mirror of
https://github.com/DeaDvey/mathgenerator.git
synced 2025-11-28 14:35:23 +01:00
Merge branch 'master' of https://github.com/Todarith/mathgenerator
This commit is contained in:
@@ -1,12 +1,12 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def BinaryToDecimalFunc(max_dig=10):
|
||||
problem = ''
|
||||
|
||||
|
||||
for i in range(random.randint(1, max_dig)):
|
||||
temp = str(random.randint(0, 1))
|
||||
problem += temp
|
||||
|
||||
|
||||
solution = int(problem, 2)
|
||||
return problem, solution
|
||||
|
||||
@@ -7,5 +7,5 @@ def DecimalToBinaryFunc(max_dec=99):
|
||||
|
||||
problem = "Binary of " + str(a) + "="
|
||||
solution = str(b)
|
||||
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -2,24 +2,25 @@ from .__init__ import *
|
||||
|
||||
|
||||
def DiceSumProbFunc(maxDice=3):
|
||||
a = random.randint(1,maxDice)
|
||||
b = random.randint(a,6*a)
|
||||
a = random.randint(1, maxDice)
|
||||
b = random.randint(a, 6 * a)
|
||||
|
||||
count=0
|
||||
for i in [1,2,3,4,5,6]:
|
||||
if a==1:
|
||||
if i==b:
|
||||
count=count+1
|
||||
elif a==2:
|
||||
for j in [1,2,3,4,5,6]:
|
||||
if i+j==b:
|
||||
count=count+1
|
||||
elif a==3:
|
||||
for j in [1,2,3,4,5,6]:
|
||||
for k in [1,2,3,4,5,6]:
|
||||
if i+j+k==b:
|
||||
count=count+1
|
||||
|
||||
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(a,b)
|
||||
solution="{}/{}".format(count, 6**a)
|
||||
count = 0
|
||||
for i in [1, 2, 3, 4, 5, 6]:
|
||||
if a == 1:
|
||||
if i == b:
|
||||
count = count + 1
|
||||
elif a == 2:
|
||||
for j in [1, 2, 3, 4, 5, 6]:
|
||||
if i + j == b:
|
||||
count = count + 1
|
||||
elif a == 3:
|
||||
for j in [1, 2, 3, 4, 5, 6]:
|
||||
for k in [1, 2, 3, 4, 5, 6]:
|
||||
if i + j + k == b:
|
||||
count = count + 1
|
||||
|
||||
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(
|
||||
a, b)
|
||||
solution = "{}/{}".format(count, 6**a)
|
||||
return problem, solution
|
||||
|
||||
@@ -6,7 +6,7 @@ def MidPointOfTwoPointFunc(maxValue=20):
|
||||
y1 = random.randint(-20, maxValue)
|
||||
x2 = random.randint(-20, maxValue)
|
||||
y2 = random.randint(-20, maxValue)
|
||||
|
||||
|
||||
problem = f"({x1},{y1}),({x2},{y2})="
|
||||
solution = f"({(x1+x2)/2},{(y1+y2)/2})"
|
||||
return problem, solution
|
||||
|
||||
@@ -2,7 +2,7 @@ import random
|
||||
import math
|
||||
import fractions
|
||||
|
||||
from .additionFunc import *
|
||||
from .addition import *
|
||||
from .subtractionFunc import *
|
||||
from .multiplicationFunc import *
|
||||
from .divisionFunc import *
|
||||
@@ -77,7 +77,10 @@ from .absoluteDifferenceFunc import *
|
||||
from .vectorDotFunc import *
|
||||
from .binary2sComplement import *
|
||||
from .matrixInversion import *
|
||||
from .sectorAreaFunc import*
|
||||
from .meanMedianFunc import*
|
||||
from .sectorAreaFunc import *
|
||||
from .meanMedianFunc import *
|
||||
from .determinantToMatrix22 import *
|
||||
from .compoundInterestFunc import *
|
||||
from .deciToHexaFunc import *
|
||||
from .percentageFunc import *
|
||||
from .celsiustofahrenheit import *
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
def absoluteDifferenceFunc (maxA = 100, maxB = 100):
|
||||
a = random.randint(-1*maxA, maxA)
|
||||
b = random.randint(-1*maxB, maxB)
|
||||
absDiff = abs(a-b)
|
||||
|
||||
problem = "Absolute difference between numbers " + str(a) + " and " + str(b) + " = "
|
||||
solution = absDiff
|
||||
return problem, solution
|
||||
def absoluteDifferenceFunc(maxA=100, maxB=100):
|
||||
a = random.randint(-1 * maxA, maxA)
|
||||
b = random.randint(-1 * maxB, maxB)
|
||||
absDiff = abs(a - b)
|
||||
|
||||
problem = "Absolute difference between numbers " + \
|
||||
str(a) + " and " + str(b) + " = "
|
||||
solution = absDiff
|
||||
return problem, solution
|
||||
|
||||
15
mathgenerator/funcs/addition.py
Normal file
15
mathgenerator/funcs/addition.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from .__init__ import *
|
||||
from ..__init__ import Generator
|
||||
|
||||
|
||||
def additionFunc(maxSum=99, maxAddend=50):
|
||||
a = random.randint(0, maxAddend)
|
||||
# The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
||||
b = random.randint(0, min((maxSum - a), maxAddend))
|
||||
c = a + b
|
||||
problem = str(a) + "+" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
|
||||
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
||||
@@ -1,10 +0,0 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def additionFunc(maxSum=99, maxAddend=50):
|
||||
a = random.randint(0, maxAddend)
|
||||
b = random.randint(0, min((maxSum - a), maxAddend)) # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
||||
c = a + b
|
||||
problem = str(a) + "+" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
@@ -1,4 +1,4 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
||||
@@ -7,8 +7,9 @@ def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
||||
c = random.randint(1, maxC)
|
||||
|
||||
s = (a + b + c) / 2
|
||||
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
|
||||
area = (s * (s - a) * (s - b) * (s - c))**0.5
|
||||
|
||||
problem = "Area of triangle with side lengths: " + str(a) + " " + str(b) + " " + str(c) + " = "
|
||||
problem = "Area of triangle with side lengths: " + \
|
||||
str(a) + " " + str(b) + " " + str(c) + " = "
|
||||
solution = area
|
||||
return problem, solution
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def basicAlgebraFunc(maxVariable=10):
|
||||
@@ -8,7 +8,7 @@ def basicAlgebraFunc(maxVariable=10):
|
||||
|
||||
# calculate gcd
|
||||
def calculate_gcd(x, y):
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
return x
|
||||
|
||||
@@ -19,7 +19,7 @@ def basicAlgebraFunc(maxVariable=10):
|
||||
x = "0"
|
||||
elif a == 1 or a == i:
|
||||
x = f"{c - b}"
|
||||
|
||||
|
||||
problem = f"{a}x + {b} = {c}"
|
||||
solution = x
|
||||
return problem, solution
|
||||
|
||||
@@ -1,14 +1,25 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def basicTrigonometryFunc(angles=[0,30,45,60,90],functions=["sin","cos","tan"]): #Handles degrees in quadrant one
|
||||
angle=random.choice(angles)
|
||||
function=random.choice(functions)
|
||||
# Handles degrees in quadrant one
|
||||
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90],
|
||||
functions=["sin", "cos", "tan"]):
|
||||
angle = random.choice(angles)
|
||||
function = random.choice(functions)
|
||||
|
||||
problem=f"What is {function}({angle})?"
