http://unicode.org/faq/utf_bom.html#utf16-3 var codeUnit = str.charCodeAt(i); // possibly a lead surrogate if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) { var trailSurrogate = str.charCodeAt(++i); codeUnit = 0x10000 + ((codeUnit & 0x3FF) << 10) | (trailSurrogate & 0x3FF); } HEAP32[((outPtr)>>2)] = codeUnit; outPtr += 4; if (outPtr + 4 > endPtr) break; } // Null-terminate the pointer to the HEAP. HEAP32[((outPtr)>>2)] = 0; return outPtr - startPtr; }; var lengthBytesUTF32 = (str) => { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. // See http://unicode.org/faq/utf_bom.html#utf16-3 var codeUnit = str.charCodeAt(i); if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) ++i; // possibly a lead surrogate, so skip over the tail surrogate. len += 4; } return len; }; var __embind_register_std_wstring = (rawType, charSize, name) => { name = readLatin1String(name); var decodeString, encodeString, getHeap, lengthBytesUTF, shift; if (charSize === 2) { decodeString = UTF16ToString; encodeString = stringToUTF16; lengthBytesUTF = lengthBytesUTF16; getHeap = () => HEAPU16; shift = 1; } else if (charSize === 4) { decodeString = UTF32ToString; encodeString = stringToUTF32; lengthBytesUTF = lengthBytesUTF32; getHeap = () => HEAPU32; shift = 2; } registerType(rawType, { name, 'fromWireType': (value) => { // Code mostly taken from _embind_register_std_string fromWireType var length = HEAPU32[((value)>>2)]; var HEAP = getHeap(); var str; var decodeStartPtr = value + 4; // Looping here to support possible embedded '0' bytes for (var i = 0; i <= length; ++i) { var currentBytePtr = value + 4 + i * charSize; if (i == length || HEAP[currentBytePtr >> shift] == 0) { var maxReadBytes = currentBytePtr - decodeStartPtr; var stringSegment = decodeString(decodeStartPtr, maxReadBytes); if (str === undefined) { str = stringSegment; } else { str += String.fromCharCode(0); str += stringSegment; } decodeStartPtr = currentBytePtr + charSize; } } _free(value); return str; }, 'toWireType': (destructors, value) => { if (!(typeof value == 'string')) { throwBindingError(`Cannot pass non-string to C++ string type ${name}`); } // assumes 4-byte alignment var length = lengthBytesUTF(value); var ptr = _malloc(4 + length + charSize); HEAPU32[ptr >> 2] = length >> shift; encodeString(value, ptr + 4, length + charSize); if (destructors !== null) { destructors.push(_free, ptr); } return ptr; }, 'argPackAdvance': GenericWireTypeSize, 'readValueFromPointer': simpleReadValueFromPointer, destructorFunction(ptr) { _free(ptr); } }); }; var __embind_register_void = (rawType, name) => { name = readLatin1String(name); registerType(rawType, { isVoid: true, // void return values can be optimized out sometimes name, 'argPackAdvance': 0, 'fromWireType': () => undefined, // TODO: assert if anything else is given? 'toWireType': (destructors, o) => undefined, }); }; var nowIsMonotonic = 1; var __emscripten_get_now_is_monotonic = () => nowIsMonotonic; var __emscripten_runtime_keepalive_clear = () => { noExitRuntime = false; runtimeKeepaliveCounter = 0; }; var emval_symbols = { }; var getStringOrSymbol = (address) => { var symbol = emval_symbols[address]; if (symbol === undefined) { return readLatin1String(address); } return symbol; }; var emval_methodCallers = []; var __emval_call_method = (caller, objHandle, methodName, destructorsRef, args) => { caller = emval_methodCallers[caller]; objHandle = Emval.toValue(objHandle); methodName = getStringOrSymbol(methodName); return caller(objHandle, objHandle[methodName], destructorsRef, args); }; var emval_get_global = () => { if (typeof globalThis == 'object') { return globalThis; } return (function(){ return Function; })()('return this')(); }; var __emval_get_global = (name) => { if (name===0) { return Emval.toHandle(emval_get_global()); } else { name = getStringOrSymbol(name); return Emval.toHandle(emval_get_global()[name]); } }; var emval_addMethodCaller = (caller) => { var id = emval_methodCallers.length; emval_methodCallers.push(caller); return id; }; var requireRegisteredType = (rawType, humanName) => { var impl = registeredTypes[rawType]; if (undefined === impl) { throwBindingError(humanName + " has unknown type " + getTypeName(rawType)); } return impl; }; var emval_lookupTypes = (argCount, argTypes) => { var a = new Array(argCount); for (var i = 0; i < argCount; ++i) { a[i] = requireRegisteredType(HEAPU32[(((argTypes)+(i * 4))>>2)], "parameter " + i); } return a; }; var reflectConstruct = Reflect.construct; var emval_returnValue = (returnType, destructorsRef, handle) => { var destructors = []; var result = returnType['toWireType'](destructors, handle); if (destructors.length) { // void, primitives and any other types w/o destructors don't need to allocate a handle HEAPU32[((destructorsRef)>>2)] = Emval.toHandle(destructors); } return result; }; var __emval_get_method_caller = (argCount, argTypes, kind) => { var types = emval_lookupTypes(argCount, argTypes); var retType = types.shift(); argCount--; // remove the shifted off return type var functionBody = `return function (obj, func, destructorsRef, args) {\n`; var offset = 0; var argsList = []; // 'obj?, arg0, arg1, arg2, ... , argN' if (kind === /* FUNCTION */ 0) { argsList.push("obj"); } var params = ["retType"]; var args = [retType]; for (var i = 0; i < argCount; ++i) { argsList.push("arg" + i); params.push("argType" + i); args.push(types[i]); functionBody += ` var arg${i} = argType${i}.readValueFromPointer(args${offset ? "+" + offset : ""});\n`; offset += types[i]['argPackAdvance']; } var invoker = kind === /* CONSTRUCTOR */ 1 ? 