diff --git a/.github/workflows/tests.yaml b/.github/workflows/tests.yaml new file mode 100644 index 0000000..3252576 --- /dev/null +++ b/.github/workflows/tests.yaml @@ -0,0 +1,21 @@ +name: Run tests + +on: [push, pull_request] + +jobs: + build: + + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v2 + - name: Set up Python + uses: actions/setup-python@v2 + with: + python-version: '3.x' + - name: Install dependencies + run: | + python -m pip install -U pip + python -m pip install -r dev-requirements.txt + - name: Test + run: make test diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..4c42af8 --- /dev/null +++ b/.gitignore @@ -0,0 +1,138 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..dbf1f17 --- /dev/null +++ b/Makefile @@ -0,0 +1,2 @@ +test: + python -m pytest --verbose -s tests diff --git a/README.md b/README.md index 94f68c3..45ffcec 100644 --- a/README.md +++ b/README.md @@ -1,37 +1,50 @@ # mathgenerator + A math problem generator, created for the purpose of giving self-studying students and teaching organizations the means to easily get access to random math problems to suit their needs. -To try out generators, go to https://todarith.ml/generate/ +To try out generators, go to If you have an idea for a generator, please add it as an issue and tag it with the "New Generator" label. ## Usage + The project can be install via pip -``` + +```bash pip install mathgenerator ``` + Here is an example of how you would generate an addition problem: -``` + +```python from mathgenerator import mathgen #generate an addition problem problem, solution = mathgen.addition() + +#another way to generate an addition problem using genById() +problem, solution = mathgen.genById(0) ``` + ## List of Generators -| Id | Skill | Example problem | Example Solution | Function Name | -|------|-----------------------------------|--------------------|-------------------|--------------------------| -| 0 | Addition | 1+5= | 6 | addition | -| 1 | Subtraction | 9-4= | 5 | subtraction | -| 2 | Multiplication | 4*6= | 24 | multiplication | -| 3 | Division | 4/3= | 1.33333333 | division | -| 4 | Binary Complement 1s | 1010= | 0101 | binaryComplement1s | -| 5 | Modulo Division | 10%3= | 1 | moduloDivision | -| 6 | Square Root | sqrt(25)= | 5 | squareRootFunction | -| 7 | Power Rule Differentiation | 4x^3 | 12x^2 | powerRuleDifferentiation | -| 8 | Square | 4^2 | 16 | square | -| 9 | LCM (Least Common Multiple) | LCM of 14 and 9 = | 126 | lcm | -| 10 | GCD (Greatest Common Denominator) | GCD of 18 and 18 = | 18 | gcd | -| 11 | Basic Algebra | 9x + 7 = 10 | 1/3 | basicAlgebra | -| 12 | Logarithm | log3(3) | 1 | log | -| 13 | Easy Division | 270/15 = | 18 | intDivision | +| Id | Skill | Example problem | Example Solution | Function Name | +|------|-----------------------------------|--------------------|-----------------------|--------------------------| +| 0 | Addition | 1+5= | 6 | addition | +| 1 | Subtraction | 9-4= | 5 | subtraction | +| 2 | Multiplication | 4*6= | 24 | multiplication | +| 3 | Division | 4/3= | 1.33333333 | division | +| 4 | Binary Complement 1s | 1010= | 0101 | binaryComplement1s | +| 5 | Modulo Division | 10%3= | 1 | moduloDivision | +| 6 | Square Root | sqrt(25)= | 5 | squareRootFunction | +| 7 | Power Rule Differentiation | 4x^3 | 12x^2 | powerRuleDifferentiation | +| 8 | Square | 4^2 | 16 | square | +| 9 | LCM (Least Common Multiple) | LCM of 14 and 9 = | 126 | lcm | +| 10 | GCD (Greatest Common Denominator) | GCD of 18 and 18 = | 18 | gcd | +| 11 | Basic Algebra | 9x + 7 = 10 | 1/3 | basicAlgebra | +| 12 | Logarithm | log3(3) | 1 | log | +| 13 | Easy Division | 270/15 = | 18 | intDivision | +| 14 | Decimal to Binary | Binary of a= | b | decimalToBinary | +| 15 | Binary to Decimal | Decimal of a= | b | binaryToDecimal | +| 16 | Fraction Division | (a/b)/(c/d)= | x/y | fractionDivision | +| 17 | Int 2x2 Matrix Multiplication | k * [[a,b],[c,d]]= | [[k*a,k*b],[k*c,k*d]] | intMatrix22Multiplication| diff --git a/dev-requirements.txt b/dev-requirements.txt new file mode 100644 index 0000000..a965899 --- /dev/null +++ b/dev-requirements.txt @@ -0,0 +1,2 @@ +pytest +hypothesis \ No newline at end of file diff --git a/mathgenerator/__pycache__/__init__.cpython-37.pyc b/mathgenerator/__pycache__/__init__.cpython-37.pyc new file mode 100644 index 0000000..893336f Binary files /dev/null and b/mathgenerator/__pycache__/__init__.cpython-37.pyc differ diff --git a/mathgenerator/__pycache__/mathgen.cpython-37.pyc b/mathgenerator/__pycache__/mathgen.cpython-37.pyc new file mode 100644 index 0000000..418e0a5 Binary files /dev/null and b/mathgenerator/__pycache__/mathgen.cpython-37.pyc differ diff --git a/mathgenerator/mathgen.py b/mathgenerator/mathgen.py index a7063b2..1041a55 100644 --- a/mathgenerator/mathgen.py +++ b/mathgenerator/mathgen.py @@ -1,4 +1,6 @@ import random +import math +import fractions genList = [] @@ -15,8 +17,8 @@ class Generator: def __str__(self): return str(self.id) + " " + self.title + " " + self.generalProb + " " + self.generalSol - def __call__(self): - return self.func() + def __call__(self, **kwargs): + return self.func(**kwargs) # || Non-generator Functions def genById(id): @@ -206,6 +208,512 @@ def divideFractionsFunc(maxVal=10): solution = x return problem, solution +def multiplyIntToMatrix22(maxMatrixVal = 10, maxRes = 100): + a = random.randint(0, maxMatrixVal) + b = random.randint(0, maxMatrixVal) + c = random.randint(0, maxMatrixVal) + d = random.randint(0, maxMatrixVal) + constant = random.randint(0, int(maxRes/max(a,b,c,d))) + problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = " + solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]" + return problem, solution + +def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20): + a = random.randint(1, maxA) + b = random.randint(1, maxB) + c = random.randint(1, maxC) + s = (a+b+c)/2 + area = (s*(s-a)*(s-b)*(s-c)) ** 0.5 + problem = "Area of triangle with side lengths: "+ str(a) +" "+ str(b) +" "+ str(c) + " = " + solution = area + return problem, solution + +def isTriangleValidFunc(maxSideLength = 50): + sideA = random.randint(1, maxSideLength) + sideB = random.randint(1, maxSideLength) + sideC = random.randint(1, maxSideLength) + sideSums = [sideA + sideB, sideB + sideC, sideC + sideA] + sides = [sideC, sideA, sideB] + exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (sides[2] < sideSums[2]) + problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?" + if exists: + solution = "Yes" + return problem, solution + solution = "No" + return problem, solution + +def MidPointOfTwoPointFunc(maxValue=20): + x1=random.randint(-20,maxValue) + y1=random.randint(-20,maxValue) + x2=random.randint(-20,maxValue) + y2=random.randint(-20,maxValue) + problem=f"({x1},{y1}),({x2},{y2})=" + solution=f"({(x1+x2)/2},{(y1+y2)/2})" + return problem,solution + +def factoringFunc(range_x1 = 10, range_x2 = 10): + x1 = random.randint(-range_x1, range_x1) + x2 = random.randint(-range_x2, range_x2) + def intParser(z): + if (z == 0): + return "" + if (z > 0): + return "+" + str(z) + if (z < 0): + return "-" + str(abs(z)) + + b = intParser(x1 + x2) + c = intParser(x1 * x2) + + if (b == "+1"): + b = "+" + + if (b == ""): + problem = f"x^2{c}" + else: + problem = f"x^2{b}x{c}" + + x1 = intParser(x1) + x2 = intParser(x2) + solution = f"(x{x1})(x{x2})" + return problem, solution + +def thirdAngleOfTriangleFunc(maxAngle=89): + angle1 = random.randint(1, maxAngle) + angle2 = random.randint(1, maxAngle) + angle3 = 180 - (angle1 + angle2) + problem = f"Third angle of triangle with angles {angle1} and {angle2} = " + solution = angle3 + return problem, solution + +def systemOfEquationsFunc(range_x = 10, range_y = 10, coeff_mult_range=10): + # Generate solution point first + x = random.randint(-range_x, range_x) + y = random.randint(-range_y, range_y) + # Start