Merge remote-tracking branch 'origin/master'

This commit is contained in:
Nitsujed
2020-10-19 14:19:26 -04:00
86 changed files with 638 additions and 407 deletions

View File

@@ -35,6 +35,7 @@ We currently just underwent a large reconstruction of the repository. Here is ho
* Place `.__init__ import *` at the top of your file and then write your function in the lines beneath it * Place `.__init__ import *` at the top of your file and then write your function in the lines beneath it
* Add `from .<yourfunc> import *` at the bottom of the `__init__.py` file inside the funcs directory * Add `from .<yourfunc> import *` at the bottom of the `__init__.py` file inside the funcs directory
If you have issues with checks you can try using yapf to fix linter errors or just go through them line by line.
### Provide Ideas ### Provide Ideas
If you have an idea for a generator but don't have the time or know-how to create it, you can add it as an issue. If you have a lot of ideas, I would suggest adding them to the table in README.md so that they are easier for our team to manage. If you have an idea for a generator but don't have the time or know-how to create it, you can add it as an issue. If you have a lot of ideas, I would suggest adding them to the table in README.md so that they are easier for our team to manage.

View File

@@ -5,10 +5,11 @@ from mathgenerator.mathgen import *
wList = getGenList() wList = getGenList()
lines = [] lines = []
with open('mathgenerator/mathgen.py', 'r') as f: with open('mathgenerator/mathgen.py', 'r') as f:
lines=f.readlines() lines = f.readlines()
allRows = [] allRows = []
line = lines.index('# Funcs_start - DO NOT REMOVE!\n')+1 # get the first line of the functions in mathgen.py # get the first line of the functions in mathgen.py
line = lines.index('# Funcs_start - DO NOT REMOVE!\n') + 1
for item in wList: for item in wList:
myGen = item[2] myGen = item[2]
# NOTE: renamed 'sol' to 'solu' to make it look nicer # NOTE: renamed 'sol' to 'solu' to make it look nicer
@@ -27,7 +28,8 @@ for item in wList:
print(prob) print(prob)
instName = lines[line] instName = lines[line]
func_name = instName[:instName.find('=')].strip() # NOTE: renamed 'def_name' to 'func_name' because it suits it more # NOTE: renamed 'def_name' to 'func_name' because it suits it more
func_name = instName[:instName.find('=')].strip()
row = [myGen.id, myGen.title, prob, solu, func_name] row = [myGen.id, myGen.title, prob, solu, func_name]
# print(item[1], func_name) # print(item[1], func_name)
line += 1 line += 1
@@ -39,10 +41,11 @@ with open('README.md', "r") as g:
lines = g.readlines() lines = g.readlines()
line = lines.index('[//]: # list start\n') line = lines.index('[//]: # list start\n')
lines = lines[:line+1] lines = lines[:line + 1]
for row in allRows: for row in allRows:
tableLine = "| " + str(row[0]) + " | " + str(row[1]) + " | " + str(row[2]) + " | " + str(row[3]) + " | " + str(row[4]) + " |\n" tableLine = "| " + str(row[0]) + " | " + str(row[1]) + " | " + str(
row[2]) + " | " + str(row[3]) + " | " + str(row[4]) + " |\n"
lines.append(tableLine) lines.append(tableLine)
with open('README.md', "w") as g: with open('README.md', "w") as g:

View File

@@ -1,6 +1,6 @@
genList = [] genList = []
class Generator: class Generator:
def __init__(self, title, id, generalProb, generalSol, func): def __init__(self, title, id, generalProb, generalSol, func):
self.title = title self.title = title
@@ -11,10 +11,13 @@ class Generator:
genList.append([id, title, self]) genList.append([id, title, self])
def __str__(self): def __str__(self):
return str(self.id) + " " + self.title + " " + self.generalProb + " " + self.generalSol return str(
self.id
) + " " + self.title + " " + self.generalProb + " " + self.generalSol
def __call__(self, **kwargs): def __call__(self, **kwargs):
return self.func(**kwargs) return self.func(**kwargs)
def getGenList(): def getGenList():
return genList return genList

View File

@@ -2,24 +2,25 @@ from .__init__ import *
def DiceSumProbFunc(maxDice=3): def DiceSumProbFunc(maxDice=3):
a = random.randint(1,maxDice) a = random.randint(1, maxDice)
b = random.randint(a,6*a) b = random.randint(a, 6 * a)
count=0 count = 0
for i in [1,2,3,4,5,6]: for i in [1, 2, 3, 4, 5, 6]:
if a==1: if a == 1:
if i==b: if i == b:
count=count+1 count = count + 1
elif a==2: elif a == 2:
for j in [1,2,3,4,5,6]: for j in [1, 2, 3, 4, 5, 6]:
if i+j==b: if i + j == b:
count=count+1 count = count + 1
elif a==3: elif a == 3:
for j in [1,2,3,4,5,6]: for j in [1, 2, 3, 4, 5, 6]:
for k in [1,2,3,4,5,6]: for k in [1, 2, 3, 4, 5, 6]:
if i+j+k==b: if i + j + k == b:
count=count+1 count = count + 1
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(a,b) problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(
solution="{}/{}".format(count, 6**a) a, b)
solution = "{}/{}".format(count, 6**a)
return problem, solution return problem, solution

View File

@@ -77,8 +77,8 @@ from .absoluteDifferenceFunc import *
from .vectorDotFunc import * from .vectorDotFunc import *
from .binary2sComplement import * from .binary2sComplement import *
from .matrixInversion import * from .matrixInversion import *
from .sectorAreaFunc import* from .sectorAreaFunc import *
from .meanMedianFunc import* from .meanMedianFunc import *
from .determinantToMatrix22 import * from .determinantToMatrix22 import *
from .compoundInterestFunc import * from .compoundInterestFunc import *
from .deciToHexaFunc import * from .deciToHexaFunc import *

