mirror of
https://github.com/DeaDvey/mathgenerator.git
synced 2025-11-28 06:25:23 +01:00
Merge branch 'add-flake8' of https://github.com/YuviGold/mathgenerator into YuviGold-add-flake8
This commit is contained in:
2
.github/workflows/tests.yaml
vendored
2
.github/workflows/tests.yaml
vendored
@@ -17,5 +17,7 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
python -m pip install -U pip
|
python -m pip install -U pip
|
||||||
python -m pip install -r dev-requirements.txt
|
python -m pip install -r dev-requirements.txt
|
||||||
|
- name: Linter
|
||||||
|
run: make lint
|
||||||
- name: Test
|
- name: Test
|
||||||
run: make test
|
run: make test
|
||||||
|
|||||||
5
Makefile
5
Makefile
@@ -1,2 +1,7 @@
|
|||||||
|
FLAKE_FLAGS = --ignore=E501,F401,F403,F405
|
||||||
|
|
||||||
|
lint:
|
||||||
|
python -m flake8 $(FLAKE_FLAGS)
|
||||||
|
|
||||||
test:
|
test:
|
||||||
python -m pytest --verbose -s tests
|
python -m pytest --verbose -s tests
|
||||||
|
|||||||
@@ -1,2 +1,3 @@
|
|||||||
pytest
|
pytest
|
||||||
hypothesis
|
hypothesis
|
||||||
|
flake8
|
||||||
@@ -4,6 +4,7 @@ import fractions
|
|||||||
|
|
||||||
genList = []
|
genList = []
|
||||||
|
|
||||||
|
|
||||||
# || Generator class
|
# || Generator class
|
||||||
class Generator:
|
class Generator:
|
||||||
def __init__(self, title, id, generalProb, generalSol, func):
|
def __init__(self, title, id, generalProb, generalSol, func):
|
||||||
@@ -20,52 +21,59 @@ class Generator:
|
|||||||
def __call__(self, **kwargs):
|
def __call__(self, **kwargs):
|
||||||
return self.func(**kwargs)
|
return self.func(**kwargs)
|
||||||
|
|
||||||
|
|
||||||
# || Non-generator Functions
|
# || Non-generator Functions
|
||||||
def genById(id):
|
def genById(id):
|
||||||
generator = genList[id][2]
|
generator = genList[id][2]
|
||||||
return(generator())
|
return(generator())
|
||||||
|
|
||||||
|
|
||||||
def getGenList():
|
def getGenList():
|
||||||
return(genList)
|
return(genList)
|
||||||
|
|
||||||
# || Generator Functions
|
# || Generator Functions
|
||||||
|
|
||||||
def additionFunc(maxSum = 99, maxAddend = 50):
|
|
||||||
|
def additionFunc(maxSum=99, maxAddend=50):
|
||||||
a = random.randint(0, maxAddend)
|
a = random.randint(0, maxAddend)
|
||||||
b = random.randint(0, min((maxSum-a), maxAddend)) #The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
b = random.randint(0, min((maxSum - a), maxAddend)) # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
||||||
c = a+b
|
c = a + b
|
||||||
problem = str(a) + "+" + str(b) + "="
|
problem = str(a) + "+" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def subtractionFunc(maxMinuend = 99, maxDiff = 99):
|
|
||||||
|
def subtractionFunc(maxMinuend=99, maxDiff=99):
|
||||||
a = random.randint(0, maxMinuend)
|
a = random.randint(0, maxMinuend)
|
||||||
b = random.randint(max(0, (a-maxDiff)), a)
|
b = random.randint(max(0, (a - maxDiff)), a)
|
||||||
c = a-b
|
c = a - b
|
||||||
problem = str(a) + "-" + str(b) + "="
|
problem = str(a) + "-" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def multiplicationFunc(maxRes = 99, maxMulti = 99):
|
|
||||||
|
def multiplicationFunc(maxRes=99, maxMulti=99):
|
||||||
a = random.randint(0, maxMulti)
|
a = random.randint(0, maxMulti)
|
||||||
b = random.randint(0, min(int(maxMulti/a), maxRes))
|
b = random.randint(0, min(int(maxMulti / a), maxRes))
|
||||||
c = a*b
|
c = a * b
|
||||||
problem = str(a) + "*" + str(b) + "="
|
problem = str(a) + "*" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def divisionFunc(maxRes = 99, maxDivid = 99):
|
|
||||||
|
def divisionFunc(maxRes=99, maxDivid=99):
|
||||||
a = random.randint(0, maxDivid)
|
a = random.randint(0, maxDivid)
|
||||||
b = random.randint(0, min(maxRes, maxDivid))
|
b = random.randint(0, min(maxRes, maxDivid))
|
||||||
c = a/b
|
c = a / b
|
||||||
problem = str(a) + "/" + str(b) + "="
|
problem = str(a) + "/" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def binaryComplement1sFunc(maxDigits = 10):
|
|
||||||
|
def binaryComplement1sFunc(maxDigits=10):
|
||||||
question = ''
|
question = ''
|
||||||
answer = ''
|
answer = ''
|
||||||
for i in range(random.randint(1,maxDigits)):
|
for i in range(random.randint(1, maxDigits)):
|
||||||
temp = str(random.randint(0, 1))
|
temp = str(random.randint(0, 1))
|
||||||
question += temp
|
question += temp
|
||||||
answer += "0" if temp == "1" else "1"
|
answer += "0" if temp == "1" else "1"
|
||||||
@@ -74,22 +82,25 @@ def binaryComplement1sFunc(maxDigits = 10):
|
|||||||
solution = answer
|
solution = answer
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def moduloFunc(maxRes = 99, maxModulo= 99):
|
|
||||||
|
def moduloFunc(maxRes=99, maxModulo=99):
|
||||||
a = random.randint(0, maxModulo)
|
a = random.randint(0, maxModulo)
|
||||||
b = random.randint(0, min(maxRes, maxModulo))
|
b = random.randint(0, min(maxRes, maxModulo))
|
||||||
c = a%b
|
c = a % b
|
||||||
problem = str(a) + "%" + str(b) + "="
|
problem = str(a) + "%" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def squareRootFunc(minNo = 1, maxNo = 12):
|
|
||||||
|
def squareRootFunc(minNo=1, maxNo=12):
|
||||||
b = random.randint(minNo, maxNo)
|
b = random.randint(minNo, maxNo)
|
||||||
a = b*b
|
a = b * b
|
||||||
problem = "sqrt(" + str(a) + ")="
|
problem = "sqrt(" + str(a) + ")="
|
||||||
solution = str(b)
|
solution = str(b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def powerRuleDifferentiationFunc(maxCoef = 10, maxExp = 10, maxTerms = 5):
|
|
||||||
|
def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
||||||
numTerms = random.randint(1, maxTerms)
|
numTerms = random.randint(1, maxTerms)
|
||||||
problem = ""
|
problem = ""
|
||||||
solution = ""
|
solution = ""
|
||||||
@@ -103,23 +114,26 @@ def powerRuleDifferentiationFunc(maxCoef = 10, maxExp = 10, maxTerms = 5):
|
|||||||
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
|
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def squareFunc(maxSquareNum = 20):
|
|
||||||
|
def squareFunc(maxSquareNum=20):
|
||||||
a = random.randint(1, maxSquareNum)
|
a = random.randint(1, maxSquareNum)
|
||||||
b = a * a
|
b = a * a
|
||||||
problem = str(a) + "^2" + "="
|
problem = str(a) + "^2" + "="
|
||||||
solution = str(b)
|
solution = str(b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def gcdFunc(maxVal=20):
|
def gcdFunc(maxVal=20):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