'new func' : 'func.call'; functionBody += ` var rv = ${invoker}(${argsList.join(", ")});\n`; for (var i = 0; i < argCount; ++i) { if (types[i]['deleteObject']) { functionBody += ` argType${i}.deleteObject(arg${i});\n`; } } if (!retType.isVoid) { params.push("emval_returnValue"); args.push(emval_returnValue); functionBody += " return emval_returnValue(retType, destructorsRef, rv);\n"; } functionBody += "};\n"; params.push(functionBody); var invokerFunction = newFunc(Function, params).apply(null, args); var functionName = `methodCaller<(${types.map(t => t.name).join(', ')}) => ${retType.name}>`; return emval_addMethodCaller(createNamedFunction(functionName, invokerFunction)); }; var __emval_incref = (handle) => { if (handle > 4) { emval_handles.get(handle).refcount += 1; } }; var __emval_new_object = () => Emval.toHandle({}); var __emval_run_destructors = (handle) => { var destructors = Emval.toValue(handle); runDestructors(destructors); __emval_decref(handle); }; var __emval_set_property = (handle, key, value) => { handle = Emval.toValue(handle); key = Emval.toValue(key); value = Emval.toValue(value); handle[key] = value; }; var __emval_take_value = (type, arg) => { type = requireRegisteredType(type, '_emval_take_value'); var v = type['readValueFromPointer'](arg); return Emval.toHandle(v); }; var isLeapYear = (year) => year%4 === 0 && (year%100 !== 0 || year%400 === 0); var MONTH_DAYS_LEAP_CUMULATIVE = [0,31,60,91,121,152,182,213,244,274,305,335]; var MONTH_DAYS_REGULAR_CUMULATIVE = [0,31,59,90,120,151,181,212,243,273,304,334]; var ydayFromDate = (date) => { var leap = isLeapYear(date.getFullYear()); var monthDaysCumulative = (leap ? MONTH_DAYS_LEAP_CUMULATIVE : MONTH_DAYS_REGULAR_CUMULATIVE); var yday = monthDaysCumulative[date.getMonth()] + date.getDate() - 1; // -1 since it's days since Jan 1 return yday; }; var convertI32PairToI53Checked = (lo, hi) => { return ((hi + 0x200000) >>> 0 < 0x400001 - !!lo) ? (lo >>> 0) + hi * 4294967296 : NaN; }; function __localtime_js(time_low, time_high,tmPtr) { var time = convertI32PairToI53Checked(time_low, time_high);; var date = new Date(time*1000); HEAP32[((tmPtr)>>2)] = date.getSeconds(); HEAP32[(((tmPtr)+(4))>>2)] = date.getMinutes(); HEAP32[(((tmPtr)+(8))>>2)] = date.getHours(); HEAP32[(((tmPtr)+(12))>>2)] = date.getDate(); HEAP32[(((tmPtr)+(16))>>2)] = date.getMonth(); HEAP32[(((tmPtr)+(20))>>2)] = date.getFullYear()-1900; HEAP32[(((tmPtr)+(24))>>2)] = date.getDay(); var yday = ydayFromDate(date)|0; HEAP32[(((tmPtr)+(28))>>2)] = yday; HEAP32[(((tmPtr)+(36))>>2)] = -(date.getTimezoneOffset() * 60); // Attention: DST is in December in South, and some regions don't have DST at all. var start = new Date(date.getFullYear(), 0, 1); var summerOffset = new Date(date.getFullYear(), 6, 1).getTimezoneOffset(); var winterOffset = start.getTimezoneOffset(); var dst = (summerOffset != winterOffset && date.getTimezoneOffset() == Math.min(winterOffset, summerOffset))|0; HEAP32[(((tmPtr)+(32))>>2)] = dst; ; } var __mktime_js = function(tmPtr) { var ret = (() => { var date = new Date(HEAP32[(((tmPtr)+(20))>>2)] + 1900, HEAP32[(((tmPtr)+(16))>>2)], HEAP32[(((tmPtr)+(12))>>2)], HEAP32[(((tmPtr)+(8))>>2)], HEAP32[(((tmPtr)+(4))>>2)], HEAP32[((tmPtr)>>2)], 0); // There's an ambiguous hour when the time goes back; the tm_isdst field is // used to disambiguate it. Date() basically guesses, so we fix it up if it // guessed wrong, or fill in tm_isdst with the guess if it's -1. var dst = HEAP32[(((tmPtr)+(32))>>2)]; var guessedOffset = date.getTimezoneOffset(); var start = new Date(date.getFullYear(), 0, 1); var summerOffset = new Date(date.getFullYear(), 6, 1).getTimezoneOffset(); var winterOffset = start.getTimezoneOffset(); var dstOffset = Math.min(winterOffset, summerOffset); // DST is in December in South if (dst < 0) { // Attention: some regions don't have DST at all. HEAP32[(((tmPtr)+(32))>>2)] = Number(summerOffset != winterOffset && dstOffset == guessedOffset); } else if ((dst > 0) != (dstOffset == guessedOffset)) { var nonDstOffset = Math.max(winterOffset, summerOffset); var trueOffset = dst > 0 ? dstOffset : nonDstOffset; // Don't try setMinutes(date.getMinutes() + ...) -- it's messed up. date.setTime(date.getTime() + (trueOffset - guessedOffset)*60000); } HEAP32[(((tmPtr)+(24))>>2)] = date.getDay(); var yday = ydayFromDate(date)|0; HEAP32[(((tmPtr)+(28))>>2)] = yday; // To match expected behavior, update fields from date HEAP32[((tmPtr)>>2)] = date.getSeconds(); HEAP32[(((tmPtr)+(4))>>2)] = date.getMinutes(); HEAP32[(((tmPtr)+(8))>>2)] = date.getHours(); HEAP32[(((tmPtr)+(12))>>2)] = date.getDate(); HEAP32[(((tmPtr)+(16))>>2)] = date.getMonth(); HEAP32[(((tmPtr)+(20))>>2)] = date.getYear(); var