View File

@@ -1,10 +1,12 @@
from .__init__ import * from .__init__ import *
def absoluteDifferenceFunc (maxA = 100, maxB = 100):
a = random.randint(-1*maxA, maxA)
b = random.randint(-1*maxB, maxB)
absDiff = abs(a-b)
problem = "Absolute difference between numbers " + str(a) + " and " + str(b) + " = " def absoluteDifferenceFunc(maxA=100, maxB=100):
a = random.randint(-1 * maxA, maxA)
b = random.randint(-1 * maxB, maxB)
absDiff = abs(a - b)
problem = "Absolute difference between numbers " + \
str(a) + " and " + str(b) + " = "
solution = absDiff solution = absDiff
return problem, solution return problem, solution

View File

@@ -1,12 +1,15 @@
from .__init__ import * from .__init__ import *
from ..__init__ import Generator from ..__init__ import Generator
def additionFunc(maxSum=99, maxAddend=50): def additionFunc(maxSum=99, maxAddend=50):
a = random.randint(0, maxAddend) a = random.randint(0, maxAddend)
b = random.randint(0, min((maxSum - a), maxAddend)) # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
b = random.randint(0, min((maxSum - a), maxAddend))
c = a + b c = a + b
problem = str(a) + "+" + str(b) + "=" problem = str(a) + "+" + str(b) + "="
solution = str(c) solution = str(c)
return problem, solution return problem, solution
addition = Generator("Addition", 0, "a+b=", "c", additionFunc) addition = Generator("Addition", 0, "a+b=", "c", additionFunc)

View File

@@ -7,8 +7,9 @@ def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
c = random.randint(1, maxC) c = random.randint(1, maxC)
s = (a + b + c) / 2 s = (a + b + c) / 2
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5 area = (s * (s - a) * (s - b) * (s - c))**0.5
problem = "Area of triangle with side lengths: " + str(a) + " " + str(b) + " " + str(c) + " = " problem = "Area of triangle with side lengths: " + \
str(a) + " " + str(b) + " " + str(c) + " = "
solution = area solution = area
return problem, solution return problem, solution

View File

@@ -8,7 +8,7 @@ def basicAlgebraFunc(maxVariable=10):
# calculate gcd # calculate gcd
def calculate_gcd(x, y): def calculate_gcd(x, y):
while(y): while (y):
x, y = y, x % y x, y = y, x % y
return x return x

View File

@@ -1,14 +1,25 @@
from .__init__ import * from .__init__ import *
def basicTrigonometryFunc(angles=[0,30,45,60,90],functions=["sin","cos","tan"]): #Handles degrees in quadrant one # Handles degrees in quadrant one
angle=random.choice(angles) def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90],
function=random.choice(functions) functions=["sin", "cos", "tan"]):
angle = random.choice(angles)
function = random.choice(functions)
problem=f"What is {function}({angle})?" problem = f"What is {function}({angle})?"
expression='math.'+function+'(math.radians(angle))' expression = 'math.' + function + '(math.radians(angle))'
result_fraction_map={0.0:"0",0.5:"1/2",0.71:"1/√2",0.87:"√3/2",1.0:"1",0.58:"1/√3",1.73:"√3"} result_fraction_map = {
0.0: "0",
0.5: "1/2",
0.71: "1/√2",
0.87: "√3/2",
1.0: "1",
0.58: "1/√3",
1.73: "√3"
}
solution=result_fraction_map[round(eval(expression),2)] if round(eval(expression),2)<=99999 else "" #for handling the ∞ condition solution = result_fraction_map[round(eval(expression), 2)] if round(
return problem,solution eval(expression), 2) <= 99999 else "" # for handling the ∞ condition
return problem, solution

View File

@@ -1,8 +1,10 @@
from .__init__ import * from .__init__ import *
def binary2sComplementFunc(maxDigits=10): def binary2sComplementFunc(maxDigits=10):
digits = random.randint(1, maxDigits) digits = random.randint(1, maxDigits)
question = ''.join([str(random.randint(0, 1)) for i in range(digits)]).lstrip('0') question = ''.join([str(random.randint(0, 1))
for i in range(digits)]).lstrip('0')
answer = [] answer = []
for i in question: for i in question:
@@ -18,7 +20,7 @@ def binary2sComplementFunc(maxDigits=10):
answer[j] = '0' answer[j] = '0'
j -= 1 j -= 1
if j == 0 and carry == True: if j == 0 and carry is True:
answer.insert(0, '1') answer.insert(0, '1')
problem = "2's complement of " + question + " =" problem = "2's complement of " + question + " ="

View File

@@ -10,6 +10,6 @@ def binaryComplement1sFunc(maxDigits=10):
question += temp question += temp
answer += "0" if temp == "1" else "1" answer += "0" if temp == "1" else "1"
problem = question+"=" problem = question + "="
solution = answer solution = answer
return problem, solution return problem, solution

View File

@@ -1,11 +1,11 @@
from .__init__ import * from .__init__ import *
from ..__init__ import Generator from ..__init__ import Generator
def celsiustofahrenheit(maxTemp=100): def celsiustofahrenheitFunc(maxTemp=100):
celsius = random.randint(-50, maxTemp) celsius = random.randint(-50, maxTemp)
fahrenheit = (celsius * (9/5)) +32 fahrenheit = (celsius * (9/5)) +32
problem = "Convert " + str(celsius) + " degrees Celsius to degrees Fahrenheit = " problem = "Convert " + str(celsius) + " degrees Celsius to degrees Fahrenheit = "
solution = str(fahrenheit) solution = str(fahrenheit)
return problem, solution return problem, solution
celsiustofahrenheit = Generator("Celsius To Fahrenheit", 81, "(C +(9/5))+32=", "F", celsiustofahrenheit) celsiustofahrenheit = Generator("Celsius To Fahrenheit", 81, "(C +(9/5))+32=", "F", celsiustofahrenheitFunc)