|
||||
|
||||
expression='math.'+function+'(math.radians(angle))'
|
||||
result_fraction_map={0.0:"0",0.5:"1/2",0.71:"1/√2",0.87:"√3/2",1.0:"1",0.58:"1/√3",1.73:"√3"}
|
||||
problem = f"What is {function}({angle})?"
|
||||
|
||||
solution=result_fraction_map[round(eval(expression),2)] if round(eval(expression),2)<=99999 else "∞" #for handling the ∞ condition
|
||||
return problem,solution
|
||||
expression = 'math.' + function + '(math.radians(angle))'
|
||||
result_fraction_map = {
|
||||
0.0: "0",
|
||||
0.5: "1/2",
|
||||
0.71: "1/√2",
|
||||
0.87: "√3/2",
|
||||
1.0: "1",
|
||||
0.58: "1/√3",
|
||||
1.73: "√3"
|
||||
}
|
||||
|
||||
solution = result_fraction_map[round(eval(expression), 2)] if round(
|
||||
eval(expression), 2) <= 99999 else "∞" # for handling the ∞ condition
|
||||
return problem, solution
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def binary2sComplementFunc(maxDigits=10):
|
||||
digits = random.randint(1, maxDigits)
|
||||
question = ''.join([str(random.randint(0, 1)) for i in range(digits)]).lstrip('0')
|
||||
question = ''.join([str(random.randint(0, 1))
|
||||
for i in range(digits)]).lstrip('0')
|
||||
|
||||
answer = []
|
||||
for i in question:
|
||||
@@ -18,9 +20,9 @@ def binary2sComplementFunc(maxDigits=10):
|
||||
answer[j] = '0'
|
||||
j -= 1
|
||||
|
||||
if j == 0 and carry == True:
|
||||
if j == 0 and carry is True:
|
||||
answer.insert(0, '1')
|
||||
|
||||
problem = "2's complement of " + question + " ="
|
||||
solution = ''.join(answer).lstrip('0')
|
||||
return problem, solution
|
||||
return problem, solution
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def binaryComplement1sFunc(maxDigits=10):
|
||||
@@ -9,7 +9,7 @@ def binaryComplement1sFunc(maxDigits=10):
|
||||
temp = str(random.randint(0, 1))
|
||||
question += temp
|
||||
answer += "0" if temp == "1" else "1"
|
||||
|
||||
problem = question+"="
|
||||
|
||||
problem = question + "="
|
||||
solution = answer
|
||||
return problem, solution
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def binaryToHexFunc(max_dig=10):
|
||||
|
||||
14
mathgenerator/funcs/celsiustofahrenheit.py
Normal file
14
mathgenerator/funcs/celsiustofahrenheit.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from .__init__ import *
|
||||
from ..__init__ import Generator
|
||||
|
||||
|
||||
def celsiustofahrenheitFunc(maxTemp=100):
|
||||
celsius = random.randint(-50, maxTemp)
|
||||
fahrenheit = (celsius * (9 / 5)) + 32
|
||||
problem = "Convert " + str(celsius) + " degrees Celsius to degrees Fahrenheit ="
|
||||
solution = str(fahrenheit)
|
||||
return problem, solution
|
||||
|
||||
|
||||
celsiustofahrenheit = Generator("Celsius To Fahrenheit", 81,
|
||||
"(C +(9/5))+32=", "F", celsiustofahrenheitFunc)
|
||||
@@ -1,8 +1,7 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def combinationsFunc(maxlength=20):
|
||||
|
||||
def factorial(a):
|
||||
d = 1
|
||||
for i in range(a):
|
||||
@@ -14,6 +13,7 @@ def combinationsFunc(maxlength=20):
|
||||
b = random.randint(0, 9)
|
||||
|
||||
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
|
||||
problem = "Number of combinations from {} objects picked {} at a time ".format(a, b)
|
||||
|
||||
problem = "Number of combinations from {} objects picked {} at a time ".format(
|
||||
a, b)
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def commonFactorsFunc(maxVal=100):
|
||||
@@ -18,7 +18,7 @@ def commonFactorsFunc(maxVal=100):
|
||||
if (y % i == 0):
|
||||
count = count + 1
|
||||
arr.append(i)
|
||||
|
||||
|
||||
problem = f"Common Factors of {a} and {b} = "
|
||||
solution = arr
|
||||
return problem, solution
|
||||
|
||||
@@ -15,12 +15,12 @@ def compareFractionsFunc(maxVal=10):
|
||||
first = a / b
|
||||
second = c / d
|
||||
|
||||
if(first > second):
|
||||
if (first > second):
|
||||
solution = ">"
|
||||
elif(first < second):
|
||||
elif (first < second):
|
||||
solution = "<"
|
||||
else:
|
||||
solution = "="
|
||||
|
||||
|
||||
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
|
||||
return problem, solution
|
||||
|
||||
@@ -1,11 +1,18 @@
|
||||
from .__init__ import *
|
||||
|
||||
def compoundInterestFunc(maxPrinciple = 10000, maxRate = 10, maxTime = 10, maxPeriod = ):
|
||||
|
||||
def compoundInterestFunc(maxPrinciple=10000,
|
||||
maxRate=10,
|
||||
maxTime=10,
|
||||
maxPeriod=10):
|
||||
p = random.randint(100, maxPrinciple)
|
||||
r = random.randint(1, maxRate)
|
||||
t = random.randint(1, maxTime)
|
||||
n = random.randint(1, maxPeriod)
|
||||
A = p * ((1 + (r/(100*n))**(n*t)))
|
||||
problem = "Compound Interest for a principle amount of " + str(p) + " dollars, " + str(r) + "% rate of interest and for a time period of " + str(t) + " compounded monthly is = "
|
||||
A = p * ((1 + (r / (100 * n))**(n * t)))
|
||||
problem = "Compound Interest for a principle amount of " + str(
|
||||
p) + " dollars, " + str(
|
||||
r) + "% rate of interest and for a time period of " + str(
|
||||
t) + " compounded monthly is = "
|
||||
solution = round(A, 2)
|
||||
return problem, solution
|
||||
|
||||
@@ -2,29 +2,30 @@ from .__init__ import *
|
||||
|
||||
|
||||
def confidenceIntervalFunc():
|
||||
n=random.randint(20,40)
|
||||
j=random.randint(0,3)
|
||||
n = random.randint(20, 40)
|
||||
j = random.randint(0, 3)
|
||||
|
||||
lst=random.sample(range(200,300),n)
|
||||
lst_per=[80 ,90, 95, 99]