b = random.randint(1, maxVal)
|
b = random.randint(1, maxVal)
|
||||||
x, y = a, b
|
x, y = a, b
|
||||||
while(y):
|
while(y):
|
||||||
x, y = y, x % y
|
x, y = y, x % y
|
||||||
problem = f"GCD of {a} and {b} = "
|
problem = f"GCD of {a} and {b} = "
|
||||||
solution = str(x)
|
solution = str(x)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def lcmFunc(maxVal=20):
|
def lcmFunc(maxVal=20):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
b = random.randint(1, maxVal)
|
b = random.randint(1, maxVal)
|
||||||
@@ -132,11 +146,13 @@ def lcmFunc(maxVal=20):
|
|||||||
solution = str(d)
|
solution = str(d)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def basicAlgebraFunc(maxVariable = 10):
|
|
||||||
|
def basicAlgebraFunc(maxVariable=10):
|
||||||
a = random.randint(1, maxVariable)
|
a = random.randint(1, maxVariable)
|
||||||
b = random.randint(1, maxVariable)
|
b = random.randint(1, maxVariable)
|
||||||
c = random.randint(b, maxVariable)
|
c = random.randint(b, maxVariable)
|
||||||
# calculate gcd
|
# calculate gcd
|
||||||
|
|
||||||
def calculate_gcd(x, y):
|
def calculate_gcd(x, y):
|
||||||
while(y):
|
while(y):
|
||||||
x, y = y, x % y
|
x, y = y, x % y
|
||||||
@@ -145,44 +161,49 @@ def basicAlgebraFunc(maxVariable = 10):
|
|||||||
x = f"{(c - b)//i}/{a//i}"
|
x = f"{(c - b)//i}/{a//i}"
|
||||||
if (c - b == 0):
|
if (c - b == 0):
|
||||||
x = "0"
|
x = "0"
|
||||||
elif a == 1 or a == i :
|
elif a == 1 or a == i:
|
||||||
x = f"{c - b}"
|
x = f"{c - b}"
|
||||||
problem = f"{a}x + {b} = {c}"
|
problem = f"{a}x + {b} = {c}"
|
||||||
solution = x
|
solution = x
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def logFunc(maxBase=3, maxVal=8):
|
def logFunc(maxBase=3, maxVal=8):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
b = random.randint(2, maxBase)
|
b = random.randint(2, maxBase)
|
||||||
c = pow(b,a)
|
c = pow(b, a)
|
||||||
problem = "log"+str(b)+"("+str(c)+")"
|
problem = "log" + str(b) + "(" + str(c) + ")"
|
||||||
solution = str(a)
|
solution = str(a)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def divisionToIntFunc(maxA=25, maxB=25):
|
def divisionToIntFunc(maxA=25, maxB=25):
|
||||||
a = random.randint(1,maxA)
|
a = random.randint(1, maxA)
|
||||||
b = random.randint(1,maxB)
|
b = random.randint(1, maxB)
|
||||||
divisor = a*b
|
divisor = a * b
|
||||||
dividend=random.choice([a,b])
|
dividend = random.choice([a, b])
|
||||||
problem = f"{divisor}/{dividend} = "
|
problem = f"{divisor}/{dividend} = "
|
||||||
solution=int(divisor/dividend)
|
solution = int(divisor / dividend)
|
||||||
return problem,solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def DecimalToBinaryFunc(max_dec=99):
|
def DecimalToBinaryFunc(max_dec=99):
|
||||||
a = random.randint(1, max_dec)
|
a = random.randint(1, max_dec)
|
||||||
b = bin(a).replace("0b", "")
|
b = bin(a).replace("0b", "")
|
||||||
problem = "Binary of "+str(a)+"="
|
problem = "Binary of " + str(a) + "="
|
||||||
solution = str(b)
|
solution = str(b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def BinaryToDecimalFunc(max_dig=10):
|
|
||||||
problem=''
|
|
||||||
for i in range(random.randint(1,max_dig)):
|
|
||||||
temp = str(random.randint(0, 1))
|
|
||||||
problem += temp
|
|
||||||
|
|
||||||
solution=int(problem, 2);
|
def BinaryToDecimalFunc(max_dig=10):
|
||||||
return problem, solution
|
problem = ''
|
||||||
|
for i in range(random.randint(1, max_dig)):
|
||||||
|
temp = str(random.randint(0, 1))
|
||||||
|
problem += temp
|
||||||
|
|
||||||
|
solution = int(problem, 2)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def divideFractionsFunc(maxVal=10):
|
def divideFractionsFunc(maxVal=10):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
@@ -193,6 +214,7 @@ def divideFractionsFunc(maxVal=10):
|
|||||||
d = random.randint(1, maxVal)
|
d = random.randint(1, maxVal)
|
||||||
while (c == d):
|
while (c == d):
|
||||||
d = random.randint(1, maxVal)
|
d = random.randint(1, maxVal)
|
||||||
|
|
||||||
def calculate_gcd(x, y):
|
def calculate_gcd(x, y):
|
||||||
while(y):
|
while(y):
|
||||||
x, y = y, x % y
|
x, y = y, x % y
|
||||||
@@ -208,27 +230,30 @@ def divideFractionsFunc(maxVal=10):
|
|||||||
solution = x
|
solution = x
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def multiplyIntToMatrix22(maxMatrixVal = 10, maxRes = 100):
|
|
||||||
|
def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100):
|
||||||
a = random.randint(0, maxMatrixVal)
|
a = random.randint(0, maxMatrixVal)
|
||||||
b = random.randint(0, maxMatrixVal)
|
b = random.randint(0, maxMatrixVal)
|
||||||
c = random.randint(0, maxMatrixVal)
|
c = random.randint(0, maxMatrixVal)
|
||||||
d = random.randint(0, maxMatrixVal)
|
d = random.randint(0, maxMatrixVal)
|
||||||
constant = random.randint(0, int(maxRes/max(a,b,c,d)))
|
constant = random.randint(0, int(maxRes / max(a, b, c, d)))
|
||||||
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
|
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
|
||||||
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
|
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
|
||||||
a = random.randint(1, maxA)
|
|
||||||
b = random.randint(1, maxB)
|
|
||||||
c = random.randint(1, maxC)
|
|
||||||
s = (a+b+c)/2
|
|
||||||
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
|
|
||||||
problem = "Area of triangle with side lengths: "+ str(a) +" "+ str(b) +" "+ str(c) + " = "
|
|
||||||
solution = area
|
|
||||||
return problem, solution
|
|
||||||
|
|
||||||
def isTriangleValidFunc(maxSideLength = 50):
|
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
||||||
|
a = random.randint(1, maxA)
|
||||||
|
b = random.randint(1, maxB)
|
||||||
|
c = random.randint(1, maxC)
|
||||||
|
s = (a + b + c) / 2
|
||||||
|
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
|
||||||
|
problem = "Area of triangle with side lengths: " + str(a) + " " + str(b) + " " + str(c) + " = "
|
||||||
|
solution = area
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
def isTriangleValidFunc(maxSideLength=50):
|
||||||
sideA = random.randint(1, maxSideLength)
|
sideA = random.randint(1, maxSideLength)
|
||||||
sideB = random.randint(1, maxSideLength)
|
sideB = random.randint(1, maxSideLength)
|
||||||
sideC = random.randint(1, maxSideLength)
|
sideC = random.randint(1, maxSideLength)
|
||||||