View File

@@ -2,7 +2,6 @@ from .__init__ import *
def combinationsFunc(maxlength=20): def combinationsFunc(maxlength=20):
def factorial(a): def factorial(a):
d = 1 d = 1
for i in range(a): for i in range(a):
@@ -14,6 +13,7 @@ def combinationsFunc(maxlength=20):
b = random.randint(0, 9) b = random.randint(0, 9)
solution = int(factorial(a) / (factorial(b) * factorial(a - b))) solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
problem = "Number of combinations from {} objects picked {} at a time ".format(a, b) problem = "Number of combinations from {} objects picked {} at a time ".format(
a, b)
return problem, solution return problem, solution

View File

@@ -15,9 +15,9 @@ def compareFractionsFunc(maxVal=10):
first = a / b first = a / b
second = c / d second = c / d
if(first > second): if (first > second):
solution = ">" solution = ">"
elif(first < second): elif (first < second):
solution = "<" solution = "<"
else: else:
solution = "=" solution = "="

View File

@@ -1,11 +1,18 @@
from .__init__ import * from .__init__ import *
def compoundInterestFunc(maxPrinciple = 10000, maxRate = 10, maxTime = 10, maxPeriod = 10):
def compoundInterestFunc(maxPrinciple=10000,
maxRate=10,
maxTime=10,
maxPeriod=10):
p = random.randint(100, maxPrinciple) p = random.randint(100, maxPrinciple)
r = random.randint(1, maxRate) r = random.randint(1, maxRate)
t = random.randint(1, maxTime) t = random.randint(1, maxTime)
n = random.randint(1, maxPeriod) n = random.randint(1, maxPeriod)
A = p * ((1 + (r/(100*n))**(n*t))) A = p * ((1 + (r / (100 * n))**(n * t)))
problem = "Compound Interest for a principle amount of " + str(p) + " dollars, " + str(r) + "% rate of interest and for a time period of " + str(t) + " compounded monthly is = " problem = "Compound Interest for a principle amount of " + str(
p) + " dollars, " + str(
r) + "% rate of interest and for a time period of " + str(
t) + " compounded monthly is = "
solution = round(A, 2) solution = round(A, 2)
return problem, solution return problem, solution

View File

@@ -2,29 +2,30 @@ from .__init__ import *
def confidenceIntervalFunc(): def confidenceIntervalFunc():
n=random.randint(20,40) n = random.randint(20, 40)
j=random.randint(0,3) j = random.randint(0, 3)
lst=random.sample(range(200,300),n) lst = random.sample(range(200, 300), n)
lst_per=[80 ,90, 95, 99] lst_per = [80, 90, 95, 99]
lst_t = [1.282, 1.645, 1.960, 2.576] lst_t = [1.282, 1.645, 1.960, 2.576]
mean=0 mean = 0
sd=0 sd = 0
for i in lst: for i in lst:
count= i + mean count = i + mean
mean=count mean = count
mean = mean/n mean = mean / n
for i in lst: for i in lst:
x=(i-mean)**2+sd x = (i - mean)**2 + sd
sd=x sd = x
sd=sd/n sd = sd / n
standard_error = lst_t[j]*math.sqrt(sd/n) standard_error = lst_t[j] * math.sqrt(sd / n)
problem= 'The confidence interval for sample {} with {}% confidence is'.format([x for x in lst], lst_per[j]) problem = 'The confidence interval for sample {} with {}% confidence is'.format(
solution= '({}, {})'.format(mean+standard_error, mean-standard_error) [x for x in lst], lst_per[j])
solution = '({}, {})'.format(mean + standard_error, mean - standard_error)
return problem, solution return problem, solution

View File

@@ -1,26 +1,28 @@
from .__init__ import * from .__init__ import *
def dataSummaryFunc(number_values=15,minval=5,maxval=50): def dataSummaryFunc(number_values=15, minval=5, maxval=50):
random_list=[] random_list = []
for i in range(number_values): for i in range(number_values):
n=random.randint(minval,maxval) n = random.randint(minval, maxval)
random_list.append(n) random_list.append(n)
a=sum(random_list) a = sum(random_list)
mean=a/number_values mean = a / number_values
var=0 var = 0
for i in range(number_values): for i in range(number_values):
var+=(random_list[i]-mean)**2 var += (random_list[i] - mean)**2
# we're printing stuff here? # we're printing stuff here?
print(random_list) print(random_list)
print(mean) print(mean)
print(var/number_values) print(var / number_values)
print((var/number_values)**0.5) print((var / number_values)**0.5)
problem="Find the mean,standard deviation and variance for the data"+str(random_list) problem = "Find the mean,standard deviation and variance for the data" + \
solution="The Mean is {} , Standard Deviation is {}, Variance is {}".format(mean,var/number_values,(var/number_values)**0.5) str(random_list)
return problem,solution solution = "The Mean is {} , Standard Deviation is {}, Variance is {}".format(
mean, var / number_values, (var / number_values)**0.5)
return problem, solution

View File

@@ -1,12 +1,13 @@
from .__init__ import * from .__init__ import *
def determinantToMatrix22(maxMatrixVal = 100):
def determinantToMatrix22(maxMatrixVal=100):
a = random.randint(0, maxMatrixVal) a = random.randint(0, maxMatrixVal)
b = random.randint(0, maxMatrixVal) b = random.randint(0, maxMatrixVal)
c = random.randint(0, maxMatrixVal) c = random.randint(0, maxMatrixVal)
d = random.randint(0, maxMatrixVal) d = random.randint(0, maxMatrixVal)
determinant = a*d - b*c determinant = a * d - b * c
problem = f"Det([[{a}, {b}], [{c}, {d}]]) = " problem = f"Det([[{a}, {b}], [{c}, {d}]]) = "
solution = f" {determinant}" solution = f" {determinant}"
return problem, solution return problem, solution

View File

@@ -7,7 +7,7 @@ def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
point2X = random.randint(minValXY, maxValXY + 1) point2X = random.randint(minValXY, maxValXY + 1)
point2Y = random.randint(minValXY, maxValXY + 1) point2Y = random.randint(minValXY, maxValXY + 1)
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2 distanceSq = (point1X - point2X)**2 + (point1Y - point2Y)**2
solution = f"sqrt({distanceSq})" solution = f"sqrt({distanceSq})"
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})" problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"