from reduced echelon form (coeffs 1) + c1 = [1, 0, x] + c2 = [0, 1, y] + + def randNonZero(): + return random.choice([i for i in range(-coeff_mult_range, coeff_mult_range) + if i != 0]) + # Add random (non-zero) multiple of equations (rows) to each other + c1_mult = randNonZero() + c2_mult = randNonZero() + new_c1 = [c1[i] + c1_mult * c2[i] for i in range(len(c1))] + new_c2 = [c2[i] + c2_mult * c1[i] for i in range(len(c2))] + + # For extra randomness, now add random (non-zero) multiples of original rows + # to themselves + c1_mult = randNonZero() + c2_mult = randNonZero() + new_c1 = [new_c1[i] + c1_mult * c1[i] for i in range(len(c1))] + new_c2 = [new_c2[i] + c2_mult * c2[i] for i in range(len(c2))] + + def coeffToFuncString(coeffs): + # lots of edge cases for perfect formatting! + x_sign = '-' if coeffs[0] < 0 else '' + # No redundant 1s + x_coeff = str(abs(coeffs[0])) if abs(coeffs[0]) != 1 else '' + # If x coeff is 0, dont include x + x_str = f'{x_sign}{x_coeff}x' if coeffs[0] != 0 else '' + # if x isn't included and y is positive, dont include operator + op = ' - ' if coeffs[1] < 0 else (' + ' if x_str != '' else '') + # No redundant 1s + y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else '' + # Don't include if 0, unless x is also 0 (probably never happens) + y_str = f'{y_coeff}y' if coeffs[1] != 0 else ('' if x_str != '' else '0') + return f'{x_str}{op}{y_str} = {coeffs[2]}' + + problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}" + solution = f"x = {x}, y = {y}" + return problem, solution + + # Add random (non-zero) multiple of equations to each other + +def distanceTwoPointsFunc(maxValXY = 20, minValXY=-20): + point1X = random.randint(minValXY, maxValXY+1) + point1Y = random.randint(minValXY, maxValXY+1) + point2X = random.randint(minValXY, maxValXY+1) + point2Y = random.randint(minValXY, maxValXY+1) + distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2 + solution = f"sqrt({distanceSq})" + problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})" + return problem, solution + +def pythagoreanTheoremFunc(maxLength = 20): + a = random.randint(1, maxLength) + b = random.randint(1, maxLength) + c = (a**2 + b**2)**0.5 + problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = " + solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}" + return problem, solution + +def linearEquationsFunc(n = 2, varRange = 20, coeffRange = 20): + if n > 10: + print("[!] n cannot be greater than 10") + return None, None + + vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n] + soln = [ random.randint(-varRange, varRange) for i in range(n) ] + + problem = list() + solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)]) + for _ in range(n): + coeff = [ random.randint(-coeffRange, coeffRange) for i in range(n) ] + res = sum([ coeff[i] * soln[i] for i in range(n)]) + + prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)] + while "" in prob: + prob.remove("") + prob = " + ".join(prob) + " = " + str(res) + problem.append(prob) + + problem = "\n".join(problem) + return problem, solution + +def primeFactorsFunc(minVal=1, maxVal=200): + a = random.randint(minVal, maxVal) + n = a + i = 2 + factors = [] + while i * i <= n: + if n % i: + i += 1 + else: + n //= i + factors.append(i) + if n > 1: + factors.append(n) + problem = f"Find prime factors of {a}" + solution = f"{factors}" + return problem, solution + +def multiplyFractionsFunc(maxVal=10): + a = random.randint(1, maxVal) + b = random.randint(1, maxVal) + c = random.randint(1, maxVal) + d = random.randint(1, maxVal) + while (a == b): + b = random.randint(1, maxVal) + while (c == d): + d = random.randint(1, maxVal) + def calculate_gcd(x, y): + while(y): + x, y = y, x % y + return x + tmp_n = a * c + tmp_d = b * d + gcd = calculate_gcd(tmp_n, tmp_d) + x = f"{tmp_n//gcd}/{tmp_d//gcd}" + if (tmp_d == 1 or tmp_d == gcd): + x = f"{tmp_n//gcd}" + problem = f"({a}/{b})*({c}/{d})" + solution = x + return problem, solution + +def regularPolygonAngleFunc(minVal = 3,maxVal = 20): + sideNum = random.randint(minVal, maxVal) + problem = f"Find the angle of a regular polygon with {sideNum} sides" + exteriorAngle = round((360/sideNum),2) + solution = 180 - exteriorAngle + return problem, solution + +def combinationsFunc(maxlength=20): + + def factorial(a): + d=1 + for i in range(a): + a=(i+1)*d + d=a + return d + a= random.randint(10,maxlength) + b=random.randint(0,9) + + + + solution= int(factorial(a)/(factorial(b)*factorial(a-b))) + problem= "Number of combinations from {} objects picked {} at a time ".format(a,b) + + return problem, solution + +def factorialFunc(maxInput = 6): + a = random.randint(0, maxInput) + n = a + problem = str(a) + "! = " + b = 1 + if a == 1: + solution = str(b) + return problem, solution + else: + while n > 0: + b *= n + n = n - 1 + solution = str(b) + return problem, solution + +def surfaceAreaCube(maxSide = 20, unit = 'm'): + a = random.randint(1, maxSide) + problem = f"Surface area of cube with side = {a}{unit} is" + ans = 6 * a * a + solution = f"{ans} {unit}^2" + return problem, solution + +def volumeCube(maxSide = 20, unit = 'm'): + a = random.randint(1, maxSide) + problem = f"Volume of cube with side = {a}{unit} is" + ans = a * a * a + solution = f"{ans} {unit}^3" + return problem, solution + +def surfaceAreaCuboid(maxSide = 20, unit = 'm'): + a = random.randint(1, maxSide) + b = random.randint(1, maxSide) + c = random.randint(1, maxSide) + + problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is" + ans = 2 * (a*b + b*c + c*a) + solution = f"{ans} {unit}^2" + return problem, solution + +def volumeCuboid(maxSide = 20, unit = 'm'): + a = random.randint(1, maxSide) + b = random.randint(1, maxSide) + c = random.randint(1, maxSide) + problem = f"Volume of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is" + ans = a * b * c + solution = f"{ans} {unit}^3" + return problem, solution + +def surfaceAreaCylinder(maxRadius = 20, maxHeight = 50,unit = 'm'): + a = random.randint(1, maxHeight) + b = random.randint(1, maxRadius) + problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is" + ans = int(2 * math.pi * a * b + 2 * math.pi * b * b) + solution = f"{ans} {unit}^2" + return problem, solution + +def volumeCylinder(maxRadius = 20, maxHeight = 50, unit = 'm'): + a = random.randint(1, maxHeight) + b = random.randint(1, maxRadius) + problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is" + ans = int(math.pi * b * b * a) + solution = f"{ans} {unit}^3" + return problem, solution + +def surfaceAreaCone(maxRadius = 20, maxHeight = 50,unit = 'm'): + a = random.randint(1, maxHeight) + b = random.randint(1, maxRadius) + slopingHeight = math.sqrt(a**2 + b**2) + problem = f"Surface area of cone with height = {a}{unit} and radius = {b}{unit} is" + ans = int(math.pi * b * slopingHeight + math.pi * b * b) + solution = f"{ans} {unit}^2" + return problem, solution + +def volumeCone(maxRadius = 20, maxHeight = 50, unit = 'm'): + a = random.randint(1, maxHeight) + b = random.randint(1, maxRadius) + problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is" + ans = int(math.pi * b * b * a * (1/3)) + solution = f"{ans} {unit}^3" + return problem, solution + +def commonFactorsFunc(maxVal=100): + a = random.randint(1, maxVal) + b = random.randint(1, maxVal) + x, y = a, b + if (x < y): + min = x + else: + min = y + count = 0 + arr = [] + for i in range(1, min + 1): + if (x % i == 0): + if (y % i == 0): + count = count + 1 + arr.append(i) + problem = f"Common Factors of {a} and {b} = " + solution = arr + return problem, solution + +def intersectionOfTwoLinesFunc( + minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6 +): + def generateEquationString(m, b): + """ + Generates an equation given the slope and intercept. + It handles cases where m is fractional. + It also ensures that we don't have weird signs such as