@@ -242,51 +267,56 @@ def isTriangleValidFunc(maxSideLength = 50):
|
|||||||
solution = "No"
|
solution = "No"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def MidPointOfTwoPointFunc(maxValue=20):
|
def MidPointOfTwoPointFunc(maxValue=20):
|
||||||
x1=random.randint(-20,maxValue)
|
x1 = random.randint(-20, maxValue)
|
||||||
y1=random.randint(-20,maxValue)
|
y1 = random.randint(-20, maxValue)
|
||||||
x2=random.randint(-20,maxValue)
|
x2 = random.randint(-20, maxValue)
|
||||||
y2=random.randint(-20,maxValue)
|
y2 = random.randint(-20, maxValue)
|
||||||
problem=f"({x1},{y1}),({x2},{y2})="
|
problem = f"({x1},{y1}),({x2},{y2})="
|
||||||
solution=f"({(x1+x2)/2},{(y1+y2)/2})"
|
solution = f"({(x1+x2)/2},{(y1+y2)/2})"
|
||||||
return problem,solution
|
return problem, solution
|
||||||
|
|
||||||
def factoringFunc(range_x1 = 10, range_x2 = 10):
|
|
||||||
x1 = random.randint(-range_x1, range_x1)
|
|
||||||
x2 = random.randint(-range_x2, range_x2)
|
|
||||||
def intParser(z):
|
|
||||||
if (z == 0):
|
|
||||||
return ""
|
|
||||||
if (z > 0):
|
|
||||||
return "+" + str(z)
|
|
||||||
if (z < 0):
|
|
||||||
return "-" + str(abs(z))
|
|
||||||
|
|
||||||
b = intParser(x1 + x2)
|
def factoringFunc(range_x1=10, range_x2=10):
|
||||||
c = intParser(x1 * x2)
|
x1 = random.randint(-range_x1, range_x1)
|
||||||
|
x2 = random.randint(-range_x2, range_x2)
|
||||||
|
|
||||||
if (b == "+1"):
|
def intParser(z):
|
||||||
b = "+"
|
if (z == 0):
|
||||||
|
return ""
|
||||||
|
if (z > 0):
|
||||||
|
return "+" + str(z)
|
||||||
|
if (z < 0):
|
||||||
|
return "-" + str(abs(z))
|
||||||
|
|
||||||
if (b == ""):
|
b = intParser(x1 + x2)
|
||||||
problem = f"x^2{c}"
|
c = intParser(x1 * x2)
|
||||||
else:
|
|
||||||
problem = f"x^2{b}x{c}"
|
if (b == "+1"):
|
||||||
|
b = "+"
|
||||||
|
|
||||||
|
if (b == ""):
|
||||||
|
problem = f"x^2{c}"
|
||||||
|
else:
|
||||||
|
problem = f"x^2{b}x{c}"
|
||||||
|
|
||||||
|
x1 = intParser(x1)
|
||||||
|
x2 = intParser(x2)
|
||||||
|
solution = f"(x{x1})(x{x2})"
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
x1 = intParser(x1)
|
|
||||||
x2 = intParser(x2)
|
|
||||||
solution = f"(x{x1})(x{x2})"
|
|
||||||
return problem, solution
|
|
||||||
|
|
||||||
def thirdAngleOfTriangleFunc(maxAngle=89):
|
def thirdAngleOfTriangleFunc(maxAngle=89):
|
||||||
angle1 = random.randint(1, maxAngle)
|
angle1 = random.randint(1, maxAngle)
|
||||||
angle2 = random.randint(1, maxAngle)
|
angle2 = random.randint(1, maxAngle)
|
||||||
angle3 = 180 - (angle1 + angle2)
|
angle3 = 180 - (angle1 + angle2)
|
||||||
problem = f"Third angle of triangle with angles {angle1} and {angle2} = "
|
problem = f"Third angle of triangle with angles {angle1} and {angle2} = "
|
||||||
solution = angle3
|
solution = angle3
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def systemOfEquationsFunc(range_x = 10, range_y = 10, coeff_mult_range=10):
|
|
||||||
|
def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
|
||||||
# Generate solution point first
|
# Generate solution point first
|
||||||
x = random.randint(-range_x, range_x)
|
x = random.randint(-range_x, range_x)
|
||||||
y = random.randint(-range_y, range_y)
|
y = random.randint(-range_y, range_y)
|
||||||
@@ -331,17 +361,19 @@ def systemOfEquationsFunc(range_x = 10, range_y = 10, coeff_mult_range=10):
|
|||||||
|
|
||||||
# Add random (non-zero) multiple of equations to each other
|
# Add random (non-zero) multiple of equations to each other
|
||||||
|
|
||||||
def distanceTwoPointsFunc(maxValXY = 20, minValXY=-20):
|
|
||||||
point1X = random.randint(minValXY, maxValXY+1)
|
def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
|
||||||
point1Y = random.randint(minValXY, maxValXY+1)
|
point1X = random.randint(minValXY, maxValXY + 1)
|
||||||
point2X = random.randint(minValXY, maxValXY+1)
|
point1Y = random.randint(minValXY, maxValXY + 1)
|
||||||
point2Y = random.randint(minValXY, maxValXY+1)
|
point2X = random.randint(minValXY, maxValXY + 1)
|
||||||
|
point2Y = random.randint(minValXY, maxValXY + 1)
|
||||||
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
|
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
|
||||||
solution = f"sqrt({distanceSq})"
|
solution = f"sqrt({distanceSq})"
|
||||||
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
|
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def pythagoreanTheoremFunc(maxLength = 20):
|
|
||||||
|
def pythagoreanTheoremFunc(maxLength=20):
|
||||||
a = random.randint(1, maxLength)
|
a = random.randint(1, maxLength)
|
||||||
b = random.randint(1, maxLength)
|
b = random.randint(1, maxLength)
|
||||||
c = (a**2 + b**2)**0.5
|
c = (a**2 + b**2)**0.5
|
||||||
@@ -349,19 +381,20 @@ def pythagoreanTheoremFunc(maxLength = 20):
|
|||||||
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
|
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def linearEquationsFunc(n = 2, varRange = 20, coeffRange = 20):
|
|
||||||
|
def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
|
||||||
if n > 10:
|
if n > 10:
|
||||||
print("[!] n cannot be greater than 10")
|
print("[!] n cannot be greater than 10")
|
||||||
return None, None
|
return None, None
|
||||||
|
|
||||||
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
||||||
soln = [ random.randint(-varRange, varRange) for i in range(n) ]
|
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
||||||
|
|
||||||
problem = list()
|
problem = list()
|
||||||
solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
||||||
for _ in range(n):
|
for _ in range(n):
|
||||||
coeff = [ random.randint(-coeffRange, coeffRange) for i in range(n) ]
|
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
||||||
res = sum([ coeff[i] * soln[i] for i in range(n)])
|
res = sum([coeff[i] * soln[i] for i in range(n)])
|
||||||
|
|
||||||
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)]
|
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)]
|
||||||
while "" in prob:
|
while "" in prob:
|
||||||
@@ -372,6 +405,7 @@ def linearEquationsFunc(n = 2, varRange = 20, coeffRange = 20):
|
|||||||
problem = "\n".join(problem)
|
problem = "\n".join(problem)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def primeFactorsFunc(minVal=1, maxVal=200):
|
def primeFactorsFunc(minVal=1, maxVal=200):
|
||||||
a = random.randint(minVal, maxVal)
|
a = random.randint(minVal, maxVal)
|
||||||
n = a
|
n = a
|
||||||