|
||||
lst = random.sample(range(200, 300), n)
|
||||
lst_per = [80, 90, 95, 99]
|
||||
lst_t = [1.282, 1.645, 1.960, 2.576]
|
||||
|
||||
mean=0
|
||||
sd=0
|
||||
mean = 0
|
||||
sd = 0
|
||||
|
||||
for i in lst:
|
||||
count= i + mean
|
||||
mean=count
|
||||
count = i + mean
|
||||
mean = count
|
||||
|
||||
mean = mean/n
|
||||
mean = mean / n
|
||||
|
||||
for i in lst:
|
||||
x=(i-mean)**2+sd
|
||||
sd=x
|
||||
x = (i - mean)**2 + sd
|
||||
sd = x
|
||||
|
||||
sd=sd/n
|
||||
standard_error = lst_t[j]*math.sqrt(sd/n)
|
||||
|
||||
problem= 'The confidence interval for sample {} with {}% confidence is'.format([x for x in lst], lst_per[j])
|
||||
solution= '({}, {})'.format(mean+standard_error, mean-standard_error)
|
||||
sd = sd / n
|
||||
standard_error = lst_t[j] * math.sqrt(sd / n)
|
||||
|
||||
problem = 'The confidence interval for sample {} with {}% confidence is'.format(
|
||||
[x for x in lst], lst_per[j])
|
||||
solution = '({}, {})'.format(mean + standard_error, mean - standard_error)
|
||||
return problem, solution
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def cubeRootFunc(minNo=1, maxNo=1000):
|
||||
b = random.randint(minNo, maxNo)
|
||||
a = b**(1 / 3)
|
||||
|
||||
|
||||
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
|
||||
solution = str(round(a, 2))
|
||||
return problem, solution
|
||||
|
||||
@@ -1,26 +1,28 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def dataSummaryFunc(number_values=15,minval=5,maxval=50):
|
||||
random_list=[]
|
||||
def dataSummaryFunc(number_values=15, minval=5, maxval=50):
|
||||
random_list = []
|
||||
|
||||
for i in range(number_values):
|
||||
n=random.randint(minval,maxval)
|
||||
n = random.randint(minval, maxval)
|
||||
random_list.append(n)
|
||||
|
||||
a=sum(random_list)
|
||||
mean=a/number_values
|
||||
a = sum(random_list)
|
||||
mean = a / number_values
|
||||
|
||||
var=0
|
||||
var = 0
|
||||
for i in range(number_values):
|
||||
var+=(random_list[i]-mean)**2
|
||||
var += (random_list[i] - mean)**2
|
||||
|
||||
# we're printing stuff here?
|
||||
print(random_list)
|
||||
print(mean)
|
||||
print(var/number_values)
|
||||
print((var/number_values)**0.5)
|
||||
print(var / number_values)
|
||||
print((var / number_values)**0.5)
|
||||
|
||||
problem="Find the mean,standard deviation and variance for the data"+str(random_list)
|
||||
solution="The Mean is {} , Standard Deviation is {}, Variance is {}".format(mean,var/number_values,(var/number_values)**0.5)
|
||||
return problem,solution
|
||||
problem = "Find the mean,standard deviation and variance for the data" + \
|
||||
str(random_list)
|
||||
solution = "The Mean is {} , Standard Deviation is {}, Variance is {}".format(
|
||||
mean, var / number_values, (var / number_values)**0.5)
|
||||
return problem, solution
|
||||
|
||||
@@ -5,6 +5,6 @@ def deciToHexaFunc(max_dec=1000):
|
||||
a = random.randint(0, max_dec)
|
||||
b = hex(a)
|
||||
problem = "Binary of " + str(a) + "="
|
||||
solution = str(b)
|
||||
solution = str(b)
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
def determinantToMatrix22(maxMatrixVal = 100):
|
||||
|
||||
def determinantToMatrix22(maxMatrixVal=100):
|
||||
a = random.randint(0, maxMatrixVal)
|
||||
b = random.randint(0, maxMatrixVal)
|
||||
c = random.randint(0, maxMatrixVal)
|
||||
d = random.randint(0, maxMatrixVal)
|
||||
|
||||
determinant = a*d - b*c
|
||||
determinant = a * d - b * c
|
||||
problem = f"Det([[{a}, {b}], [{c}, {d}]]) = "
|
||||
solution = f" {determinant}"
|
||||
return problem, solution
|
||||
|
||||
@@ -7,8 +7,8 @@ def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
|
||||
point2X = random.randint(minValXY, maxValXY + 1)
|
||||
point2Y = random.randint(minValXY, maxValXY + 1)
|
||||
|
||||
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
|
||||
|
||||
distanceSq = (point1X - point2X)**2 + (point1Y - point2Y)**2
|
||||
|
||||
solution = f"sqrt({distanceSq})"
|
||||
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
|
||||
return problem, solution
|
||||
|
||||
@@ -14,13 +14,13 @@ def divideFractionsFunc(maxVal=10):
|
||||
d = random.randint(1, maxVal)
|
||||
|
||||
def calculate_gcd(x, y):
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
return x
|
||||
|
||||
tmp_n = a * d
|
||||
tmp_d = b * c
|
||||
|
||||
|
||||
gcd = calculate_gcd(tmp_n, tmp_d)
|
||||
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ def divisionFunc(maxRes=99, maxDivid=99):
|
||||
a = random.randint(0, maxDivid)
|
||||
b = random.randint(0, min(maxRes, maxDivid))
|
||||
c = a / b
|
||||
|
||||
|
||||
problem = str(a) + "/" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -7,7 +7,7 @@ def divisionToIntFunc(maxA=25, maxB=25):
|
||||
|
||||
divisor = a * b
|
||||
dividend = random.choice([a, b])
|
||||
|
||||
|
||||
problem = f"{divisor}/{dividend} = "
|
||||
solution = int(divisor / dividend)
|
||||
return problem, solution
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def exponentiationFunc(maxBase = 20,maxExpo = 10):
|
||||
def exponentiationFunc(maxBase=20, maxExpo=10):
|
||||
base = random.randint(1, maxBase)
|
||||
expo = random.randint(1, maxExpo)
|
||||
|
||||
|
||||
problem = f"{base}^{expo} ="
|
||||
solution = str(base ** expo)
|
||||
solution = str(base**expo)
|
||||
return problem, solution
|
||||
|
||||
@@ -4,12 +4,12 @@ from .__init__ import *