View File

@@ -14,7 +14,7 @@ def divideFractionsFunc(maxVal=10):
d = random.randint(1, maxVal) d = random.randint(1, maxVal)
def calculate_gcd(x, y): def calculate_gcd(x, y):
while(y): while (y):
x, y = y, x % y x, y = y, x % y
return x return x

View File

@@ -1,10 +1,10 @@
from .__init__ import * from .__init__ import *
def exponentiationFunc(maxBase = 20,maxExpo = 10): def exponentiationFunc(maxBase=20, maxExpo=10):
base = random.randint(1, maxBase) base = random.randint(1, maxBase)
expo = random.randint(1, maxExpo) expo = random.randint(1, maxExpo)
problem = f"{base}^{expo} =" problem = f"{base}^{expo} ="
solution = str(base ** expo) solution = str(base**expo)
return problem, solution return problem, solution

View File

@@ -2,20 +2,20 @@ from .__init__ import *
def fibonacciSeriesFunc(minNo=1): def fibonacciSeriesFunc(minNo=1):
n = random.randint(minNo,20) n = random.randint(minNo, 20)
def createFibList(n): def createFibList(n):
l=[] list = []
for i in range(n): for i in range(n):
if i<2: if i < 2:
l.append(i) list.append(i)
else: else:
val = l[i-1]+l[i-2] val = list[i - 1] + list[i - 2]
l.append(val) list.append(val)
return l return list
fibList=createFibList(n) fibList = createFibList(n)
problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?" problem = "The Fibonacci Series of the first " + str(n) + " numbers is ?"
solution = fibList solution = fibList
return problem,solution return problem, solution

View File

@@ -1,15 +1,23 @@
from .__init__ import * from .__init__ import *
def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term=5):
r=random.randint(min_value,max_value) def geomProgrFunc(number_values=6,
a=random.randint(min_value,max_value) min_value=2,
n_term=random.randint(number_values,number_values+5) max_value=12,
sum_term=random.randint(number_values,number_values+5) n_term=7,
GP=[] sum_term=5):
r = random.randint(min_value, max_value)
a = random.randint(min_value, max_value)
n_term = random.randint(number_values, number_values + 5)
sum_term = random.randint(number_values, number_values + 5)
GP = []
for i in range(number_values): for i in range(number_values):
GP.append(a*(r**i)) GP.append(a * (r**i))
problem="For the given GP "+str(GP)+" ,Find the value of a,common ratio,"+str(n_term)+"th term value, sum upto "+str(sum_term)+"th term" problem = "For the given GP " + str(
value_nth_term=a*(r**(n_term-1)) GP) + " ,Find the value of a,common ratio," + str(
sum_till_nth_term=a*((r**sum_term-1)/(r-1)) n_term) + "th term value, sum upto " + str(sum_term) + "th term"
solution="The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(a,r,n_term,value_nth_term,sum_term,sum_till_nth_term) value_nth_term = a * (r**(n_term - 1))
return problem,solution sum_till_nth_term = a * ((r**sum_term - 1) / (r - 1))
solution = "The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(
a, r, n_term, value_nth_term, sum_term, sum_till_nth_term)
return problem, solution

View File

@@ -2,26 +2,26 @@ from .__init__ import *
def geometricMeanFunc(maxValue=100, maxNum=4): def geometricMeanFunc(maxValue=100, maxNum=4):
a=random.randint(1,maxValue) a = random.randint(1, maxValue)
b=random.randint(1,maxValue) b = random.randint(1, maxValue)
c=random.randint(1,maxValue) c = random.randint(1, maxValue)
d=random.randint(1,maxValue) d = random.randint(1, maxValue)
num=random.randint(2,4) num = random.randint(2, 4)
if num==2: if num == 2:
product=a*b product = a * b
elif num==3: elif num == 3:
product=a*b*c product = a * b * c
elif num==4: elif num == 4:
product=a*b*c*d product = a * b * c * d
ans=product**(1/num) ans = product**(1 / num)
if num==2: if num == 2:
problem=f"Geometric mean of {num} numbers {a} and {b} = " problem = f"Geometric mean of {num} numbers {a} and {b} = "
solution = f"({a}*{b})^(1/{num}) = {ans}" solution = f"({a}*{b})^(1/{num}) = {ans}"
elif num==3: elif num == 3:
problem=f"Geometric mean of {num} numbers {a} , {b} and {c} = " problem = f"Geometric mean of {num} numbers {a} , {b} and {c} = "
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}" solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
elif num==4: elif num == 4:
problem=f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = " problem = f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}" solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
return problem,solution return problem, solution

View File

@@ -3,26 +3,26 @@ from .__init__ import *
def harmonicMeanFunc(maxValue=100, maxNum=4): def harmonicMeanFunc(maxValue=100, maxNum=4):
a=random.randint(1,maxValue) a = random.randint(1, maxValue)
b=random.randint(1,maxValue) b = random.randint(1, maxValue)
c=random.randint(1,maxValue) c = random.randint(1, maxValue)
d=random.randint(1,maxValue) d = random.randint(1, maxValue)
num=random.randint(2,4) num = random.randint(2, 4)
if num==2: if num == 2:
sum=(1/a)+(1/b) sum = (1 / a) + (1 / b)
elif num==3: elif num == 3:
sum=(1/a)+(1/b)+(1/c) sum = (1 / a) + (1 / b) + (1 / c)
elif num==4: elif num == 4:
sum=(1/a)+(1/b)+(1/c)+(1/d) sum = (1 / a) + (1 / b) + (1 / c) + (1 / d)
ans=num/sum ans = num / sum
if num==2: if num == 2:
problem=f"Harmonic mean of {num} numbers {a} and {b} = " problem = f"Harmonic mean of {num} numbers {a} and {b} = "
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}" solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
elif num==3: elif num == 3:
problem=f"Harmonic mean of {num} numbers {a} , {b} and {c} = " problem = f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}" solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
elif num==4: elif num == 4:
problem=f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = " problem = f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}" solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
return problem,solution return problem, solution