@@ -389,6 +423,7 @@ def primeFactorsFunc(minVal=1, maxVal=200):
|
|||||||
solution = f"{factors}"
|
solution = f"{factors}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def multiplyFractionsFunc(maxVal=10):
|
def multiplyFractionsFunc(maxVal=10):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
b = random.randint(1, maxVal)
|
b = random.randint(1, maxVal)
|
||||||
@@ -398,6 +433,7 @@ def multiplyFractionsFunc(maxVal=10):
|
|||||||
b = random.randint(1, maxVal)
|
b = random.randint(1, maxVal)
|
||||||
while (c == d):
|
while (c == d):
|
||||||
d = random.randint(1, maxVal)
|
d = random.randint(1, maxVal)
|
||||||
|
|
||||||
def calculate_gcd(x, y):
|
def calculate_gcd(x, y):
|
||||||
while(y):
|
while(y):
|
||||||
x, y = y, x % y
|
x, y = y, x % y
|
||||||
@@ -412,32 +448,33 @@ def multiplyFractionsFunc(maxVal=10):
|
|||||||
solution = x
|
solution = x
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def regularPolygonAngleFunc(minVal = 3,maxVal = 20):
|
|
||||||
|
def regularPolygonAngleFunc(minVal=3, maxVal=20):
|
||||||
sideNum = random.randint(minVal, maxVal)
|
sideNum = random.randint(minVal, maxVal)
|
||||||
problem = f"Find the angle of a regular polygon with {sideNum} sides"
|
problem = f"Find the angle of a regular polygon with {sideNum} sides"
|
||||||
exteriorAngle = round((360/sideNum),2)
|
exteriorAngle = round((360 / sideNum), 2)
|
||||||
solution = 180 - exteriorAngle
|
solution = 180 - exteriorAngle
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def combinationsFunc(maxlength=20):
|
def combinationsFunc(maxlength=20):
|
||||||
|
|
||||||
def factorial(a):
|
def factorial(a):
|
||||||
d=1
|
d = 1
|
||||||
for i in range(a):
|
for i in range(a):
|
||||||
a=(i+1)*d
|
a = (i + 1) * d
|
||||||
d=a
|
d = a
|
||||||
return d
|
return d
|
||||||
a= random.randint(10,maxlength)
|
a = random.randint(10, maxlength)
|
||||||
b=random.randint(0,9)
|
b = random.randint(0, 9)
|
||||||
|
|
||||||
|
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
|
||||||
|
problem = "Number of combinations from {} objects picked {} at a time ".format(a, b)
|
||||||
solution= int(factorial(a)/(factorial(b)*factorial(a-b)))
|
|
||||||
problem= "Number of combinations from {} objects picked {} at a time ".format(a,b)
|
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def factorialFunc(maxInput = 6):
|
|
||||||
|
def factorialFunc(maxInput=6):
|
||||||
a = random.randint(0, maxInput)
|
a = random.randint(0, maxInput)
|
||||||
n = a
|
n = a
|
||||||
problem = str(a) + "! = "
|
problem = str(a) + "! = "
|
||||||
@@ -452,31 +489,35 @@ def factorialFunc(maxInput = 6):
|
|||||||
solution = str(b)
|
solution = str(b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def surfaceAreaCube(maxSide = 20, unit = 'm'):
|
|
||||||
|
def surfaceAreaCube(maxSide=20, unit='m'):
|
||||||
a = random.randint(1, maxSide)
|
a = random.randint(1, maxSide)
|
||||||
problem = f"Surface area of cube with side = {a}{unit} is"
|
problem = f"Surface area of cube with side = {a}{unit} is"
|
||||||
ans = 6 * a * a
|
ans = 6 * a * a
|
||||||
solution = f"{ans} {unit}^2"
|
solution = f"{ans} {unit}^2"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def volumeCube(maxSide = 20, unit = 'm'):
|
|
||||||
|
def volumeCube(maxSide=20, unit='m'):
|
||||||
a = random.randint(1, maxSide)
|
a = random.randint(1, maxSide)
|
||||||
problem = f"Volume of cube with side = {a}{unit} is"
|
problem = f"Volume of cube with side = {a}{unit} is"
|
||||||
ans = a * a * a
|
ans = a * a * a
|
||||||
solution = f"{ans} {unit}^3"
|
solution = f"{ans} {unit}^3"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def surfaceAreaCuboid(maxSide = 20, unit = 'm'):
|
|
||||||
|
def surfaceAreaCuboid(maxSide=20, unit='m'):
|
||||||
a = random.randint(1, maxSide)
|
a = random.randint(1, maxSide)
|
||||||
b = random.randint(1, maxSide)
|
b = random.randint(1, maxSide)
|
||||||
c = random.randint(1, maxSide)
|
c = random.randint(1, maxSide)
|
||||||
|
|
||||||
problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
||||||
ans = 2 * (a*b + b*c + c*a)
|
ans = 2 * (a * b + b * c + c * a)
|
||||||
solution = f"{ans} {unit}^2"
|
solution = f"{ans} {unit}^2"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def volumeCuboid(maxSide = 20, unit = 'm'):
|
|
||||||
|
def volumeCuboid(maxSide=20, unit='m'):
|
||||||
a = random.randint(1, maxSide)
|
a = random.randint(1, maxSide)
|
||||||
b = random.randint(1, maxSide)
|
b = random.randint(1, maxSide)
|
||||||
c = random.randint(1, maxSide)
|
c = random.randint(1, maxSide)
|
||||||
@@ -485,7 +526,8 @@ def volumeCuboid(maxSide = 20, unit = 'm'):
|
|||||||
solution = f"{ans} {unit}^3"
|
solution = f"{ans} {unit}^3"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def surfaceAreaCylinder(maxRadius = 20, maxHeight = 50,unit = 'm'):
|
|
||||||
|
def surfaceAreaCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
||||||
a = random.randint(1, maxHeight)
|
a = random.randint(1, maxHeight)
|
||||||
b = random.randint(1, maxRadius)
|
b = random.randint(1, maxRadius)
|
||||||
problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
||||||
@@ -493,7 +535,8 @@ def surfaceAreaCylinder(maxRadius = 20, maxHeight = 50,unit = 'm'):
|
|||||||
solution = f"{ans} {unit}^2"
|
solution = f"{ans} {unit}^2"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def volumeCylinder(maxRadius = 20, maxHeight = 50, unit = 'm'):
|
|
||||||
|
def volumeCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
||||||
a = random.randint(1, maxHeight)
|
a = random.randint(1, maxHeight)
|
||||||
b = random.randint(1, maxRadius)
|
b = random.randint(1, maxRadius)
|
||||||
problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
||||||
@@ -501,7 +544,8 @@ def volumeCylinder(maxRadius = 20, maxHeight = 50, unit = 'm'):
|
|||||||
solution = f"{ans} {unit}^3"
|
solution = f"{ans} {unit}^3"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def surfaceAreaCone(maxRadius = 20, maxHeight = 50,unit = 'm'):
|
|
||||||
|
def surfaceAreaCone(maxRadius=20, maxHeight=50, unit='m'):
|
||||||
a = random.randint(1, maxHeight)
|
a = random.randint(1, maxHeight)
|
||||||
b = random.randint(1, maxRadius)
|
b = random.randint(1, maxRadius)
|
||||||
slopingHeight = math.sqrt(a**2 + b**2)
|
slopingHeight = math.sqrt(a**2 + b**2)
|
||||||
@@ -510,14 +554,16 @@ def surfaceAreaCone(maxRadius = 20, maxHeight = 50,unit = 'm'):