|
||||
def factorialFunc(maxInput=6):
|
||||
a = random.randint(0, maxInput)
|
||||
n = a
|
||||
|
||||
|
||||
problem = str(a) + "! = "
|
||||
b = 1
|
||||
|
||||
while a != 1 and n > 0:
|
||||
b *= n
|
||||
n -= 1
|
||||
b *= n
|
||||
n -= 1
|
||||
solution = str(b)
|
||||
return problem, solution
|
||||
|
||||
@@ -26,4 +26,4 @@ def factoringFunc(range_x1=10, range_x2=10):
|
||||
x1 = intParser(x1)
|
||||
x2 = intParser(x2)
|
||||
solution = f"(x{x1})(x{x2})"
|
||||
return problem, solution
|
||||
return problem, solution
|
||||
|
||||
@@ -2,20 +2,20 @@ from .__init__ import *
|
||||
|
||||
|
||||
def fibonacciSeriesFunc(minNo=1):
|
||||
n = random.randint(minNo,20)
|
||||
n = random.randint(minNo, 20)
|
||||
|
||||
def createFibList(n):
|
||||
l=[]
|
||||
list = []
|
||||
for i in range(n):
|
||||
if i<2:
|
||||
l.append(i)
|
||||
if i < 2:
|
||||
list.append(i)
|
||||
else:
|
||||
val = l[i-1]+l[i-2]
|
||||
l.append(val)
|
||||
return l
|
||||
val = list[i - 1] + list[i - 2]
|
||||
list.append(val)
|
||||
return list
|
||||
|
||||
fibList=createFibList(n)
|
||||
|
||||
problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?"
|
||||
fibList = createFibList(n)
|
||||
|
||||
problem = "The Fibonacci Series of the first " + str(n) + " numbers is ?"
|
||||
solution = fibList
|
||||
return problem,solution
|
||||
return problem, solution
|
||||
|
||||
@@ -8,7 +8,7 @@ def fourthAngleOfQuadriFunc(maxAngle=180):
|
||||
|
||||
sum_ = angle1 + angle2 + angle3
|
||||
angle4 = 360 - sum_
|
||||
|
||||
|
||||
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
|
||||
solution = angle4
|
||||
return problem, solution
|
||||
|
||||
@@ -1,15 +1,23 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term=5):
|
||||
r=random.randint(min_value,max_value)
|
||||
a=random.randint(min_value,max_value)
|
||||
n_term=random.randint(number_values,number_values+5)
|
||||
sum_term=random.randint(number_values,number_values+5)
|
||||
GP=[]
|
||||
|
||||
def geomProgrFunc(number_values=6,
|
||||
min_value=2,
|
||||
max_value=12,
|
||||
n_term=7,
|
||||
sum_term=5):
|
||||
r = random.randint(min_value, max_value)
|
||||
a = random.randint(min_value, max_value)
|
||||
n_term = random.randint(number_values, number_values + 5)
|
||||
sum_term = random.randint(number_values, number_values + 5)
|
||||
GP = []
|
||||
for i in range(number_values):
|
||||
GP.append(a*(r**i))
|
||||
problem="For the given GP "+str(GP)+" ,Find the value of a,common ratio,"+str(n_term)+"th term value, sum upto "+str(sum_term)+"th term"
|
||||
value_nth_term=a*(r**(n_term-1))
|
||||
sum_till_nth_term=a*((r**sum_term-1)/(r-1))
|
||||
solution="The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(a,r,n_term,value_nth_term,sum_term,sum_till_nth_term)
|
||||
return problem,solution
|
||||
GP.append(a * (r**i))
|
||||
problem = "For the given GP " + str(
|
||||
GP) + " ,Find the value of a,common ratio," + str(
|
||||
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
|
||||
value_nth_term = a * (r**(n_term - 1))
|
||||
sum_till_nth_term = a * ((r**sum_term - 1) / (r - 1))
|
||||
solution = "The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(
|
||||
a, r, n_term, value_nth_term, sum_term, sum_till_nth_term)
|
||||
return problem, solution
|
||||
|
||||
@@ -1,27 +1,27 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def geometricMeanFunc(maxValue=100, maxNum=4):
|
||||
a=random.randint(1,maxValue)
|
||||
b=random.randint(1,maxValue)
|
||||
c=random.randint(1,maxValue)
|
||||
d=random.randint(1,maxValue)
|
||||
num=random.randint(2,4)
|
||||
if num==2:
|
||||
product=a*b
|
||||
elif num==3:
|
||||
product=a*b*c
|
||||
elif num==4:
|
||||
product=a*b*c*d
|
||||
a = random.randint(1, maxValue)
|
||||
b = random.randint(1, maxValue)
|
||||
c = random.randint(1, maxValue)
|
||||
d = random.randint(1, maxValue)
|
||||
num = random.randint(2, 4)
|
||||
if num == 2:
|
||||
product = a * b
|
||||
elif num == 3:
|
||||
product = a * b * c
|
||||
elif num == 4:
|
||||
product = a * b * c * d
|
||||
|
||||
ans=product**(1/num)
|
||||
if num==2:
|
||||
problem=f"Geometric mean of {num} numbers {a} and {b} = "
|
||||
solution = f"({a}*{b})^(1/{num}) = {ans}"
|
||||
elif num==3:
|
||||
problem=f"Geometric mean of {num} numbers {a} , {b} and {c} = "
|
||||
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
|
||||
elif num==4:
|
||||
problem=f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
|
||||
return problem,solution
|
||||
ans = product**(1 / num)
|
||||
if num == 2:
|
||||
problem = f"Geometric mean of {num} numbers {a} and {b} = "
|
||||
solution = f"({a}*{b})^(1/{num}) = {ans}"
|
||||
elif num == 3:
|
||||
problem = f"Geometric mean of {num} numbers {a} , {b} and {c} = "
|
||||
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
|
||||
elif num == 4:
|
||||
problem = f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
|
||||
return problem, solution
|
||||
|
||||
@@ -1,28 +1,28 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def harmonicMeanFunc(maxValue=100, maxNum=4):
|
||||
|
||||
a=random.randint(1,maxValue)
|
||||
b=random.randint(1,maxValue)
|
||||
c=random.randint(1,maxValue)
|
||||
d=random.randint(1,maxValue)
|
||||
num=random.randint(2,4)
|
||||
if num==2:
|
||||
sum=(1/a)+(1/b)
|
||||
elif num==3:
|
||||
sum=(1/a)+(1/b)+(1/c)
|
||||
elif num==4:
|
||||