View File

@@ -1,10 +1,11 @@
from .__init__ import * from .__init__ import *
def hcfFunc(maxVal=20): def hcfFunc(maxVal=20):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
b = random.randint(1, maxVal) b = random.randint(1, maxVal)
x, y = a, b x, y = a, b
while(y): while (y):
x, y = y, x % y x, y = y, x % y
problem = f"HCF of {a} and {b} = " problem = f"HCF of {a} and {b} = "
solution = str(x) solution = str(x)

View File

@@ -1,10 +1,12 @@
from .__init__ import * from .__init__ import *
def intersectionOfTwoLinesFunc( def intersectionOfTwoLinesFunc(minM=-10,
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6 maxM=10,
): minB=-10,
maxB=10,
minDenominator=1,
maxDenominator=6):
def generateEquationString(m, b): def generateEquationString(m, b):
""" """
Generates an equation given the slope and intercept. Generates an equation given the slope and intercept.
@@ -33,8 +35,10 @@ def intersectionOfTwoLinesFunc(
x = f"{x.numerator}/{x.denominator}" x = f"{x.numerator}/{x.denominator}"
return x return x
m1 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator)) m1 = (random.randint(minM,
m2 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator)) maxM), random.randint(minDenominator, maxDenominator))
m2 = (random.randint(minM,
maxM), random.randint(minDenominator, maxDenominator))
b1 = random.randint(minB, maxB) b1 = random.randint(minB, maxB)
b2 = random.randint(minB, maxB) b2 = random.randint(minB, maxB)

View File

@@ -9,7 +9,8 @@ def isTriangleValidFunc(maxSideLength=50):
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA] sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
sides = [sideC, sideA, sideB] sides = [sideC, sideA, sideB]
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (sides[2] < sideSums[2]) exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (
sides[2] < sideSums[2])
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?" problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
if exists: if exists:

View File

@@ -9,12 +9,16 @@ def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n] vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
soln = [random.randint(-varRange, varRange) for i in range(n)] soln = [random.randint(-varRange, varRange) for i in range(n)]
problem = list() problem = list()
solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)]) solution = ", ".join(
["{} = {}".format(vars[i], soln[i]) for i in range(n)])
for _ in range(n): for _ in range(n):
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)] coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
res = sum([coeff[i] * soln[i] for i in range(n)]) res = sum([coeff[i] * soln[i] for i in range(n)])
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)] prob = [
"{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else ""
for i in range(n)
]
while "" in prob: while "" in prob:
prob.remove("") prob.remove("")

View File

@@ -1,7 +1,10 @@
from .__init__ import * from .__init__ import *
import sympy import sympy
def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerElementsInInvertedMatrix=False):
def matrixInversion(SquareMatrixDimension=3,
MaxMatrixElement=99,
OnlyIntegerElementsInInvertedMatrix=False):
if OnlyIntegerElementsInInvertedMatrix is True: if OnlyIntegerElementsInInvertedMatrix is True:
isItOk = False isItOk = False
Mat = list() Mat = list()
@@ -15,20 +18,25 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
Mat.append(z) Mat.append(z)
MaxAllowedMatrixElement = math.ceil( MaxAllowedMatrixElement = math.ceil(
pow(MaxMatrixElement, 1 / (SquareMatrixDimension))) pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
randomlist = random.sample( randomlist = random.sample(range(0, MaxAllowedMatrixElement + 1),
range(0, MaxAllowedMatrixElement + 1), SquareMatrixDimension) SquareMatrixDimension)
for i in range(0, SquareMatrixDimension): for i in range(0, SquareMatrixDimension):
if i == SquareMatrixDimension - 1: if i == SquareMatrixDimension - 1:
Mat[0] = [j + (k * randomlist[i]) Mat[0] = [
for j, k in zip(Mat[0], Mat[i])] j + (k * randomlist[i])
for j, k in zip(Mat[0], Mat[i])
]
else: else:
Mat[i + 1] = [j + (k * randomlist[i]) Mat[i + 1] = [
for j, k in zip(Mat[i + 1], Mat[i])] j + (k * randomlist[i])
for j, k in zip(Mat[i + 1], Mat[i])
]
for i in range(1, SquareMatrixDimension - 1): for i in range(1, SquareMatrixDimension - 1):
Mat[i] = [sum(i) Mat[i] = [
for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])] sum(i) for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])
]
isItOk = True isItOk = True
for i in Mat: for i in Mat:
@@ -51,7 +59,8 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1)) randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
plist = random.sample(randomlist, SquareMatrixDimension) plist = random.sample(randomlist, SquareMatrixDimension)
randomlist = random.sample( randomlist = random.sample(
range(0, MaxMatrixElement + 1), SquareMatrixDimension * SquareMatrixDimension) range(0, MaxMatrixElement + 1),
SquareMatrixDimension * SquareMatrixDimension)
randomlist = list(set(randomlist) - set(plist)) randomlist = list(set(randomlist) - set(plist))
n_list = random.sample( n_list = random.sample(
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1)) randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))

View File

@@ -32,10 +32,12 @@ def matrixMultiplicationFunc(maxVal=100):
temp += a[r][t] * b[t][c] temp += a[r][t] * b[t][c]
res[r].append(temp) res[r].append(temp)
problem = f"Multiply \n{a_string}\n and \n\n{b_string}" # consider using a, b instead of a_string, b_string if the problem doesn't look right # consider using a, b instead of a_string, b_string if the problem doesn't look right
problem = f"Multiply \n{a_string}\n and \n\n{b_string}"
solution = matrixMultiplicationFuncHelper(res) solution = matrixMultiplicationFuncHelper(res)
return problem, solution return problem, solution
def matrixMultiplicationFuncHelper(inp): def matrixMultiplicationFuncHelper(inp):
m = len(inp) m = len(inp)
n = len(inp[0]) n = len(inp[0])
@@ -44,8 +46,8 @@ def matrixMultiplicationFuncHelper(inp):
for i in range(m): for i in range(m):
for j in range(n): for j in range(n):
string += f"{inp[i][j]: 6d}" string += f"{inp[i][j]: 6d}"
string += ", "if j < n-1 else "" string += ", " if j < n - 1 else ""
string += "]\n [" if i < m-1 else "" string += "]\n [" if i < m - 1 else ""
string += "]]" string += "]]"
return string return string