|
|||||||
solution = f"{ans} {unit}^2"
|
solution = f"{ans} {unit}^2"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def volumeCone(maxRadius = 20, maxHeight = 50, unit = 'm'):
|
|
||||||
|
def volumeCone(maxRadius=20, maxHeight=50, unit='m'):
|
||||||
a = random.randint(1, maxHeight)
|
a = random.randint(1, maxHeight)
|
||||||
b = random.randint(1, maxRadius)
|
b = random.randint(1, maxRadius)
|
||||||
problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is"
|
problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is"
|
||||||
ans = int(math.pi * b * b * a * (1/3))
|
ans = int(math.pi * b * b * a * (1 / 3))
|
||||||
solution = f"{ans} {unit}^3"
|
solution = f"{ans} {unit}^3"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def commonFactorsFunc(maxVal=100):
|
def commonFactorsFunc(maxVal=100):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
b = random.randint(1, maxVal)
|
b = random.randint(1, maxVal)
|
||||||
@@ -537,6 +583,7 @@ def commonFactorsFunc(maxVal=100):
|
|||||||
solution = arr
|
solution = arr
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def intersectionOfTwoLinesFunc(
|
def intersectionOfTwoLinesFunc(
|
||||||
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
|
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
|
||||||
):
|
):
|
||||||
@@ -590,21 +637,24 @@ def intersectionOfTwoLinesFunc(
|
|||||||
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
|
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def permutationFunc(maxlength=20):
|
def permutationFunc(maxlength=20):
|
||||||
a = random.randint(10,maxlength)
|
a = random.randint(10, maxlength)
|
||||||
b = random.randint(0,9)
|
b = random.randint(0, 9)
|
||||||
solution= int(math.factorial(a)/(math.factorial(a-b)))
|
solution = int(math.factorial(a) / (math.factorial(a - b)))
|
||||||
problem= "Number of Permutations from {} objects picked {} at a time = ".format(a,b)
|
problem = "Number of Permutations from {} objects picked {} at a time = ".format(a, b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def vectorCrossFunc(minVal=-20, maxVal=20):
|
def vectorCrossFunc(minVal=-20, maxVal=20):
|
||||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||||
c = [a[1]*b[2] - a[2]*b[1],
|
c = [a[1] * b[2] - a[2] * b[1],
|
||||||
a[2]*b[0] - a[0]*b[2],
|
a[2] * b[0] - a[0] * b[2],
|
||||||
a[0]*b[1] - a[1]*b[0]]
|
a[0] * b[1] - a[1] * b[0]]
|
||||||
return str(a) + " X " + str(b) + " = ", str(c)
|
return str(a) + " X " + str(b) + " = ", str(c)
|
||||||
|
|
||||||
|
|
||||||
def compareFractionsFunc(maxVal=10):
|
def compareFractionsFunc(maxVal=10):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
b = random.randint(1, maxVal)
|
b = random.randint(1, maxVal)
|
||||||
@@ -616,79 +666,84 @@ def compareFractionsFunc(maxVal=10):
|
|||||||
while (c == d):
|
while (c == d):
|
||||||
d = random.randint(1, maxVal)
|
d = random.randint(1, maxVal)
|
||||||
|
|
||||||
first=a/b
|
first = a / b
|
||||||
second=c/d
|
second = c / d
|
||||||
|
|
||||||
if(first>second):
|
if(first > second):
|
||||||
solution=">"
|
solution = ">"
|
||||||
elif(first<second):
|
elif(first < second):
|
||||||
solution="<"
|
solution = "<"
|
||||||
else:
|
else:
|
||||||
solution="="
|
solution = "="
|
||||||
|
|
||||||
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
|
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
|
||||||
return problem,solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
|
||||||
|
a = random.randint(1000, maxPrinciple)
|
||||||
|
b = random.randint(1, maxRate)
|
||||||
|
c = random.randint(1, maxTime)
|
||||||
|
d = (a * b * c) / 100
|
||||||
|
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(b) + "% rate of interest and for a time period of " + str(c) + " years is = "
|
||||||
|
solution = round(d, 2)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
def simpleInterestFunc(maxPrinciple = 10000, maxRate = 10, maxTime = 10):
|
|
||||||
a = random.randint(1000, maxPrinciple)
|
|
||||||
b = random.randint(1, maxRate)
|
|
||||||
c = random.randint(1, maxTime)
|
|
||||||
d = (a*b*c)/100
|
|
||||||
problem = "Simple interest for a principle amount of " + str(a) +" dollars, " + str(b) + "% rate of interest and for a time period of " + str(c) + " years is = "
|
|
||||||
solution = round(d, 2)
|
|
||||||
return problem, solution
|
|
||||||
|
|
||||||
def matrixMultiplicationFunc(maxVal=100):
|
def matrixMultiplicationFunc(maxVal=100):
|
||||||
m= random.randint(2, 10)
|
m = random.randint(2, 10)
|
||||||
n= random.randint(2, 10)
|
n = random.randint(2, 10)
|
||||||
k= random.randint(2, 10)
|
k = random.randint(2, 10)
|
||||||
#generate matrices a and b
|
# generate matrices a and b
|
||||||
a=[]
|
a = []
|
||||||
for r in range(m):
|
for r in range(m):
|
||||||
a.append([])
|
a.append([])
|
||||||
for c in range(n):
|
for c in range(n):
|
||||||
a[r].append(random.randint(-maxVal,maxVal))
|
a[r].append(random.randint(-maxVal, maxVal))
|
||||||
|
|
||||||
b=[]
|
b = []
|
||||||
for r in range(n):
|
for r in range(n):
|
||||||
b.append([])
|
b.append([])
|
||||||
for c in range(k):
|
for c in range(k):
|
||||||
b[r].append(random.randint(-maxVal, maxVal))
|
b[r].append(random.randint(-maxVal, maxVal))
|
||||||
|
|
||||||
res= []
|
res = []
|
||||||
a_string= matrixMultiplicationFuncHelper(a)
|
a_string = matrixMultiplicationFuncHelper(a)
|
||||||
b_string= matrixMultiplicationFuncHelper(b)
|
b_string = matrixMultiplicationFuncHelper(b)
|
||||||
|
|
||||||
for r in range(m):
|
for r in range(m):
|
||||||
res.append([])
|
res.append([])
|
||||||
for c in range(k):
|
for c in range(k):
|
||||||
temp= 0
|
temp = 0
|
||||||
for t in range(n):
|
for t in range(n):
|
||||||
temp+=a[r][t]*b[t][c]
|
temp += a[r][t] * b[t][c]
|
||||||
res[r].append(temp)
|
res[r].append(temp)
|
||||||
problem= f"Multiply {a} and {b}" #consider using a, b instead of a_string, b_string if the problem doesn't look right
|
problem = f"Multiply \n{a_string}\n and \n\n{b_string}" # consider using a, b instead of a_string, b_string if the problem doesn't look right
|
||||||
solution= res#matrixMultiplicationFuncHelper(res)
|
solution = matrixMultiplicationFuncHelper(res)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def matrixMultiplicationFuncHelper(inp):
|
def matrixMultiplicationFuncHelper(inp):
|
||||||
m= len(inp)
|
m = len(inp)
|
||||||
n= len(inp[0])
|
n = len(inp[0])