sum=(1/a)+(1/b)+(1/c)+(1/d)
|
||||
a = random.randint(1, maxValue)
|
||||
b = random.randint(1, maxValue)
|
||||
c = random.randint(1, maxValue)
|
||||
d = random.randint(1, maxValue)
|
||||
num = random.randint(2, 4)
|
||||
if num == 2:
|
||||
sum = (1 / a) + (1 / b)
|
||||
elif num == 3:
|
||||
sum = (1 / a) + (1 / b) + (1 / c)
|
||||
elif num == 4:
|
||||
sum = (1 / a) + (1 / b) + (1 / c) + (1 / d)
|
||||
|
||||
ans=num/sum
|
||||
if num==2:
|
||||
problem=f"Harmonic mean of {num} numbers {a} and {b} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
|
||||
elif num==3:
|
||||
problem=f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
|
||||
elif num==4:
|
||||
problem=f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
|
||||
return problem,solution
|
||||
ans = num / sum
|
||||
if num == 2:
|
||||
problem = f"Harmonic mean of {num} numbers {a} and {b} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
|
||||
elif num == 3:
|
||||
problem = f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
|
||||
elif num == 4:
|
||||
problem = f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
|
||||
return problem, solution
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def hcfFunc(maxVal=20):
|
||||
a = random.randint(1, maxVal)
|
||||
b = random.randint(1, maxVal)
|
||||
x, y = a, b
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
problem = f"HCF of {a} and {b} = "
|
||||
solution = str(x)
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def intersectionOfTwoLinesFunc(
|
||||
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
|
||||
):
|
||||
|
||||
def intersectionOfTwoLinesFunc(minM=-10,
|
||||
maxM=10,
|
||||
minB=-10,
|
||||
maxB=10,
|
||||
minDenominator=1,
|
||||
maxDenominator=6):
|
||||
def generateEquationString(m, b):
|
||||
"""
|
||||
Generates an equation given the slope and intercept.
|
||||
@@ -33,8 +35,10 @@ def intersectionOfTwoLinesFunc(
|
||||
x = f"{x.numerator}/{x.denominator}"
|
||||
return x
|
||||
|
||||
m1 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator))
|
||||
m2 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator))
|
||||
m1 = (random.randint(minM,
|
||||
maxM), random.randint(minDenominator, maxDenominator))
|
||||
m2 = (random.randint(minM,
|
||||
maxM), random.randint(minDenominator, maxDenominator))
|
||||
|
||||
b1 = random.randint(minB, maxB)
|
||||
b2 = random.randint(minB, maxB)
|
||||
@@ -58,5 +62,5 @@ def intersectionOfTwoLinesFunc(
|
||||
intersection_x = (b1 - b2) / (m2 - m1)
|
||||
intersection_y = ((m2 * b1) - (m1 * b2)) / (m2 - m1)
|
||||
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
|
||||
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -9,7 +9,8 @@ def isTriangleValidFunc(maxSideLength=50):
|
||||
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
|
||||
sides = [sideC, sideA, sideB]
|
||||
|
||||
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (sides[2] < sideSums[2])
|
||||
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (
|
||||
sides[2] < sideSums[2])
|
||||
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
|
||||
|
||||
if exists:
|
||||
|
||||
@@ -13,5 +13,5 @@ def lcmFunc(maxVal=20):
|
||||
|
||||
problem = f"LCM of {a} and {b} ="
|
||||
solution = str(d)
|
||||
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -9,13 +9,17 @@ def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
|
||||
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
||||
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
||||
problem = list()
|
||||
solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
||||
solution = ", ".join(
|
||||
["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
||||
|
||||
for _ in range(n):
|
||||
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
||||
res = sum([coeff[i] * soln[i] for i in range(n)])
|
||||
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)]
|
||||
|
||||
prob = [
|
||||
"{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else ""
|
||||
for i in range(n)
|
||||
]
|
||||
|
||||
while "" in prob:
|
||||
prob.remove("")
|
||||
prob = " + ".join(prob) + " = " + str(res)
|
||||
|
||||
@@ -8,5 +8,5 @@ def logFunc(maxBase=3, maxVal=8):
|
||||
|
||||
problem = "log" + str(b) + "(" + str(c) + ")"
|
||||
solution = str(a)
|
||||
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
from .__init__ import *
|
||||
import sympy
|
||||
|
||||
def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerElementsInInvertedMatrix=False):
|
||||
|
||||
def matrixInversion(SquareMatrixDimension=3,
|
||||
MaxMatrixElement=99,
|
||||
OnlyIntegerElementsInInvertedMatrix=False):
|
||||
if OnlyIntegerElementsInInvertedMatrix is True:
|
||||
isItOk = False
|
||||
Mat = list()
|
||||
@@ -15,20 +18,25 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
||||
Mat.append(z)
|
||||
MaxAllowedMatrixElement = math.ceil(
|
||||
pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
|
||||
randomlist = random.sample(
|
||||
range(0, MaxAllowedMatrixElement + 1), SquareMatrixDimension)
|
||||
randomlist = random.sample(range(0, MaxAllowedMatrixElement + 1),
|
||||
SquareMatrixDimension)
|
||||
|
||||
for i in range(0, SquareMatrixDimension):
|
||||
if i == SquareMatrixDimension - 1:
|
||||
Mat[0] = [j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[0], Mat[i])]
|
||||
Mat[0] = [
|
||||
j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[0], Mat[i])