y = mx + -b. + """ + if m[1] == 1: + m = m[0] + else: + m = f"{m[0]}/{m[1]}" + base = f"y = {m}x" + if b > 0: + return f"{base} + {b}" + elif b < 0: + return f"{base} - {b * -1}" + else: + return base + + def fractionToString(x): + """ + Converts the given fractions.Fraction into a string. + """ + if x.denominator == 1: + x = x.numerator + else: + x = f"{x.numerator}/{x.denominator}" + return x + + m1 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator)) + m2 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator)) + b1 = random.randint(minB, maxB) + b2 = random.randint(minB, maxB) + equation1 = generateEquationString(m1, b1) + equation2 = generateEquationString(m2, b2) + problem = "Find the point of intersection of the two lines: " + problem += f"{equation1} and {equation2}" + m1 = fractions.Fraction(*m1) + m2 = fractions.Fraction(*m2) + # if m1 == m2 then the slopes are equal + # This can happen if both line are the same + # Or if they are parallel + # In either case there is no intersection + if m1 == m2: + solution = "No Solution" + else: + intersection_x = (b1 - b2) / (m2 - m1) + intersection_y = ((m2 * b1) - (m1 * b2)) / (m2 - m1) + solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})" + return problem, solution + +def permutationFunc(maxlength=20): + a = random.randint(10,maxlength) + b = random.randint(0,9) + solution= int(math.factorial(a)/(math.factorial(a-b))) + problem= "Number of Permutations from {} objects picked {} at a time = ".format(a,b) + return problem, solution + +def vectorCrossFunc(minVal=-20, maxVal=20): + a = [random.randint(minVal, maxVal) for i in range(3)] + b = [random.randint(minVal, maxVal) for i in range(3)] + c = [a[1]*b[2] - a[2]*b[1], + a[2]*b[0] - a[0]*b[2], + a[0]*b[1] - a[1]*b[0]] + return str(a) + " X " + str(b) + " = ", str(c) + +def compareFractionsFunc(maxVal=10): + a = random.randint(1, maxVal) + b = random.randint(1, maxVal) + c = random.randint(1, maxVal) + d = random.randint(1, maxVal) + + while (a == b): + b = random.randint(1, maxVal) + while (c == d): + d = random.randint(1, maxVal) + + first=a/b + second=c/d + + if(first>second): + solution=">" + elif(first 0: + problem += " + " + solution += " + " + coefficient = random.randint(1, maxCoef) + exponent = random.randint(1, maxExp) + problem += str(coefficient) + "x^" + str(exponent) + solution += "("+str(coefficient) +"/"+str(exponent) +")x^" + str(exponent +1) + solution = solution + " + c" + return problem, solution + + +def fourthAngleOfQuadriFunc(maxAngle = 180): + angle1 = random.randint(1, maxAngle) + angle2 = random.randint(1, 240-angle1) + angle3 = random.randint(1, 340-(angle1 + angle2)) + sum_ = angle1 + angle2 + angle3 + angle4 = 360 - sum_ + problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} =" + solution = angle4 + return problem, solution + # || Class Instances #Format is: @@ -227,3 +735,37 @@ intDivision = Generator("Easy Division", 13,"a/b=","c",divisionToIntFunc) decimalToBinary = Generator("Decimal to Binary",14,"Binary of a=","b",DecimalToBinaryFunc) binaryToDecimal = Generator("Binary to Decimal",15,"Decimal of a=","b",BinaryToDecimalFunc) fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc) +intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix", 17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22) +areaOfTriangle = Generator("Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc) +doesTriangleExist = Generator("Triangle exists check", 19, "Does triangle with sides a, b and c exist?","Yes/No", isTriangleValidFunc) +midPointOfTwoPoint=Generator("Midpoint of the two point", 20,"((X1,Y1),(X2,Y2))=","((X1+X2)/2,(Y1+Y2)/2)",MidPointOfTwoPointFunc) +factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc) +thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22, "Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc) +systemOfEquations = Generator("Solve a System of Equations in R^2", 