|
||||||
string= ""
|
string = ""
|
||||||
for i in range(m):
|
for i in range(m):
|
||||||
for j in range(n):
|
for j in range(n):
|
||||||
string+=f"{inp[i][j]: 6d}"
|
string += f"{inp[i][j]: 6d}"
|
||||||
string+=" "
|
string += " "
|
||||||
string+="\n"
|
string += "\n"
|
||||||
return string
|
return string
|
||||||
|
|
||||||
def cubeRootFunc(minNo = 1, maxNo = 1000):
|
|
||||||
|
def cubeRootFunc(minNo=1, maxNo=1000):
|
||||||
b = random.randint(minNo, maxNo)
|
b = random.randint(minNo, maxNo)
|
||||||
a = b**(1/3)
|
a = b**(1 / 3)
|
||||||
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
|
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
|
||||||
solution = str(round(a,2))
|
solution = str(round(a, 2))
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
def powerRuleIntegrationFunc(maxCoef = 10, maxExp = 10, maxTerms = 5):
|
|
||||||
|
def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
||||||
numTerms = random.randint(1, maxTerms)
|
numTerms = random.randint(1, maxTerms)
|
||||||
problem = ""
|
problem = ""
|
||||||
solution = ""
|
solution = ""
|
||||||
@@ -699,39 +754,40 @@ def powerRuleIntegrationFunc(maxCoef = 10, maxExp = 10, maxTerms = 5):
|
|||||||
coefficient = random.randint(1, maxCoef)
|
coefficient = random.randint(1, maxCoef)
|
||||||
exponent = random.randint(1, maxExp)
|
exponent = random.randint(1, maxExp)
|
||||||
problem += str(coefficient) + "x^" + str(exponent)
|
problem += str(coefficient) + "x^" + str(exponent)
|
||||||
solution += "("+str(coefficient) +"/"+str(exponent + 1) +")x^" + str(exponent +1)
|
solution += "(" + str(coefficient) + "/" + str(exponent) + ")x^" + str(exponent + 1)
|
||||||
solution = solution + " + c"
|
solution = solution + " + c"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def fourthAngleOfQuadriFunc(maxAngle = 180):
|
def fourthAngleOfQuadriFunc(maxAngle=180):
|
||||||
angle1 = random.randint(1, maxAngle)
|
angle1 = random.randint(1, maxAngle)
|
||||||
angle2 = random.randint(1, 240-angle1)
|
angle2 = random.randint(1, 240 - angle1)
|
||||||
angle3 = random.randint(1, 340-(angle1 + angle2))
|
angle3 = random.randint(1, 340 - (angle1 + angle2))
|
||||||
sum_ = angle1 + angle2 + angle3
|
sum_ = angle1 + angle2 + angle3
|
||||||
angle4 = 360 - sum_
|
angle4 = 360 - sum_
|
||||||
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
|
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
|
||||||
solution = angle4
|
solution = angle4
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def quadraticEquation(maxVal=100):
|
def quadraticEquation(maxVal=100):
|
||||||
a = random.randint(1,maxVal)
|
a = random.randint(1, maxVal)
|
||||||
c = random.randint(1,maxVal)
|
c = random.randint(1, maxVal)
|
||||||
b = random.randint(round(math.sqrt(4*a*c))+1,round(math.sqrt(4*maxVal*maxVal)))
|
b = random.randint(round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
|
||||||
|
|
||||||
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a,b,c)
|
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
||||||
|
|
||||||
D = math.sqrt(b*b-4*a*c)
|
D = math.sqrt(b * b - 4 * a * c)
|
||||||
|
|
||||||
solution = str([round((-b+D)/(2*a), 2),round((-b-D)/(2*a), 2)])
|
solution = str([round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)])
|
||||||
return problem,solution
|
return problem, solution
|
||||||
|
|
||||||
def hcfFunc(maxVal=20):
|
def hcfFunc(maxVal=20):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
b = random.randint(1, maxVal)
|
b = random.randint(1, maxVal)
|
||||||
x, y = a, b
|
x, y = a, b
|
||||||
while(y):
|
while(y):
|
||||||
x, y = y, x % y
|
x, y = y, x % y
|
||||||
problem = f"HCF of {a} and {b} = "
|
problem = f"HCF of {a} and {b} = "
|
||||||
solution = str(x)
|
solution = str(x)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
@@ -835,8 +891,10 @@ def sumOfAnglesOfPolygonFunc(maxSides = 12):
|
|||||||
|
|
||||||
# || Class Instances
|
# || Class Instances
|
||||||
|
|
||||||
#Format is:
|
# Format is:
|
||||||
#<title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>)
|
# <title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>)
|
||||||
|
|
||||||
|
|
||||||
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
||||||
subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc)
|
subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc)
|
||||||
multiplication = Generator("Multiplication", 2, "a*b=", "c", multiplicationFunc)
|
multiplication = Generator("Multiplication", 2, "a*b=", "c", multiplicationFunc)
|
||||||
@@ -845,48 +903,49 @@ binaryComplement1s = Generator("Binary Complement 1s", 4, "1010=", "0101", binar
|
|||||||
moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
|
moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
|
||||||
squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc)
|
squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc)
|
||||||
powerRuleDifferentiation = Generator("Power Rule Differentiation", 7, "nx^m=", "(n*m)x^(m-1)", powerRuleDifferentiationFunc)
|
powerRuleDifferentiation = Generator("Power Rule Differentiation", 7, "nx^m=", "(n*m)x^(m-1)", powerRuleDifferentiationFunc)
|
||||||
square = Generator("Square", 8,"a^2", "b", squareFunc)
|
square = Generator("Square", 8, "a^2", "b", squareFunc)
|
||||||
lcm = Generator("LCM (Least Common Multiple)", 9, "LCM of a and b = ", "c", lcmFunc)
|
lcm = Generator("LCM (Least Common Multiple)", 9, "LCM of a and b = ", "c", lcmFunc)
|
||||||
gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ", "c", gcdFunc)
|
gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ", "c", gcdFunc)
|
||||||
basicAlgebra = Generator("Basic Algebra", 11, "ax + b = c", "d", basicAlgebraFunc)
|
basicAlgebra = Generator("Basic Algebra", 11, "ax + b = c", "d", basicAlgebraFunc)
|
||||||
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
|
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
|
||||||
intDivision = Generator("Easy Division", 13,"a/b=","c",divisionToIntFunc)
|
intDivision = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)
|
||||||
decimalToBinary = Generator("Decimal to Binary",14,"Binary of a=","b",DecimalToBinaryFunc)
|
decimalToBinary = Generator("Decimal to Binary", 14, "Binary of a=", "b", DecimalToBinaryFunc)
|
||||||
binaryToDecimal = Generator("Binary to Decimal",15,"Decimal of a=","b",BinaryToDecimalFunc)
|