|
||||
]
|
||||
else:
|
||||
Mat[i + 1] = [j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[i + 1], Mat[i])]
|
||||
Mat[i + 1] = [
|
||||
j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[i + 1], Mat[i])
|
||||
]
|
||||
|
||||
for i in range(1, SquareMatrixDimension - 1):
|
||||
Mat[i] = [sum(i)
|
||||
for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])]
|
||||
Mat[i] = [
|
||||
sum(i) for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])
|
||||
]
|
||||
|
||||
isItOk = True
|
||||
for i in Mat:
|
||||
@@ -51,7 +59,8 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
||||
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
|
||||
plist = random.sample(randomlist, SquareMatrixDimension)
|
||||
randomlist = random.sample(
|
||||
range(0, MaxMatrixElement + 1), SquareMatrixDimension * SquareMatrixDimension)
|
||||
range(0, MaxMatrixElement + 1),
|
||||
SquareMatrixDimension * SquareMatrixDimension)
|
||||
randomlist = list(set(randomlist) - set(plist))
|
||||
n_list = random.sample(
|
||||
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))
|
||||
|
||||
@@ -32,10 +32,12 @@ def matrixMultiplicationFunc(maxVal=100, max_dim=10):
|
||||
temp += a[r][t] * b[t][c]
|
||||
res[r].append(temp)
|
||||
|
||||
problem = f"Multiply \n{a_string}\n and \n\n{b_string}" # consider using a, b instead of a_string, b_string if the problem doesn't look right
|
||||
# consider using a, b instead of a_string, b_string if the problem doesn't look right
|
||||
problem = f"Multiply \n{a_string}\n and \n\n{b_string}"
|
||||
solution = matrixMultiplicationFuncHelper(res)
|
||||
return problem, solution
|
||||
|
||||
|
||||
def matrixMultiplicationFuncHelper(inp):
|
||||
m = len(inp)
|
||||
n = len(inp[0])
|
||||
@@ -44,8 +46,8 @@ def matrixMultiplicationFuncHelper(inp):
|
||||
for i in range(m):
|
||||
for j in range(n):
|
||||
string += f"{inp[i][j]: 6d}"
|
||||
string += ", "if j < n-1 else ""
|
||||
string += "]\n [" if i < m-1 else ""
|
||||
string += ", " if j < n - 1 else ""
|
||||
string += "]\n [" if i < m - 1 else ""
|
||||
string += "]]"
|
||||
|
||||
return string
|
||||
|
||||
return string
|
||||
|
||||
@@ -1,13 +1,14 @@
|
||||
from .__init__ import *
|
||||
|
||||
def meanMedianFunc(maxlen = 10):
|
||||
|
||||
def meanMedianFunc(maxlen=10):
|
||||
randomlist = random.sample(range(1, 99), maxlen)
|
||||
total = 0
|
||||
for n in randomlist:
|
||||
total = total + n
|
||||
mean = total/10
|
||||
mean = total / 10
|
||||
problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series"
|
||||
randomlist.sort()
|
||||
median = (randomlist[4]+randomlist[5])/2
|
||||
median = (randomlist[4] + randomlist[5]) / 2
|
||||
solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}"
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def moduloFunc(maxRes=99, maxModulo=99):
|
||||
a = random.randint(0, maxModulo)
|
||||
b = random.randint(0, min(maxRes, maxModulo))
|
||||
c = a % b if b != 0 else 0
|
||||
|
||||
|
||||
problem = str(a) + "%" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def multiplicationFunc(maxRes=99, maxMulti=99):
|
||||
a = random.randint(0, maxMulti)
|
||||
b = random.randint(0, min(int(maxMulti / a), maxRes))
|
||||
c = a * b
|
||||
|
||||
|
||||
problem = str(a) + "*" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -1,9 +1,12 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def multiplyComplexNumbersFunc(minRealImaginaryNum = -20, maxRealImaginaryNum = 20):
|
||||
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20,
|
||||
maxRealImaginaryNum=20):
|
||||
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||
problem = f"{num1} * {num2} = "
|
||||
solution = num1 * num2
|
||||
return problem, solution
|
||||
|
||||
@@ -14,13 +14,13 @@ def multiplyFractionsFunc(maxVal=10):
|
||||
d = random.randint(1, maxVal)
|
||||
|
||||
def calculate_gcd(x, y):
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
return x
|
||||
|
||||
tmp_n = a * c
|
||||
tmp_d = b * d
|
||||
|
||||
|
||||
gcd = calculate_gcd(tmp_n, tmp_d)
|
||||
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100):
|
||||
b = random.randint(0, maxMatrixVal)
|
||||
c = random.randint(0, maxMatrixVal)
|
||||
d = random.randint(0, maxMatrixVal)
|
||||
|
||||
|
||||
constant = random.randint(0, int(maxRes / max(a, b, c, d)))
|
||||
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
|
||||
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def nthFibonacciNumberFunc(maxN = 100):
|
||||
golden_ratio = (1 + math.sqrt(5))/2
|
||||
n = random.randint(1,maxN)
|
||||
def nthFibonacciNumberFunc(maxN=100):
|
||||
golden_ratio = (1 + math.sqrt(5)) / 2
|
||||
n = random.randint(1, maxN)
|
||||
problem = f"What is the {n}th Fibonacci number?"
|
||||
ans = round((math.pow(golden_ratio,n) - math.pow(-golden_ratio,-n))/(math.sqrt(5)))
|
||||
ans = round((math.pow(golden_ratio, n) - math.pow(-golden_ratio, -n)) / (math.sqrt(5)))
|
||||
solution = f"{ans}"
|
||||
return problem, solution
|
||||
|
||||
11
mathgenerator/funcs/percentageFunc.py
Normal file
11
mathgenerator/funcs/percentageFunc.py
Normal file
@@ -0,0 +1,11 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def percentageFunc(maxValue=99, maxpercentage=99):
|
||||
a = random.randint(1, maxpercentage)
|
||||
b = random.randint(1, maxValue)
|
||||
problem = f"What is {a}% of {b}?"