View File

@@ -1,13 +1,14 @@
from .__init__ import * from .__init__ import *
def meanMedianFunc(maxlen = 10):
def meanMedianFunc(maxlen=10):
randomlist = random.sample(range(1, 99), maxlen) randomlist = random.sample(range(1, 99), maxlen)
total = 0 total = 0
for n in randomlist: for n in randomlist:
total = total + n total = total + n
mean = total/10 mean = total / 10
problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series" problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series"
randomlist.sort() randomlist.sort()
median = (randomlist[4]+randomlist[5])/2 median = (randomlist[4] + randomlist[5]) / 2
solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}" solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}"
return problem, solution return problem, solution

View File

@@ -1,9 +1,12 @@
from .__init__ import * from .__init__ import *
def multiplyComplexNumbersFunc(minRealImaginaryNum = -20, maxRealImaginaryNum = 20): def multiplyComplexNumbersFunc(minRealImaginaryNum=-20,
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum)) maxRealImaginaryNum=20):
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum)) num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
problem = f"{num1} * {num2} = " problem = f"{num1} * {num2} = "
solution = num1 * num2 solution = num1 * num2
return problem, solution return problem, solution

View File

@@ -14,7 +14,7 @@ def multiplyFractionsFunc(maxVal=10):
d = random.randint(1, maxVal) d = random.randint(1, maxVal)
def calculate_gcd(x, y): def calculate_gcd(x, y):
while(y): while (y):
x, y = y, x % y x, y = y, x % y
return x return x

View File

@@ -1,10 +1,10 @@
from .__init__ import * from .__init__ import *
def nthFibonacciNumberFunc(maxN = 100): def nthFibonacciNumberFunc(maxN=100):
golden_ratio = (1 + math.sqrt(5))/2 golden_ratio = (1 + math.sqrt(5)) / 2
n = random.randint(1,maxN) n = random.randint(1, maxN)
problem = f"What is the {n}th Fibonacci number?" problem = f"What is the {n}th Fibonacci number?"
ans = round((math.pow(golden_ratio,n) - math.pow(-golden_ratio,-n))/(math.sqrt(5))) ans = round((math.pow(golden_ratio, n) - math.pow(-golden_ratio, -n)) / (math.sqrt(5)))
solution = f"{ans}" solution = f"{ans}"
return problem, solution return problem, solution

View File

@@ -1,10 +1,11 @@
from .__init__ import * from .__init__ import *
def percentageFunc(maxValue = 99, maxpercentage=99):
def percentageFunc(maxValue=99, maxpercentage=99):
a = random.randint(1, maxpercentage) a = random.randint(1, maxpercentage)
b = random.randint(1, maxValue) b = random.randint(1, maxValue)
problem = f"What is {a}% of {b}?" problem = f"What is {a}% of {b}?"
percentage = a/100*b percentage = a / 100 * b
formatted_float = "{:.2f}".format(percentage) formatted_float = "{:.2f}".format(percentage)
solution = f"Required percentage = {formatted_float}%" solution = f"Required percentage = {formatted_float}%"
return problem, solution return problem, solution

View File

@@ -6,5 +6,6 @@ def permutationFunc(maxlength=20):
b = random.randint(0, 9) b = random.randint(0, 9)
solution = int(math.factorial(a) / (math.factorial(a - b))) solution = int(math.factorial(a) / (math.factorial(a - b)))
problem = "Number of Permutations from {} objects picked {} at a time = ".format(a, b) problem = "Number of Permutations from {} objects picked {} at a time = ".format(
a, b)
return problem, solution return problem, solution

View File

@@ -14,7 +14,8 @@ def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
exponent = random.randint(1, maxExp) exponent = random.randint(1, maxExp)
problem += str(coefficient) + "x^" + str(exponent) problem += str(coefficient) + "x^" + str(exponent)
solution += "(" + str(coefficient) + "/" + str(exponent) + ")x^" + str(exponent + 1) solution += "(" + str(coefficient) + "/" + \
str(exponent) + ")x^" + str(exponent + 1)
solution += " + c" solution += " + c"
return problem, solution return problem, solution

View File

@@ -1,15 +1,15 @@
from .__init__ import * from .__init__ import *
def profitLossPercentFunc(maxCP = 1000, maxSP = 1000): def profitLossPercentFunc(maxCP=1000, maxSP=1000):
cP = random.randint(1, maxCP) cP = random.randint(1, maxCP)
sP = random.randint(1, maxSP) sP = random.randint(1, maxSP)
diff = abs(sP-cP) diff = abs(sP - cP)
if (sP-cP >= 0): if (sP - cP >= 0):
profitOrLoss = "Profit" profitOrLoss = "Profit"
else: else:
profitOrLoss = "Loss" profitOrLoss = "Loss"
percent = diff/cP * 100 percent = diff / cP * 100
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: " problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
solution = percent solution = percent

View File

@@ -4,9 +4,12 @@ from .__init__ import *
def quadraticEquation(maxVal=100): def quadraticEquation(maxVal=100):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
c = random.randint(1, maxVal) c = random.randint(1, maxVal)
b = random.randint(round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal))) b = random.randint(
round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c) problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
D = math.sqrt(b * b - 4 * a * c) D = math.sqrt(b * b - 4 * a * c)
solution = str([round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)]) solution = str(
[round((-b + D) / (2 * a), 2),
round((-b - D) / (2 * a), 2)])
return problem, solution return problem, solution