timeMs = date.getTime(); if (isNaN(timeMs)) { setErrNo(61); return -1; } // Return time in microseconds return timeMs / 1000; })(); return (setTempRet0((tempDouble = ret,(+(Math.abs(tempDouble))) >= 1.0 ? (tempDouble > 0.0 ? (+(Math.floor((tempDouble)/4294967296.0)))>>>0 : (~~((+(Math.ceil((tempDouble - +(((~~(tempDouble)))>>>0))/4294967296.0)))))>>>0) : 0)), ret>>>0); }; var stringToNewUTF8 = (str) => { var size = lengthBytesUTF8(str) + 1; var ret = _malloc(size); if (ret) stringToUTF8(str, ret, size); return ret; }; var __tzset_js = (timezone, daylight, tzname) => { // TODO: Use (malleable) environment variables instead of system settings. var currentYear = new Date().getFullYear(); var winter = new Date(currentYear, 0, 1); var summer = new Date(currentYear, 6, 1); var winterOffset = winter.getTimezoneOffset(); var summerOffset = summer.getTimezoneOffset(); // Local standard timezone offset. Local standard time is not adjusted for daylight savings. // This code uses the fact that getTimezoneOffset returns a greater value during Standard Time versus Daylight Saving Time (DST). // Thus it determines the expected output during Standard Time, and it compares whether the output of the given date the same (Standard) or less (DST). var stdTimezoneOffset = Math.max(winterOffset, summerOffset); // timezone is specified as seconds west of UTC ("The external variable // `timezone` shall be set to the difference, in seconds, between // Coordinated Universal Time (UTC) and local standard time."), the same // as returned by stdTimezoneOffset. // See http://pubs.opengroup.org/onlinepubs/009695399/functions/tzset.html HEAPU32[((timezone)>>2)] = stdTimezoneOffset * 60; HEAP32[((daylight)>>2)] = Number(winterOffset != summerOffset); function extractZone(date) { var match = date.toTimeString().match(/\(([A-Za-z ]+)\)$/); return match ? match[1] : "GMT"; }; var winterName = extractZone(winter); var summerName = extractZone(summer); var winterNamePtr = stringToNewUTF8(winterName); var summerNamePtr = stringToNewUTF8(summerName); if (summerOffset < winterOffset) { // Northern hemisphere HEAPU32[((tzname)>>2)] = winterNamePtr; HEAPU32[(((tzname)+(4))>>2)] = summerNamePtr; } else { HEAPU32[((tzname)>>2)] = summerNamePtr; HEAPU32[(((tzname)+(4))>>2)] = winterNamePtr; } }; var _abort = () => { abort(''); }; var _emscripten_date_now = () => Date.now(); var _emscripten_get_now; // Modern environment where performance.now() is supported: // N.B. a shorter form "_emscripten_get_now = performance.now;" is // unfortunately not allowed even in current browsers (e.g. FF Nightly 75). _emscripten_get_now = () => performance.now(); ; var _emscripten_memcpy_js = (dest, src, num) => HEAPU8.copyWithin(dest, src, src + num); var getHeapMax = () => HEAPU8.length; var abortOnCannotGrowMemory = (requestedSize) => { abort('OOM'); }; var _emscripten_resize_heap = (requestedSize) => { var oldSize = HEAPU8.length; // With CAN_ADDRESS_2GB or MEMORY64, pointers are already unsigned. requestedSize >>>= 0; abortOnCannotGrowMemory(requestedSize); }; var ENV = { }; var getExecutableName = () => { return thisProgram || './this.program'; }; var getEnvStrings = () => { if (!getEnvStrings.strings) { // Default values. // Browser language detection #8751 var lang = ((typeof navigator == 'object' && navigator.languages && navigator.languages[0]) || 'C').replace('-', '_') + '.UTF-8'; var env = { 'USER': 'web_user', 'LOGNAME': 'web_user', 'PATH': '/', 'PWD': '/', 'HOME': '/home/web_user', 'LANG': lang, '_': getExecutableName() }; // Apply the user-provided values, if any. for (var x in ENV) { // x is a key in ENV; if ENV[x] is undefined, that means it was // explicitly set to be so. We allow user code to do that to // force variables with default values to remain unset. if (ENV[x] === undefined) delete env[x]; else env[x] = ENV[x]; } var strings = []; for (var x in env) { strings.push(`${x}=${env[x]}`); } getEnvStrings.strings = strings; } return getEnvStrings.strings; }; var stringToAscii = (str, buffer) => { for (var i = 0; i < str.length; ++i) { HEAP8[((buffer++)>>0)] = str.charCodeAt(i); } // Null-terminate the string HEAP8[((buffer)>>0)] = 0; }; var _environ_get = (__environ, environ_buf) => { var bufSize = 0; getEnvStrings().forEach((string, i) => { var ptr = environ_buf + bufSize; HEAPU32[(((__environ)+(i*4))>>2)] = ptr; stringToAscii(string, ptr); bufSize += string.length + 1; }); return 0; }; var _environ_sizes_get = (penviron_count, penviron_buf_size) => { var strings = getEnvStrings(); HEAPU32[((penviron_count)>>2)] = strings.length; var bufSize = 0; strings.forEach((string) => bufSize += string.length + 1); HEAPU32[((penviron_buf_size)>>2)] = bufSize; return 0; }; var _fd_close = (fd) => { return 52; }; var _fd_read = (fd, iov, iovcnt, pnum) => { return 52; }; function _fd_seek(fd,offset_low, offset_high,whence,newOffset) { var offset = convertI32PairToI53Checked(offset_low, offset_high);; return 70; ; } var printCharBuffers = [null,[],[]]; var printChar = (stream, curr) => { var buffer = printCharBuffers[stream]; if (curr === 0 || curr === 10) { (stream === 1 ? out : err)(UTF8ArrayToString(buffer, 0)); buffer.length = 0; } else { buffer.push(curr); } }; var flush_NO_FILESYSTEM = () => { // flush anything remaining in the buffers during shutdown if (printCharBuffers[1].length) printChar(1, 10); if (printCharBuffers[2].length) printChar(2, 10); }; var _fd_write = (fd, iov, iovcnt, pnum) => { // hack to support printf in SYSCALLS_REQUIRE_FILESYSTEM=0 var num = 0; for (var i = 0; i < iovcnt; i++) { var ptr = HEAPU32[((iov)>>2)]; var len = HEAPU32[(((iov)+(4))>>2)]; iov += 8; for (var j = 0; j < len; j++) { printChar(fd, HEAPU8[ptr+j]); } num += len; } HEAPU32[((pnum)>>2)] = num; return 0; }; var runtimeKeepaliveCounter = 0; var keepRuntimeAlive = () => noExitRuntime || runtimeKeepaliveCounter > 0; var _proc_exit = (code) => { EXITSTATUS = code; if (!keepRuntimeAlive()) { Module['onExit']?.(code); ABORT = true; } quit_(code, new ExitStatus(code)); }; var arraySum = (array, index) => { var sum = 0; for (var i = 0; i <= index; sum += array[i++]) { // no-op } return sum; }; var MONTH_DAYS_LEAP = [31,29,31,30,31,30,31,31,30,31,30,31]; var MONTH_DAYS_REGULAR = [31,28,31,30,31,30,31,31,30,31,30,31]; var addDays = (date, days) => { var newDate = new Date(date.getTime()); while (days > 0) { var leap = isLeapYear(newDate.getFullYear()); var currentMonth = newDate.getMonth(); var daysInCurrentMonth = (leap ? MONTH_DAYS_LEAP : MONTH_DAYS_REGULAR)[currentMonth]; if (days > daysInCurrentMonth-newDate.getDate()) { // we spill over to next month days -= (daysInCurrentMonth-newDate.getDate()+1); newDate.setDate(1); if (currentMonth < 11) { newDate.setMonth(currentMonth+1) } else { newDate.setMonth(0); newDate.setFullYear(newDate.getFullYear()+1); } } else { // we stay in current month newDate.setDate(newDate.getDate()+days); return newDate; } } return newDate; }; /** @type {function(string, boolean=, number=)} */ function intArrayFromString(stringy, dontAddNull, length) { var len = length > 0 ? length : lengthBytesUTF8(stringy)+1; var u8array = new Array(len); var numBytesWritten = stringToUTF8Array(stringy, u8array, 0, u8array.length); if (dontAddNull) u8array.length = numBytesWritten; return u8array; } var writeArrayToMemory = (array, buffer) => { HEAP8.set(array, buffer); }; var _strftime = (s, maxsize, format, tm) => { // size_t strftime(char *restrict s, size_t maxsize, const char *restrict format, const struct tm *restrict timeptr); // http://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html var tm_zone = HEAPU32[(((tm)+(40))>>2)]; var date = { tm_sec: HEAP32[((tm)>>2)], tm_min: HEAP32[(((tm)+(4))>>2)], tm_hour: HEAP32[(((tm)+(8))>>2)], tm_mday: HEAP32[(((tm)+(12))>>2)], tm_mon: HEAP32[(((tm)+(16))>>2)], tm_year: HEAP32[(((tm)+(20))>>2)], tm_wday: HEAP32[(((tm)+(24))>>2)], tm_yday: HEAP32[(((tm)+(28))>>2)], tm_isdst: HEAP32[(((tm)+(32))>>2)], tm_gmtoff: HEAP32[(((tm)+(36))>>2)], tm_zone: tm_zone ? UTF8ToString(tm_zone) : '' }; var pattern = UTF8ToString(format); // expand format var EXPANSION_RULES_1 = { '%c': '%a %b %d %H:%M:%S %Y', // Replaced by the locale's appropriate date and time representation - e.g., Mon Aug 3 14:02:01 2013 '%D': '%m/%d/%y', // Equivalent to %m / %d / %y '%F': '%Y-%m-%d', // Equivalent to %Y - %m - %d '%h': '%b', // Equivalent to %b '%r': '%I:%M:%S %p', // Replaced by the time in a.m. and p.m. notation '%R': '%H:%M', // Replaced by the time in 24-hour notation '%T': '%H:%M:%S', // Replaced by the time '%x': '%m/%d/%y', // Replaced by the locale's appropriate date representation '%X': '%H:%M:%S', // Replaced by the locale's appropriate time representation // Modified Conversion Specifiers '%Ec': '%c', // Replaced by the locale's alternative appropriate date and time representation. '%EC': '%C', // Replaced by the name of the base year (period) in the locale's alternative representation. '%Ex': '%m/%d/%y', // Replaced by the locale's alternative date representation. '%EX': '%H:%M:%S', // Replaced by the locale's alternative time representation. '%Ey': '%y', // Replaced by the offset from %EC (year only) in the locale's alternative representation. '%EY': '%Y', // Replaced by the full alternative year representation. '%Od': '%d', // Replaced by the day of the month, using the locale's alternative numeric symbols, filled as needed with leading zeros if there is any alternative symbol for zero; otherwise, with leading characters. '%Oe': '%e', // Replaced by the day of the month, using the locale's alternative numeric symbols, filled as needed with leading characters. '%OH': '%H', // Replaced by the hour (24-hour clock) using the locale's alternative numeric symbols. '%OI': '%I', // Replaced by the hour (12-hour clock) using the locale's alternative numeric symbols. '%Om': '%m', // Replaced by the month using the locale's alternative numeric symbols. '%OM': '%M', // Replaced by the minutes using the locale's alternative numeric symbols. '%OS': '%S', // Replaced by the seconds using the locale's alternative numeric symbols. '%Ou': '%u', // Replaced by the weekday as a number in the locale's alternative representation (Monday=1). '%OU': '%U', // Replaced by the week number of the year (Sunday as the first day of the week, rules corresponding to %U ) using the locale's alternative numeric symbols. '%OV': '%V', // Replaced by the week number of the year (Monday as the first day of the week, rules corresponding to %V ) using the locale's alternative numeric symbols. '%Ow': '%w', // Replaced by the number of the weekday (Sunday=0) using the locale's alternative numeric symbols. '%OW': '%W', // Replaced by the week number of the year (Monday as the first day of the week) using the locale's alternative numeric symbols. '%Oy': '%y', // Replaced by the year (offset from %C ) using the locale's alternative numeric symbols. }; for (var rule in EXPANSION_RULES_1) { pattern = pattern.replace(new RegExp(rule, 'g'), EXPANSION_RULES_1[rule]); } var WEEKDAYS = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday']; var MONTHS = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']; function leadingSomething(value, digits, character) { var str = typeof value == 'number' ? value.toString() : (value || ''); while (str.length < digits) { str = character[0]+str; } return str; } function leadingNulls(value, digits) { return leadingSomething(value, digits, '0'); } function compareByDay(date1, date2) { function sgn(value) { return value < 0 ? -1 : (value > 0 ? 1 : 0); } var compare; if ((compare = sgn(date1.getFullYear()-date2.getFullYear())) === 0) { if ((compare = sgn(date1.getMonth()-date2.getMonth())) === 0) { compare = sgn(date1.getDate()-date2.getDate()); } } return compare; } function getFirstWeekStartDate(janFourth) { switch (janFourth.getDay()) { case 0: // Sunday return new Date(janFourth.getFullYear()-1, 11, 29); case 1: // Monday return janFourth; case 2: // Tuesday return new Date(janFourth.getFullYear(), 0, 3); case 3: // Wednesday return new Date(janFourth.getFullYear(), 0, 2); case 4: // Thursday return new Date(janFourth.getFullYear(), 0, 1); case 5: // Friday return new Date(janFourth.getFullYear()-1, 11, 31); case 6: // Saturday return new Date(janFourth.getFullYear()-1, 11, 30); } } function getWeekBasedYear(date) { var thisDate = addDays(new Date(date.tm_year+1900, 0, 1), date.tm_yday); var janFourthThisYear = new Date(thisDate.getFullYear(), 0, 4); var janFourthNextYear = new Date(thisDate.getFullYear()+1, 0, 4); var firstWeekStartThisYear = getFirstWeekStartDate(janFourthThisYear); var firstWeekStartNextYear = getFirstWeekStartDate(janFourthNextYear); if (compareByDay(firstWeekStartThisYear, thisDate) <= 0) { // this date is after the start of the first week of this year if (compareByDay(firstWeekStartNextYear, thisDate) <= 0) { return thisDate.getFullYear()+1; } return thisDate.getFullYear(); } return thisDate.getFullYear()-1; } var EXPANSION_RULES_2 = { '%a': (date) => WEEKDAYS[date.tm_wday].substring(0,3) , '%A': (date) => WEEKDAYS[date.tm_wday], '%b': (date) => MONTHS[date.tm_mon].substring(0,3), '%B': (date) => MONTHS[date.tm_mon], '%C': (date) => { var year = date.tm_year+1900; return leadingNulls((year/100)|0,2); }, '%d': (date) => leadingNulls(date.tm_mday, 2), '%e': (date) => leadingSomething(date.tm_mday, 2, ' '), '%g': (date) => { // %g, %G, and %V give values according to the ISO 8601:2000 standard week-based year. // In this system, weeks begin on a Monday and week 1 of the year is the week that includes // January 4th, which is also the week that includes the first Thursday of the year, and // is also the first week that contains at least four days in the year. // If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of // the last week of the preceding year; thus, for Saturday 2nd January 1999, // %G is replaced by 1998 and %V is replaced by 53. If December 29th, 30th, // or 31st is a Monday, it and any following days are part of week 1 of the following year. // Thus, for Tuesday 30th December 1997, %G is replaced by 1998 and %V is replaced by 01. return getWeekBasedYear(date).toString().substring(2); }, '%G': (date) => getWeekBasedYear(date), '%H': (date) => leadingNulls(date.tm_hour, 2), '%I': (date) => { var twelveHour = date.tm_hour; if (twelveHour == 0) twelveHour = 12; else if (twelveHour > 12) twelveHour -= 12; return leadingNulls(twelveHour, 2); }, '%j': (date) => { // Day of the year (001-366) return leadingNulls(date.tm_mday + arraySum(isLeapYear(date.tm_year+1900) ? MONTH_DAYS_LEAP : MONTH_DAYS_REGULAR, date.tm_mon-1), 3); }, '%m': (date) => leadingNulls(date.tm_mon+1, 2), '%M': (date) => leadingNulls(date.tm_min, 2), '%n': () => '\n', '%p': (date) => { if (date.tm_hour >= 0 && date.tm_hour < 12) { return 'AM'; } return 'PM'; }, '%S': (date) => leadingNulls(date.tm_sec, 2), '%t': () => '\t', '%u': (date) => date.tm_wday || 7, '%U': (date) => { var days = date.tm_yday + 7 - date.tm_wday; return leadingNulls(Math.floor(days / 7), 2); }, '%V': (date) => { // Replaced by the week number of the year (Monday as the first day of the week) // as a decimal number [01,53]. If the week containing 1 January has four // or more days in the new year, then it is considered week 1. // Otherwise, it is the last week of the previous year, and