|
||||
percentage = a / 100 * b
|
||||
formatted_float = "{:.2f}".format(percentage)
|
||||
solution = f"Required percentage = {formatted_float}%"
|
||||
return problem, solution
|
||||
@@ -6,5 +6,6 @@ def permutationFunc(maxlength=20):
|
||||
b = random.randint(0, 9)
|
||||
|
||||
solution = int(math.factorial(a) / (math.factorial(a - b)))
|
||||
problem = "Number of Permutations from {} objects picked {} at a time = ".format(a, b)
|
||||
problem = "Number of Permutations from {} objects picked {} at a time = ".format(
|
||||
a, b)
|
||||
return problem, solution
|
||||
|
||||
@@ -12,7 +12,7 @@ def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
||||
solution += " + "
|
||||
coefficient = random.randint(1, maxCoef)
|
||||
exponent = random.randint(1, maxExp)
|
||||
|
||||
|
||||
problem += str(coefficient) + "x^" + str(exponent)
|
||||
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
|
||||
return problem, solution
|
||||
|
||||
@@ -14,7 +14,8 @@ def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
||||
exponent = random.randint(1, maxExp)
|
||||
|
||||
problem += str(coefficient) + "x^" + str(exponent)
|
||||
solution += "(" + str(coefficient) + "/" + str(exponent) + ")x^" + str(exponent + 1)
|
||||
solution += "(" + str(coefficient) + "/" + \
|
||||
str(exponent) + ")x^" + str(exponent + 1)
|
||||
|
||||
solution += " + c"
|
||||
return problem, solution
|
||||
|
||||
@@ -16,7 +16,7 @@ def primeFactorsFunc(minVal=1, maxVal=200):
|
||||
|
||||
if n > 1:
|
||||
factors.append(n)
|
||||
|
||||
|
||||
problem = f"Find prime factors of {a}"
|
||||
solution = f"{factors}"
|
||||
return problem, solution
|
||||
|
||||
@@ -1,16 +1,16 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def profitLossPercentFunc(maxCP = 1000, maxSP = 1000):
|
||||
def profitLossPercentFunc(maxCP=1000, maxSP=1000):
|
||||
cP = random.randint(1, maxCP)
|
||||
sP = random.randint(1, maxSP)
|
||||
diff = abs(sP-cP)
|
||||
if (sP-cP >= 0):
|
||||
diff = abs(sP - cP)
|
||||
if (sP - cP >= 0):
|
||||
profitOrLoss = "Profit"
|
||||
else:
|
||||
profitOrLoss = "Loss"
|
||||
percent = diff/cP * 100
|
||||
percent = diff / cP * 100
|
||||
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
|
||||
solution = percent
|
||||
|
||||
return problem, solution
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def pythagoreanTheoremFunc(maxLength=20):
|
||||
a = random.randint(1, maxLength)
|
||||
b = random.randint(1, maxLength)
|
||||
c = (a**2 + b**2)**0.5
|
||||
|
||||
|
||||
problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = "
|
||||
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
|
||||
return problem, solution
|
||||
|
||||
@@ -4,9 +4,12 @@ from .__init__ import *
|
||||
def quadraticEquation(maxVal=100):
|
||||
a = random.randint(1, maxVal)
|
||||
c = random.randint(1, maxVal)
|
||||
b = random.randint(round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
|
||||
|
||||
b = random.randint(
|
||||
round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
|
||||
|
||||
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
||||
D = math.sqrt(b * b - 4 * a * c)
|
||||
solution = str([round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)])
|
||||
solution = str(
|
||||
[round((-b + D) / (2 * a), 2),
|
||||
round((-b - D) / (2 * a), 2)])
|
||||
return problem, solution
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def regularPolygonAngleFunc(minVal=3, maxVal=20):
|
||||
sideNum = random.randint(minVal, maxVal)
|
||||
problem = f"Find the angle of a regular polygon with {sideNum} sides"
|
||||
|
||||
|
||||
exteriorAngle = round((360 / sideNum), 2)
|
||||
solution = 180 - exteriorAngle
|
||||
return problem, solution
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
from .__init__ import *
|
||||
|
||||
def sectorAreaFunc(maxRadius = 49,maxAngle = 359):
|
||||
|
||||
def sectorAreaFunc(maxRadius=49, maxAngle=359):
|
||||
Radius = random.randint(1, maxRadius)
|
||||
Angle = random.randint(1, maxAngle)
|
||||
problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector."
|
||||
secArea = float((Angle / 360) * math.pi*Radius*Radius)
|
||||
secArea = float((Angle / 360) * math.pi * Radius * Radius)
|
||||
formatted_float = "{:.5f}".format(secArea)
|
||||
solution = f"Area of sector = {formatted_float}"
|
||||
solution = f"Area of sector = {formatted_float}"
|
||||
return problem, solution
|
||||
|
||||
@@ -6,7 +6,10 @@ def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
|
||||
b = random.randint(1, maxRate)
|
||||
c = random.randint(1, maxTime)
|
||||
d = (a * b * c) / 100
|
||||
|
||||
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(b) + "% rate of interest and for a time period of " + str(c) + " years is = "
|
||||
|
||||
problem = "Simple interest for a principle amount of " + str(
|
||||
a) + " dollars, " + str(
|
||||
b) + "% rate of interest and for a time period of " + str(
|
||||
c) + " years is = "
|
||||
solution = round(d, 2)
|
||||
return problem, solution
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def squareFunc(maxSquareNum=20):
|
||||
a = random.randint(1, maxSquareNum)
|
||||
b = a * a
|
||||
|
||||
|
||||
problem = str(a) + "^2" + "="
|
||||
solution = str(b)
|
||||
return problem, solution
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def squareRootFunc(minNo=1, maxNo=12):
|
||||
b = random.randint(minNo, maxNo)
|
||||
a = b * b
|
||||
|
||||
|
||||
problem = "sqrt(" + str(a) + ")="
|
||||
solution = str(b)
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def subtractionFunc(maxMinuend=99, maxDiff=99):
|
||||
a = random.randint(0, maxMinuend)
|
||||
b = random.randint(max(0, (a - maxDiff)), a)
|
||||
c = a - b
|
||||
|
||||
|
||||
problem = str(a) + "-" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def sumOfAnglesOfPolygonFunc(maxSides = 12):
|
||||
def sumOfAnglesOfPolygonFunc(maxSides=12):
|
||||
side = random.randint(3, maxSides)
|
||||
sum = (side - 2) * 180
|
||||
|
||||
|
||||
problem = f"Sum of angles of polygon with {side} sides = "
|
||||
solution = sum
|
||||
return problem, solution
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def surdsComparisonFunc(maxValue = 100, maxRoot = 10):
|
||||
radicand1,radicand2 = tuple(random.sample(range(1,maxValue),2))
|
||||
degree1, degree2 = tuple(random.sample(range(1,maxRoot),2))
|
||||
|
||||
def surdsComparisonFunc(maxValue=100, maxRoot=10):