View File

@@ -1,10 +1,11 @@
from .__init__ import * from .__init__ import *
def sectorAreaFunc(maxRadius = 49,maxAngle = 359):
def sectorAreaFunc(maxRadius=49, maxAngle=359):
Radius = random.randint(1, maxRadius) Radius = random.randint(1, maxRadius)
Angle = random.randint(1, maxAngle) Angle = random.randint(1, maxAngle)
problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector." problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector."
secArea = float((Angle / 360) * math.pi*Radius*Radius) secArea = float((Angle / 360) * math.pi * Radius * Radius)
formatted_float = "{:.5f}".format(secArea) formatted_float = "{:.5f}".format(secArea)
solution = f"Area of sector = {formatted_float}" solution = f"Area of sector = {formatted_float}"
return problem, solution return problem, solution

View File

@@ -7,6 +7,9 @@ def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
c = random.randint(1, maxTime) c = random.randint(1, maxTime)
d = (a * b * c) / 100 d = (a * b * c) / 100
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(b) + "% rate of interest and for a time period of " + str(c) + " years is = " problem = "Simple interest for a principle amount of " + str(
a) + " dollars, " + str(
b) + "% rate of interest and for a time period of " + str(
c) + " years is = "
solution = round(d, 2) solution = round(d, 2)
return problem, solution return problem, solution

View File

@@ -1,7 +1,7 @@
from .__init__ import * from .__init__ import *
def sumOfAnglesOfPolygonFunc(maxSides = 12): def sumOfAnglesOfPolygonFunc(maxSides=12):
side = random.randint(3, maxSides) side = random.randint(3, maxSides)
sum = (side - 2) * 180 sum = (side - 2) * 180

View File

@@ -1,13 +1,13 @@
from .__init__ import * from .__init__ import *
def surdsComparisonFunc(maxValue = 100, maxRoot = 10): def surdsComparisonFunc(maxValue=100, maxRoot=10):
radicand1,radicand2 = tuple(random.sample(range(1,maxValue),2)) radicand1, radicand2 = tuple(random.sample(range(1, maxValue), 2))
degree1, degree2 = tuple(random.sample(range(1,maxRoot),2)) degree1, degree2 = tuple(random.sample(range(1, maxRoot), 2))
problem = f"Fill in the blanks {radicand1}^(1/{degree1}) _ {radicand2}^(1/{degree2})" problem = f"Fill in the blanks {radicand1}^(1/{degree1}) _ {radicand2}^(1/{degree2})"
first = math.pow(radicand1, 1/degree1) first = math.pow(radicand1, 1 / degree1)
second = math.pow(radicand2, 1/degree2) second = math.pow(radicand2, 1 / degree2)
solution = "=" solution = "="
if first > second: if first > second:

View File

@@ -1,7 +1,7 @@
from .__init__ import * from .__init__ import *
def surfaceAreaSphere(maxSide = 20, unit = 'm'): def surfaceAreaSphere(maxSide=20, unit='m'):
r = random.randint(1, maxSide) r = random.randint(1, maxSide)
problem = f"Surface area of Sphere with radius = {r}{unit} is" problem = f"Surface area of Sphere with radius = {r}{unit} is"

View File

@@ -10,8 +10,9 @@ def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
c2 = [0, 1, y] c2 = [0, 1, y]
def randNonZero(): def randNonZero():
return random.choice([i for i in range(-coeff_mult_range, coeff_mult_range) return random.choice(
if i != 0]) [i for i in range(-coeff_mult_range, coeff_mult_range) if i != 0])
# Add random (non-zero) multiple of equations (rows) to each other # Add random (non-zero) multiple of equations (rows) to each other
c1_mult = randNonZero() c1_mult = randNonZero()
c2_mult = randNonZero() c2_mult = randNonZero()
@@ -36,7 +37,8 @@ def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
# No redundant 1s # No redundant 1s
y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else '' y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else ''
# Don't include if 0, unless x is also 0 (probably never happens) # Don't include if 0, unless x is also 0 (probably never happens)
y_str = f'{y_coeff}y' if coeffs[1] != 0 else ('' if x_str != '' else '0') y_str = f'{y_coeff}y' if coeffs[1] != 0 else (
'' if x_str != '' else '0')
return f'{x_str}{op}{y_str} = {coeffs[2]}' return f'{x_str}{op}{y_str} = {coeffs[2]}'
problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}" problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}"

View File

@@ -4,9 +4,10 @@ from .__init__ import *
def vectorCrossFunc(minVal=-20, maxVal=20): def vectorCrossFunc(minVal=-20, maxVal=20):
a = [random.randint(minVal, maxVal) for i in range(3)] a = [random.randint(minVal, maxVal) for i in range(3)]
b = [random.randint(minVal, maxVal) for i in range(3)] b = [random.randint(minVal, maxVal) for i in range(3)]
c = [a[1] * b[2] - a[2] * b[1], c = [
a[2] * b[0] - a[0] * b[2], a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]] a[0] * b[1] - a[1] * b[0]
]
problem = str(a) + " X " + str(b) + " = " problem = str(a) + " X " + str(b) + " = "
solution = str(c) solution = str(c)

View File

@@ -1,10 +1,10 @@
from .__init__ import * from .__init__ import *
def volumeSphereFunc(maxRadius = 100): def volumeSphereFunc(maxRadius=100):
r=random.randint(1,maxRadius) r = random.randint(1, maxRadius)
problem=f"Volume of sphere with radius {r} m = " problem = f"Volume of sphere with radius {r} m = "
ans=(4*math.pi/3)*r*r*r ans = (4 * math.pi / 3) * r * r * r
solution = f"{ans} m^3" solution = f"{ans} m^3"
return problem,solution return problem, solution