the next week is week 1. // Both January 4th and the first Thursday of January are always in week 1. [ tm_year, tm_wday, tm_yday] var val = Math.floor((date.tm_yday + 7 - (date.tm_wday + 6) % 7 ) / 7); // If 1 Jan is just 1-3 days past Monday, the previous week // is also in this year. if ((date.tm_wday + 371 - date.tm_yday - 2) % 7 <= 2) { val++; } if (!val) { val = 52; // If 31 December of prev year a Thursday, or Friday of a // leap year, then the prev year has 53 weeks. var dec31 = (date.tm_wday + 7 - date.tm_yday - 1) % 7; if (dec31 == 4 || (dec31 == 5 && isLeapYear(date.tm_year%400-1))) { val++; } } else if (val == 53) { // If 1 January is not a Thursday, and not a Wednesday of a // leap year, then this year has only 52 weeks. var jan1 = (date.tm_wday + 371 - date.tm_yday) % 7; if (jan1 != 4 && (jan1 != 3 || !isLeapYear(date.tm_year))) val = 1; } return leadingNulls(val, 2); }, '%w': (date) => date.tm_wday, '%W': (date) => { var days = date.tm_yday + 7 - ((date.tm_wday + 6) % 7); return leadingNulls(Math.floor(days / 7), 2); }, '%y': (date) => { // Replaced by the last two digits of the year as a decimal number [00,99]. [ tm_year] return (date.tm_year+1900).toString().substring(2); }, // Replaced by the year as a decimal number (for example, 1997). [ tm_year] '%Y': (date) => date.tm_year+1900, '%z': (date) => { // Replaced by the offset from UTC in the ISO 8601:2000 standard format ( +hhmm or -hhmm ). // For example, "-0430" means 4 hours 30 minutes behind UTC (west of Greenwich). var off = date.tm_gmtoff; var ahead = off >= 0; off = Math.abs(off) / 60; // convert from minutes into hhmm format (which means 60 minutes = 100 units) off = (off / 60)*100 + (off % 60); return (ahead ? '+' : '-') + String("0000" + off).slice(-4); }, '%Z': (date) => date.tm_zone, '%%': () => '%' }; // Replace %% with a pair of NULLs (which cannot occur in a C string), then // re-inject them after processing. pattern = pattern.replace(/%%/g, '\0\0') for (var rule in EXPANSION_RULES_2) { if (pattern.includes(rule)) { pattern = pattern.replace(new RegExp(rule, 'g'), EXPANSION_RULES_2[rule](date)); } } pattern = pattern.replace(/\0\0/g, '%') var bytes = intArrayFromString(pattern, false); if (bytes.length > maxsize) { return 0; } writeArrayToMemory(bytes, s); return bytes.length-1; }; var _strftime_l = (s, maxsize, format, tm, loc) => { return _strftime(s, maxsize, format, tm); // no locale support yet }; /** @suppress {checkTypes} */ var jstoi_q = (str) => parseInt(str); var _strptime = (buf, format, tm) => { // char *strptime(const char *restrict buf, const char *restrict format, struct tm *restrict tm); // http://pubs.opengroup.org/onlinepubs/009695399/functions/strptime.html var pattern = UTF8ToString(format); // escape special characters // TODO: not sure we really need to escape all of these in JS regexps var SPECIAL_CHARS = '\\!@#$^&*()+=-[]/{}|:<>?,.'; for (var i=0, ii=SPECIAL_CHARS.length; i EQUIVALENT_MATCHERS[c] || m) .replace(/%(.)/g, (_, c) => { let pat = DATE_PATTERNS[c]; if (pat){ capture.push(c); return `(${pat})`; } else { return c; } }) .replace( // any number of space or tab characters match zero or more spaces /\s+/g,'\\s*' ); var matches = new RegExp('^'+pattern_out, "i").exec(UTF8ToString(buf)) function initDate() { function fixup(value, min, max) { return (typeof value != 'number' || isNaN(value)) ? min : (value>=min ? (value<=max ? value: max): min); }; return { year: fixup(HEAP32[(((tm)+(20))>>2)] + 1900 , 1970, 9999), month: fixup(HEAP32[(((tm)+(16))>>2)], 0, 11), day: fixup(HEAP32[(((tm)+(12))>>2)], 1, 31), hour: fixup(HEAP32[(((tm)+(8))>>2)], 0, 23), min: fixup(HEAP32[(((tm)+(4))>>2)], 0, 59), sec: fixup(HEAP32[((tm)>>2)], 0, 59), gmtoff: 0 }; }; if (matches) { var date = initDate(); var value; var getMatch = (symbol) => { var pos = capture.indexOf(symbol); // check if symbol appears in regexp if (pos >= 0) { // return matched value or null (falsy!) for non-matches return matches[pos+1]; } return; }; // seconds if ((value=getMatch('S'))) { date.sec = jstoi_q(value); } // minutes if ((value=getMatch('M'))) { date.min = jstoi_q(value); } // hours if ((value=getMatch('H'))) { // 24h clock date.hour = jstoi_q(value); } else if ((value = getMatch('I'))) { // AM/PM clock var hour = jstoi_q(value); if ((value=getMatch('p'))) { hour += value.toUpperCase()[0] === 'P' ? 12 : 0; } date.hour = hour; } // year if ((value=getMatch('Y'))) { // parse from four-digit year date.year = jstoi_q(value); } else if ((value=getMatch('y'))) { // parse from two-digit year... var year = jstoi_q(value); if ((value=getMatch('C'))) { // ...and century year += jstoi_q(value)*100; } else { // ...and rule-of-thumb year += year<69 ? 