|
||||
radicand1, radicand2 = tuple(random.sample(range(1, maxValue), 2))
|
||||
degree1, degree2 = tuple(random.sample(range(1, maxRoot), 2))
|
||||
|
||||
problem = f"Fill in the blanks {radicand1}^(1/{degree1}) _ {radicand2}^(1/{degree2})"
|
||||
first = math.pow(radicand1, 1/degree1)
|
||||
second = math.pow(radicand2, 1/degree2)
|
||||
first = math.pow(radicand1, 1 / degree1)
|
||||
second = math.pow(radicand2, 1 / degree2)
|
||||
|
||||
solution = "="
|
||||
if first > second:
|
||||
|
||||
@@ -8,6 +8,6 @@ def surfaceAreaCone(maxRadius=20, maxHeight=50, unit='m'):
|
||||
slopingHeight = math.sqrt(a**2 + b**2)
|
||||
problem = f"Surface area of cone with height = {a}{unit} and radius = {b}{unit} is"
|
||||
ans = int(math.pi * b * slopingHeight + math.pi * b * b)
|
||||
|
||||
|
||||
solution = f"{ans} {unit}^2"
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def surfaceAreaCuboid(maxSide=20, unit='m'):
|
||||
a = random.randint(1, maxSide)
|
||||
b = random.randint(1, maxSide)
|
||||
c = random.randint(1, maxSide)
|
||||
|
||||
|
||||
problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
||||
ans = 2 * (a * b + b * c + c * a)
|
||||
solution = f"{ans} {unit}^2"
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def surfaceAreaCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
||||
a = random.randint(1, maxHeight)
|
||||
b = random.randint(1, maxRadius)
|
||||
|
||||
|
||||
problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
||||
ans = int(2 * math.pi * a * b + 2 * math.pi * b * b)
|
||||
solution = f"{ans} {unit}^2"
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def surfaceAreaSphere(maxSide = 20, unit = 'm'):
|
||||
def surfaceAreaSphere(maxSide=20, unit='m'):
|
||||
r = random.randint(1, maxSide)
|
||||
|
||||
|
||||
problem = f"Surface area of Sphere with radius = {r}{unit} is"
|
||||
ans = 4 * math.pi * r * r
|
||||
solution = f"{ans} {unit}^2"
|
||||
|
||||
@@ -10,8 +10,9 @@ def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
|
||||
c2 = [0, 1, y]
|
||||
|
||||
def randNonZero():
|
||||
return random.choice([i for i in range(-coeff_mult_range, coeff_mult_range)
|
||||
if i != 0])
|
||||
return random.choice(
|
||||
[i for i in range(-coeff_mult_range, coeff_mult_range) if i != 0])
|
||||
|
||||
# Add random (non-zero) multiple of equations (rows) to each other
|
||||
c1_mult = randNonZero()
|
||||
c2_mult = randNonZero()
|
||||
@@ -36,9 +37,10 @@ def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
|
||||
# No redundant 1s
|
||||
y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else ''
|
||||
# Don't include if 0, unless x is also 0 (probably never happens)
|
||||
y_str = f'{y_coeff}y' if coeffs[1] != 0 else ('' if x_str != '' else '0')
|
||||
y_str = f'{y_coeff}y' if coeffs[1] != 0 else (
|
||||
'' if x_str != '' else '0')
|
||||
return f'{x_str}{op}{y_str} = {coeffs[2]}'
|
||||
|
||||
|
||||
problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}"
|
||||
solution = f"x = {x}, y = {y}"
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def thirdAngleOfTriangleFunc(maxAngle=89):
|
||||
angle1 = random.randint(1, maxAngle)
|
||||
angle2 = random.randint(1, maxAngle)
|
||||
angle3 = 180 - (angle1 + angle2)
|
||||
|
||||
|
||||
problem = f"Third angle of triangle with angles {angle1} and {angle2} = "
|
||||
solution = angle3
|
||||
return problem, solution
|
||||
|
||||
@@ -2,12 +2,13 @@ from .__init__ import *
|
||||
|
||||
|
||||
def vectorCrossFunc(minVal=-20, maxVal=20):
|
||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
c = [a[1] * b[2] - a[2] * b[1],
|
||||
a[2] * b[0] - a[0] * b[2],
|
||||
a[0] * b[1] - a[1] * b[0]]
|
||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
c = [
|
||||
a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2],
|
||||
a[0] * b[1] - a[1] * b[0]
|
||||
]
|
||||
|
||||
problem = str(a) + " X " + str(b) + " = "
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
problem = str(a) + " X " + str(b) + " = "
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -2,10 +2,10 @@ from .__init__ import *
|
||||
|
||||
|
||||
def vectorDotFunc(minVal=-20, maxVal=20):
|
||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
c = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
|
||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
c = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
|
||||
|
||||
problem = str(a) + " . " + str(b) + " = "
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
problem = str(a) + " . " + str(b) + " = "
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def volumeCone(maxRadius=20, maxHeight=50, unit='m'):
|
||||
a = random.randint(1, maxHeight)
|
||||
b = random.randint(1, maxRadius)
|
||||
|
||||
|
||||
problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is"
|
||||
ans = int(math.pi * b * b * a * (1 / 3))
|
||||
solution = f"{ans} {unit}^3"
|
||||
|
||||
@@ -3,7 +3,7 @@ from .__init__ import *
|
||||
|
||||
def volumeCube(maxSide=20, unit='m'):
|
||||
a = random.randint(1, maxSide)
|
||||
|
||||
|
||||
problem = f"Volume of cube with side = {a}{unit} is"
|
||||
ans = a * a * a
|
||||
solution = f"{ans} {unit}^3"
|
||||
|
||||
@@ -5,7 +5,7 @@ def volumeCuboid(maxSide=20, unit='m'):
|
||||
a = random.randint(1, maxSide)
|
||||
b = random.randint(1, maxSide)
|
||||
c = random.randint(1, maxSide)
|
||||
|
||||
|
||||
problem = f"Volume of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
||||
ans = a * b * c
|
||||
solution = f"{ans} {unit}^3"
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def volumeCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
||||
a = random.randint(1, maxHeight)
|
||||
b = random.randint(1, maxRadius)
|
||||
|
||||
|
||||
problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
||||
ans = int(math.pi * b * b * a)
|
||||
solution = f"{ans} {unit}^3"
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def volumeSphereFunc(maxRadius = 100):
|
||||
r=random.randint(1,maxRadius)
|
||||
|
||||
problem=f"Volume of sphere with radius {r} m = "
|
||||
ans=(4*math.pi/3)*r*r*r
|
||||
def volumeSphereFunc(maxRadius=100):
|
||||
r = random.randint(1, maxRadius)
|
||||
|
||||
problem = f"Volume of sphere with radius {r} m = "
|
||||
ans = (4 * math.pi / 3) * r * r * r
|
||||
solution = f"{ans} m^3"
|
||||
return problem,solution
|
||||
return problem, solution
|
||||
|
||||
Reference in New Issue
Block a user