binaryToDecimal = Generator("Binary to Decimal", 15, "Decimal of a=", "b", BinaryToDecimalFunc)
|
||||||
fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc)
|
fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc)
|
||||||
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix", 17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22)
|
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix", 17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22)
|
||||||
areaOfTriangle = Generator("Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc)
|
areaOfTriangle = Generator("Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc)
|
||||||
doesTriangleExist = Generator("Triangle exists check", 19, "Does triangle with sides a, b and c exist?","Yes/No", isTriangleValidFunc)
|
doesTriangleExist = Generator("Triangle exists check", 19, "Does triangle with sides a, b and c exist?", "Yes/No", isTriangleValidFunc)
|
||||||
midPointOfTwoPoint=Generator("Midpoint of the two point", 20,"((X1,Y1),(X2,Y2))=","((X1+X2)/2,(Y1+Y2)/2)",MidPointOfTwoPointFunc)
|
midPointOfTwoPoint = Generator("Midpoint of the two point", 20, "((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)", MidPointOfTwoPointFunc)
|
||||||
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc)
|
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc)
|
||||||
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22, "Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc)
|
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22, "Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc)
|
||||||
systemOfEquations = Generator("Solve a System of Equations in R^2", 23, "2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3", systemOfEquationsFunc)
|
systemOfEquations = Generator("Solve a System of Equations in R^2", 23, "2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3",
|
||||||
distance2Point = Generator("Distance between 2 points", 24, "Find the distance between (x1,y1) and (x2,y2)","sqrt(distanceSquared)", distanceTwoPointsFunc)
|
systemOfEquationsFunc)
|
||||||
|
distance2Point = Generator("Distance between 2 points", 24, "Find the distance between (x1,y1) and (x2,y2)", "sqrt(distanceSquared)", distanceTwoPointsFunc)
|
||||||
pythagoreanTheorem = Generator("Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc)
|
pythagoreanTheorem = Generator("Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc)
|
||||||
linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc) #This has multiple variables whereas #23 has only x and y
|
linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc) # This has multiple variables whereas #23 has only x and y
|
||||||
primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc)
|
primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc)
|
||||||
fractionMultiplication = Generator("Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc)
|
fractionMultiplication = Generator("Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc)
|
||||||
angleRegularPolygon = Generator("Angle of a Regular Polygon",29,"Find the angle of a regular polygon with 6 sides","120",regularPolygonAngleFunc)
|
angleRegularPolygon = Generator("Angle of a Regular Polygon", 29, "Find the angle of a regular polygon with 6 sides", "120", regularPolygonAngleFunc)
|
||||||
combinations = Generator("Combinations of Objects",30, "Combinations available for picking 4 objects at a time from 6 distinct objects ="," 15", combinationsFunc)
|
combinations = Generator("Combinations of Objects", 30, "Combinations available for picking 4 objects at a time from 6 distinct objects =", " 15", combinationsFunc)
|
||||||
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
|
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
|
||||||
surfaceAreaCubeGen = Generator("Surface Area of Cube", 32, "Surface area of cube with side a units is","b units^2", surfaceAreaCube)
|
surfaceAreaCubeGen = Generator("Surface Area of Cube", 32, "Surface area of cube with side a units is", "b units^2", surfaceAreaCube)
|
||||||
surfaceAreaCuboidGen = Generator("Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is","d units^2", surfaceAreaCuboid)
|
surfaceAreaCuboidGen = Generator("Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is", "d units^2", surfaceAreaCuboid)
|
||||||
surfaceAreaCylinderGen = Generator("Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is","c units^2", surfaceAreaCylinder)
|
surfaceAreaCylinderGen = Generator("Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is", "c units^2", surfaceAreaCylinder)
|
||||||
volumeCubeGen = Generator("Volum of Cube", 35, "Volume of cube with side a units is","b units^3", volumeCube)
|
volumeCubeGen = Generator("Volum of Cube", 35, "Volume of cube with side a units is", "b units^3", volumeCube)
|
||||||
volumeCuboidGen = Generator("Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is","d units^3", volumeCuboid)
|
volumeCuboidGen = Generator("Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is", "d units^3", volumeCuboid)
|
||||||
volumeCylinderGen = Generator("Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is","c units^3", volumeCylinder)
|
volumeCylinderGen = Generator("Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is", "c units^3", volumeCylinder)
|
||||||
surfaceAreaConeGen = Generator("Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is","c units^2", surfaceAreaCone)
|
surfaceAreaConeGen = Generator("Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is", "c units^2", surfaceAreaCone)
|
||||||
volumeConeGen = Generator("Volume of cone", 39, "Volume of cone with height = a units and radius = b units is","c units^3", volumeCone)
|
volumeConeGen = Generator("Volume of cone", 39, "Volume of cone with height = a units and radius = b units is", "c units^3", volumeCone)
|
||||||
commonFactors = Generator("Common Factors", 40, "Common Factors of {a} and {b} = ","[c, d, ...]",commonFactorsFunc)
|
commonFactors = Generator("Common Factors", 40, "Common Factors of {a} and {b} = ", "[c, d, ...]", commonFactorsFunc)
|
||||||
intersectionOfTwoLines = Generator("Intersection of Two Lines", 41, "Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc)
|
intersectionOfTwoLines = Generator("Intersection of Two Lines", 41, "Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc)
|
||||||
permutations= Generator("Permutations",42, "Total permutations of 4 objects at a time from 10 objects is","5040", permutationFunc)