2000 : 1900; } date.year = year; } // month if ((value=getMatch('m'))) { // parse from month number date.month = jstoi_q(value)-1; } else if ((value=getMatch('b'))) { // parse from month name date.month = MONTH_NUMBERS[value.substring(0,3).toUpperCase()] || 0; // TODO: derive month from day in year+year, week number+day of week+year } // day if ((value=getMatch('d'))) { // get day of month directly date.day = jstoi_q(value); } else if ((value=getMatch('j'))) { // get day of month from day of year ... var day = jstoi_q(value); var leapYear = isLeapYear(date.year); for (var month=0; month<12; ++month) { var daysUntilMonth = arraySum(leapYear ? MONTH_DAYS_LEAP : MONTH_DAYS_REGULAR, month-1); if (day<=daysUntilMonth+(leapYear ? MONTH_DAYS_LEAP : MONTH_DAYS_REGULAR)[month]) { date.day = day-daysUntilMonth; } } } else if ((value=getMatch('a'))) { // get day of month from weekday ... var weekDay = value.substring(0,3).toUpperCase(); if ((value=getMatch('U'))) { // ... and week number (Sunday being first day of week) // Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. // All days in a new year preceding the first Sunday are considered to be in week 0. var weekDayNumber = DAY_NUMBERS_SUN_FIRST[weekDay]; var weekNumber = jstoi_q(value); // January 1st var janFirst = new Date(date.year, 0, 1); var endDate; if (janFirst.getDay() === 0) { // Jan 1st is a Sunday, and, hence in the 1st CW endDate = addDays(janFirst, weekDayNumber+7*(weekNumber-1)); } else { // Jan 1st is not a Sunday, and, hence still in the 0th CW endDate = addDays(janFirst, 7-janFirst.getDay()+weekDayNumber+7*(weekNumber-1)); } date.day = endDate.getDate(); date.month = endDate.getMonth(); } else if ((value=getMatch('W'))) { // ... and week number (Monday being first day of week) // Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. // All days in a new year preceding the first Monday are considered to be in week 0. var weekDayNumber = DAY_NUMBERS_MON_FIRST[weekDay]; var weekNumber = jstoi_q(value); // January 1st var janFirst = new Date(date.year, 0, 1); var endDate; if (janFirst.getDay()===1) { // Jan 1st is a Monday, and, hence in the 1st CW endDate = addDays(janFirst, weekDayNumber+7*(weekNumber-1)); } else { // Jan 1st is not a Monday, and, hence still in the 0th CW endDate = addDays(janFirst, 7-janFirst.getDay()+1+weekDayNumber+7*(weekNumber-1)); } date.day = endDate.getDate(); date.month = endDate.getMonth(); } } // time zone if ((value = getMatch('z'))) { // GMT offset as either 'Z' or +-HH:MM or +-HH or +-HHMM if (value.toLowerCase() === 'z'){ date.gmtoff = 0; } else { var match = value.match(/^((?:\-|\+)\d\d):?(\d\d)?/); date.gmtoff = match[1] * 3600; if (match[2]) { date.gmtoff += date.gmtoff >0 ? match[2] * 60 : -match[2] * 60 } } } /* tm_sec int seconds after the minute 0-61* tm_min int minutes after the hour 0-59 tm_hour int hours since midnight 0-23 tm_mday int day of the month 1-31 tm_mon int months since January 0-11 tm_year int years since 1900 tm_wday int days since Sunday 0-6 tm_yday int days since January 1 0-365 tm_isdst int Daylight Saving Time flag tm_gmtoff long offset from GMT (seconds) */ var fullDate = new Date(date.year, date.month, date.day, date.hour, date.min, date.sec, 0); HEAP32[((tm)>>2)] = fullDate.getSeconds(); HEAP32[(((tm)+(4))>>2)] = fullDate.getMinutes(); HEAP32[(((tm)+(8))>>2)] = fullDate.getHours(); HEAP32[(((tm)+(12))>>2)] = fullDate.getDate(); HEAP32[(((tm)+(16))>>2)] = fullDate.getMonth(); HEAP32[(((tm)+(20))>>2)] = fullDate.getFullYear()-1900; HEAP32[(((tm)+(24))>>2)] = fullDate.getDay(); HEAP32[(((tm)+(28))>>2)] = arraySum(isLeapYear(fullDate.getFullYear()) ? MONTH_DAYS_LEAP : MONTH_DAYS_REGULAR, fullDate.getMonth()-1)+fullDate.getDate()-1; HEAP32[(((tm)+(32))>>2)] = 0; HEAP32[(((tm)+(36))>>2)] = date.gmtoff; // we need to convert the matched sequence into an integer array to take care of UTF-8 characters > 0x7F // TODO: not sure that intArrayFromString handles all unicode characters correctly return buf+intArrayFromString(matches[0]).length-1; } return 0; }; embind_init_charCodes(); BindingError = Module['BindingError'] = class BindingError extends Error { constructor(message) { super(message); this.name = 'BindingError'; }}; InternalError = Module['InternalError'] = class InternalError extends Error { constructor(message) { super(message); this.name = 'InternalError'; }}; init_ClassHandle(); init_embind();; init_RegisteredPointer(); UnboundTypeError = Module['UnboundTypeError'] = extendError(Error, 'UnboundTypeError');; handleAllocatorInit(); init_emval();; var wasmImports = { /** @export */ __call_sighandler: ___call_sighandler, /** @export */ __syscall_fcntl64: ___syscall_fcntl64, /** @export */ __syscall_fstat64: ___syscall_fstat64, /** @export */ __syscall_getcwd: ___syscall_getcwd, /** @export */ __syscall_ioctl: ___syscall_ioctl, /** @export */ __syscall_lstat64: ___syscall_lstat64, /** @export */ __syscall_mkdirat: ___syscall_mkdirat, /** @export */ __syscall_newfstatat: ___syscall_newfstatat, /** @export */ __syscall_openat: ___syscall_openat, /** @export */ __syscall_pipe: ___syscall_pipe, /** @export */ __syscall_rmdir: ___syscall_rmdir, /** @export */ __syscall_stat64: ___syscall_stat64, /** @export */ __syscall_unlinkat: ___syscall_unlinkat, /** @export */ __syscall_utimensat: ___syscall_utimensat, /** @export */ _embind_register_bigint: __embind_register_bigint, /** @export */ _embind_register_bool: __embind_register_bool, /** @export */ _embind_register_class: __embind_register_class, /** @export */ _embind_register_class_constructor: __embind_register_class_constructor, /** @export */ _embind_register_class_function: __embind_register_class_function, /** @export */ _embind_register_emval: __embind_register_emval, /** @export */ _embind_register_float: __embind_register_float, /** @export */ _embind_register_integer: __embind_register_integer, /** @export */ _embind_register_memory_view: __embind_register_memory_view, /** @export */ _embind_register_std_string: __embind_register_std_string, /** @export */ _embind_register_std_wstring: __embind_register_std_wstring, /** @export */ _embind_register_void: __embind_register_void, /** @export */ _emscripten_get_now_is_monotonic: __emscripten_get_now_is_monotonic, /** @export */ _emscripten_runtime_keepalive_clear: __emscripten_runtime_keepalive_clear, /** @export */ _emval_call_method: __emval_call_method, /** @export */ _emval_decref: __emval_decref, /** @export */ _emval_get_global: __emval_get_global, /** @export */ _emval_get_method_caller: __emval_get_method_caller, /** @export */ _emval_incref: __emval_incref, /** @export */ _emval_new_object: __emval_new_object, /** @export */ _emval_run_destructors: __emval_run_destructors, /** @export */ _emval_set_property: __emval_set_property, /** @export */ _emval_take_value: __emval_take_value, /** @export */ _localtime_js: __localtime_js, /** @export */ _mktime_js: __mktime_js, /** @export */ _tzset_js: __tzset_js, /** @export */ abort: _abort, /** @export */ emscripten_date_now: _emscripten_date_now, /** @export */ emscripten_get_now: _emscripten_get_now, /** @export */ emscripten_memcpy_js: _emscripten_memcpy_js, /** @export */ emscripten_resize_heap: _emscripten_resize_heap, /** @export */ environ_get: _environ_get, /** @export */ environ_sizes_get: _environ_sizes_get, /** @export */ fd_close: _fd_close, /** @export */ fd_read: _fd_read, /** @export */ fd_seek: _fd_seek, /** @export */ fd_write: _fd_write, /** @export */ proc_exit: _proc_exit, /** @export */ strftime: _strftime, /** @export */ strftime_l: _strftime_l, /** @export */ strptime: _strptime }; var wasmExports = createWasm(); var ___wasm_call_ctors = () => (___wasm_call_ctors = wasmExports['__wasm_call_ctors'])(); var _malloc = (a0) => (_malloc = wasmExports['malloc'])(a0); var _free = (a0) => (_free = wasmExports['free'])(a0); var ___errno_location = () => (___errno_location = wasmExports['__errno_location'])(); var ___getTypeName = (a0) => (___getTypeName = wasmExports['__getTypeName'])(a0); var setTempRet0 = (a0) => (setTempRet0 = wasmExports['setTempRet0'])(a0); var stackSave = () => (stackSave = wasmExports['stackSave'])(); var stackRestore = (a0) => (stackRestore = wasmExports['stackRestore'])(a0); var stackAlloc = (a0) => (stackAlloc = wasmExports['stackAlloc'])(a0); var ___cxa_is_pointer_type = (a0) => (___cxa_is_pointer_type = wasmExports['__cxa_is_pointer_type'])(a0); var dynCall_jiji = Module['dynCall_jiji'] = (a0, a1, a2, a3, a4) => (dynCall_jiji = Module['dynCall_jiji'] = wasmExports['dynCall_jiji'])(a0, a1, a2, a3, a4); var dynCall_viijii = Module['dynCall_viijii'] = (a0, a1, a2, a3, a4, a5, a6) => (dynCall_viijii = Module['dynCall_viijii'] = wasmExports['dynCall_viijii'])(a0, a1, a2, a3, a4, a5, a6); var dynCall_iiiiij = Module['dynCall_iiiiij'] = (a0, a1, a2, a3, a4, a5, a6) => (dynCall_iiiiij = Module['dynCall_iiiiij'] = wasmExports['dynCall_iiiiij'])(a0, a1, a2, a3, a4, a5, a6); var dynCall_iiiiijj = Module['dynCall_iiiiijj'] = (a0, a1, a2, a3, a4, a5, a6, a7, a8) => (dynCall_iiiiijj = Module['dynCall_iiiiijj'] = wasmExports['dynCall_iiiiijj'])(a0, a1, a2, a3, a4, a5, a6, a7, a8); var dynCall_iiiiiijj = Module['dynCall_iiiiiijj'] = (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) => (dynCall_iiiiiijj = Module['dynCall_iiiiiijj'] = wasmExports['dynCall_iiiiiijj'])(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9); // include: postamble.js // === Auto-generated postamble setup entry stuff === var calledRun; dependenciesFulfilled = function runCaller() { // If run has never been called, and we should call run (INVOKE_RUN is true, and Module.noInitialRun is not false) if (!calledRun) run(); if (!calledRun) dependenciesFulfilled = runCaller; // try this again later, after new deps are fulfilled }; function run() { if (runDependencies > 0) { return; } preRun(); // a preRun added a dependency, run will be called later if (runDependencies > 0) { return; } function doRun() { // run may have just been called through dependencies being fulfilled just in this very frame, // or while the async setStatus time below was happening if (calledRun) return; calledRun = true; Module['calledRun'] = true; if (ABORT) return; initRuntime(); if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized'](); postRun(); } if (Module['setStatus']) { Module['setStatus']('Running...'); setTimeout(function() { setTimeout(function() { Module['setStatus'](''); }, 1); doRun(); }, 1); } else { doRun(); } } if (Module['preInit']) { if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']]; while (Module['preInit'].length > 0) { Module['preInit'].pop()(); } } run(); // end include: postamble.js