23, "2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3", + systemOfEquationsFunc) +distance2Point = Generator("Distance between 2 points", 24, "Find the distance between (x1,y1) and (x2,y2)","sqrt(distanceSquared)", distanceTwoPointsFunc) +pythagoreanTheorem = Generator("Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc) +linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc) #This has multiple variables whereas #23 has only x and y +primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc) +fractionMultiplication = Generator("Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc) +angleRegularPolygon = Generator("Angle of a Regular Polygon",29,"Find the angle of a regular polygon with 6 sides","120",regularPolygonAngleFunc) +combinations = Generator("Combinations of Objects",30, "Combinations available for picking 4 objects at a time from 6 distinct objects ="," 15", combinationsFunc) +factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc) +surfaceAreaCubeGen = Generator("Surface Area of Cube", 32, "Surface area of cube with side a units is","b units^2", surfaceAreaCube) +surfaceAreaCuboidGen = Generator("Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is","d units^2", surfaceAreaCuboid) +surfaceAreaCylinderGen = Generator("Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is","c units^2", surfaceAreaCylinder) +volumeCubeGen = Generator("Volum of Cube", 35, "Volume of cube with side a units is","b units^3", volumeCube) +volumeCuboidGen = Generator("Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is","d units^3", volumeCuboid) +volumeCylinderGen = Generator("Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is","c units^3", volumeCylinder) +surfaceAreaConeGen = Generator("Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is","c units^2", surfaceAreaCone) +volumeConeGen = Generator("Volume of cone", 39, "Volume of cone with height = a units and radius = b units is","c units^3", volumeCone) +commonFactors = Generator("Common Factors", 40, "Common Factors of {a} and {b} = ","[c, d, ...]",commonFactorsFunc) +intersectionOfTwoLines = Generator("Intersection of Two Lines", 41, "Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc) +permutations= Generator("Permutations",42, "Total permutations of 4 objects at a time from 10 objects is","5040", permutationFunc) +vectorCross = Generator("Cross Product of 2 Vectors", 43, "a X b = ", "c", vectorCrossFunc) +compareFractions=Generator("Compare Fractions",44,"Which symbol represents the comparison between a/b and c/d?",">/ maxAddend) + problem, solution = additionFunc(maxSum, maxAddend) + assert eval(problem[:-1]) == int(solution) + + +@given(maxMinuend=st.integers(min_value=1), maxDiff=st.integers(min_value=1)) +def test_subtractionFunc(maxMinuend, maxDiff): + assume(maxMinuend > maxDiff) + problem, solution = subtractionFunc(maxMinuend, maxDiff) + assert eval(problem[:-1]) == int(solution) + + +@given(maxRes=st.integers(min_value=1), maxMulti=st.integers(min_value=1)) +def test_multiplicationFunc(maxRes, maxMulti): + assume(maxRes > maxMulti) + problem, solution = multiplicationFunc(maxRes, maxMulti) + assert eval(problem[:-1]) == int(solution) + + +@given(maxRes=st.integers(min_value=1), maxDivid=st.integers(min_value=1)) +def test_divisionFunc(maxRes, maxDivid): + assume(maxRes > maxDivid) + problem, solution = divisionFunc(maxRes, maxDivid) + assert eval(problem[:-1]) == float(solution) + + +@given(maxRes=st.integers(min_value=1), maxModulo=st.integers(min_value=1)) +def test_moduloFunc(maxRes, maxModulo): + assume(maxRes > maxModulo) + problem, solution = moduloFunc(maxRes, maxModulo) + assert eval(problem[:-1]) == int(solution) + + +@given(minNo=st.integers(min_value=1), maxNo=st.integers(min_value=1, max_value=2 ** 50)) +def test_squareRootFunc(minNo, maxNo): + assume(maxNo > minNo) + problem, solution = squareRootFunc(minNo, maxNo) + assert eval(problem[:-1]) == float(solution)