|
permutations = Generator("Permutations", 42, "Total permutations of 4 objects at a time from 10 objects is", "5040", permutationFunc)
|
||||||
vectorCross = Generator("Cross Product of 2 Vectors", 43, "a X b = ", "c", vectorCrossFunc)
|
vectorCross = Generator("Cross Product of 2 Vectors", 43, "a X b = ", "c", vectorCrossFunc)
|
||||||
compareFractions=Generator("Compare Fractions",44,"Which symbol represents the comparison between a/b and c/d?",">/</=",compareFractionsFunc)
|
compareFractions = Generator("Compare Fractions", 44, "Which symbol represents the comparison between a/b and c/d?", ">/</=", compareFractionsFunc)
|
||||||
simpleInterest = Generator("Simple Interest", 45, "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", simpleInterestFunc)
|
simpleInterest = Generator("Simple Interest", 45, "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", simpleInterestFunc)
|
||||||
matrixMultiplication = Generator("Multiplication of two matrices", 46, "Multiply two matrices A and B", "C", matrixMultiplicationFunc)
|
matrixMultiplication = Generator("Multiplication of two matrices", 46, "Multiply two matrices A and B", "C", matrixMultiplicationFunc)
|
||||||
CubeRoot = Generator("Cube Root",47,"Cuberoot of a upto 2 decimal places is","b",cubeRootFunc)
|
CubeRoot = Generator("Cube Root", 47, "Cuberoot of a upto 2 decimal places is", "b", cubeRootFunc)
|
||||||
powerRuleIntegration = Generator("Power Rule Integration", 48, "nx^m=", "(n/m+1)x^(m+1)", powerRuleIntegrationFunc)
|
powerRuleIntegration = Generator("Power Rule Integration", 48, "nx^m=", "(n/m)x^(m+1)", powerRuleIntegrationFunc)
|
||||||
fourthAngleOfQuadrilateral = Generator("Fourth Angle of Quadrilateral",49,"Fourth angle of Quadrilateral with angles a,b,c =","angle4",fourthAngleOfQuadriFunc)
|
fourthAngleOfQuadrilateral = Generator("Fourth Angle of Quadrilateral", 49, "Fourth angle of Quadrilateral with angles a,b,c =", "angle4", fourthAngleOfQuadriFunc)
|
||||||
quadraticEquationSolve = Generator("Quadratic Equation", 50, "Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2", quadraticEquation)
|
quadraticEquationSolve = Generator("Quadratic Equation", 50, "Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2", quadraticEquation)
|
||||||
hcf = Generator("HCF (Highest Common Factor)", 51, "HCF of a and b = ", "c", hcfFunc)
|
hcf = Generator("HCF (Highest Common Factor)", 51, "HCF of a and b = ", "c", hcfFunc)
|
||||||
diceSumProbability=Generator("Probability of a certain sum appearing on faces of dice", 52,"If n dices are rolled then probabilty of getting sum of x is =","z", DiceSumProbFunc)
|
diceSumProbability=Generator("Probability of a certain sum appearing on faces of dice", 52,"If n dices are rolled then probabilty of getting sum of x is =","z", DiceSumProbFunc)
|
||||||
|
|||||||
@@ -5,42 +5,42 @@ from hypothesis import strategies as st, given, assume
|
|||||||
|
|
||||||
|
|
||||||
@given(maxSum=st.integers(min_value=1), maxAddend=st.integers(min_value=1))
|
@given(maxSum=st.integers(min_value=1), maxAddend=st.integers(min_value=1))
|
||||||
def test_additionFunc(maxSum, maxAddend):
|
def test_addition(maxSum, maxAddend):
|
||||||
assume(maxSum > maxAddend)
|
assume(maxSum > maxAddend)
|
||||||
problem, solution = additionFunc(maxSum, maxAddend)
|
problem, solution = addition.func(maxSum, maxAddend)
|
||||||
assert eval(problem[:-1]) == int(solution)
|
assert eval(problem[:-1]) == int(solution)
|
||||||
|
|
||||||
|
|
||||||
@given(maxMinuend=st.integers(min_value=1), maxDiff=st.integers(min_value=1))
|
@given(maxMinuend=st.integers(min_value=1), maxDiff=st.integers(min_value=1))
|
||||||
def test_subtractionFunc(maxMinuend, maxDiff):
|
def test_subtraction(maxMinuend, maxDiff):
|
||||||
assume(maxMinuend > maxDiff)
|
assume(maxMinuend > maxDiff)
|
||||||
problem, solution = subtractionFunc(maxMinuend, maxDiff)
|
problem, solution = subtraction.func(maxMinuend, maxDiff)
|
||||||
assert eval(problem[:-1]) == int(solution)
|
assert eval(problem[:-1]) == int(solution)
|
||||||
|
|
||||||
|
|
||||||
@given(maxRes=st.integers(min_value=1), maxMulti=st.integers(min_value=1))
|
@given(maxRes=st.integers(min_value=1), maxMulti=st.integers(min_value=1))
|
||||||
def test_multiplicationFunc(maxRes, maxMulti):
|
def test_multiplication(maxRes, maxMulti):
|
||||||
assume(maxRes > maxMulti)
|
assume(maxRes > maxMulti)
|
||||||
problem, solution = multiplicationFunc(maxRes, maxMulti)
|
problem, solution = multiplication.func(maxRes, maxMulti)
|
||||||
assert eval(problem[:-1]) == int(solution)
|
assert eval(problem[:-1]) == int(solution)
|
||||||
|
|
||||||
|
|
||||||
@given(maxRes=st.integers(min_value=1), maxDivid=st.integers(min_value=1))
|
@given(maxRes=st.integers(min_value=1), maxDivid=st.integers(min_value=1))
|
||||||
def test_divisionFunc(maxRes, maxDivid):
|
def test_division(maxRes, maxDivid):
|
||||||
assume(maxRes > maxDivid)
|
assume(maxRes > maxDivid)
|
||||||
problem, solution = divisionFunc(maxRes, maxDivid)
|
problem, solution = division.func(maxRes, maxDivid)
|
||||||
assert eval(problem[:-1]) == float(solution)
|
assert eval(problem[:-1]) == float(solution)
|
||||||
|
|
||||||
|
|
||||||
@given(maxRes=st.integers(min_value=1), maxModulo=st.integers(min_value=1))
|
@given(maxRes=st.integers(min_value=1), maxModulo=st.integers(min_value=1))
|
||||||
def test_moduloFunc(maxRes, maxModulo):
|
def test_moduloDivision(maxRes, maxModulo):
|
||||||
assume(maxRes > maxModulo)
|
assume(maxRes > maxModulo)
|
||||||
problem, solution = moduloFunc(maxRes, maxModulo)
|
problem, solution = moduloDivision.func(maxRes, maxModulo)
|
||||||
assert eval(problem[:-1]) == int(solution)
|
assert eval(problem[:-1]) == int(solution)
|
||||||
|
|
||||||
|
|
||||||
@given(minNo=st.integers(min_value=1), maxNo=st.integers(min_value=1, max_value=2 ** 50))
|
@given(minNo=st.integers(min_value=1), maxNo=st.integers(min_value=1, max_value=2 ** 50))
|
||||||
def test_squareRootFunc(minNo, maxNo):
|
def test_squareRoot(minNo, maxNo):
|
||||||
assume(maxNo > minNo)
|
assume(maxNo > minNo)
|
||||||
problem, solution = squareRootFunc(minNo, maxNo)
|
problem, solution = squareRoot.func(minNo, maxNo)
|
||||||
assert eval(problem[:-1]) == float(solution)
|
assert eval(problem[:-1]) == float(solution)
|
||||||
|
|||||||
Reference in New Issue
Block a user