View File

@@ -7,6 +7,8 @@ from .__init__ import getGenList
genList = getGenList() genList = getGenList()
# || Generator class # || Generator class
class Generator: class Generator:
def __init__(self, title, id, generalProb, generalSol, func): def __init__(self, title, id, generalProb, generalSol, func):
self.title = title self.title = title
@@ -17,7 +19,9 @@ class Generator:
genList.append([id, title, self]) genList.append([id, title, self])
def __str__(self): def __str__(self):
return str(self.id) + " " + self.title + " " + self.generalProb + " " + self.generalSol return str(
self.id
) + " " + self.title + " " + self.generalProb + " " + self.generalSol
def __call__(self, **kwargs): def __call__(self, **kwargs):
return self.func(**kwargs) return self.func(**kwargs)
@@ -26,94 +30,241 @@ class Generator:
# || Non-generator Functions # || Non-generator Functions
def genById(id): def genById(id):
generator = genList[id][2] generator = genList[id][2]
return(generator()) return (generator())
# #
#def getGenList(): # def getGenList():
# return(genList) # return(genList)
# Format is: # Format is:
# <title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>) # <title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>)
# Funcs_start - DO NOT REMOVE! # Funcs_start - DO NOT REMOVE!
#addition = Generator("Addition", 0, "a+b=", "c", additionFunc) # addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc) subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc)
multiplication = Generator("Multiplication", 2, "a*b=", "c", multiplicationFunc) multiplication = Generator("Multiplication", 2, "a*b=", "c",
multiplicationFunc)
division = Generator("Division", 3, "a/b=", "c", divisionFunc) division = Generator("Division", 3, "a/b=", "c", divisionFunc)
binaryComplement1s = Generator("Binary Complement 1s", 4, "1010=", "0101", binaryComplement1sFunc) binaryComplement1s = Generator("Binary Complement 1s", 4, "1010=", "0101",
binaryComplement1sFunc)
moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc) moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc) squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc)
powerRuleDifferentiation = Generator("Power Rule Differentiation", 7, "nx^m=", "(n*m)x^(m-1)", powerRuleDifferentiationFunc) powerRuleDifferentiation = Generator("Power Rule Differentiation", 7, "nx^m=",
"(n*m)x^(m-1)",
powerRuleDifferentiationFunc)
square = Generator("Square", 8, "a^2", "b", squareFunc) square = Generator("Square", 8, "a^2", "b", squareFunc)
lcm = Generator("LCM (Least Common Multiple)", 9,"LCM of a and b = ", "c", lcmFunc) lcm = Generator("LCM (Least Common Multiple)", 9, "LCM of a and b = ", "c",
gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ", "c", gcdFunc) lcmFunc)
basicAlgebra = Generator("Basic Algebra", 11, "ax + b = c", "d", basicAlgebraFunc) gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ",
"c", gcdFunc)
basicAlgebra = Generator("Basic Algebra", 11, "ax + b = c", "d",
basicAlgebraFunc)
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc) log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
intDivision = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc) intDivision = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)
decimalToBinary = Generator("Decimal to Binary", 14,"Binary of a=", "b", DecimalToBinaryFunc) decimalToBinary = Generator("Decimal to Binary", 14, "Binary of a=", "b",
binaryToDecimal = Generator("Binary to Decimal", 15,"Decimal of a=", "b", BinaryToDecimalFunc) DecimalToBinaryFunc)
fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc) binaryToDecimal = Generator("Binary to Decimal", 15, "Decimal of a=", "b",
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix",17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22) BinaryToDecimalFunc)
areaOfTriangle = Generator("Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc) fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y",
doesTriangleExist = Generator("Triangle exists check", 19,"Does triangle with sides a, b and c exist?", "Yes/No", isTriangleValidFunc) divideFractionsFunc)
midPointOfTwoPoint = Generator("Midpoint of the two point", 20,"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)", MidPointOfTwoPointFunc) intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix",
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc) 17, "k * [[a,b],[c,d]]=",
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22, "Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc) "[[k*a,k*b],[k*c,k*d]]",
systemOfEquations = Generator("Solve a System of Equations in R^2", 23, "2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3", systemOfEquationsFunc) multiplyIntToMatrix22)
distance2Point = Generator("Distance between 2 points", 24, "Find the distance between (x1,y1) and (x2,y2)", "sqrt(distanceSquared)", distanceTwoPointsFunc) areaOfTriangle = Generator("Area of Triangle", 18,
pythagoreanTheorem = Generator("Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc) "Area of Triangle with side lengths a, b, c = ",
linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc)# This has multiple variables whereas #23 has only x and y "area", areaOfTriangleFunc)
primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc) doesTriangleExist = Generator("Triangle exists check", 19,
fractionMultiplication = Generator("Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc) "Does triangle with sides a, b and c exist?",
angleRegularPolygon = Generator("Angle of a Regular Polygon", 29,"Find the angle of a regular polygon with 6 sides", "120", regularPolygonAngleFunc) "Yes/No", isTriangleValidFunc)
combinations = Generator("Combinations of Objects", 30, "Combinations available for picking 4 objects at a time from 6 distinct objects =", " 15", combinationsFunc) midPointOfTwoPoint = Generator("Midpoint of the two point", 20,
"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)",
MidPointOfTwoPointFunc)
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2",
"(x-x1)(x-x2)", factoringFunc)
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22,
"Third Angle of the triangle = ", "angle3",
thirdAngleOfTriangleFunc)
systemOfEquations = Generator("Solve a System of Equations in R^2", 23,
"2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3",
systemOfEquationsFunc)
distance2Point = Generator("Distance between 2 points", 24,
"Find the distance between (x1,y1) and (x2,y2)",
"sqrt(distanceSquared)", distanceTwoPointsFunc)
pythagoreanTheorem = Generator(
"Pythagorean Theorem", 25,
"The hypotenuse of a right triangle given the other two lengths a and b = ",
"hypotenuse", pythagoreanTheoremFunc)
# This has multiple variables whereas #23 has only x and y
linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12",
"x=-20 & y=12", linearEquationsFunc)
primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =",
"[b, c, d, ...]", primeFactorsFunc)
fractionMultiplication = Generator("Fraction Multiplication", 28,
"(a/b)*(c/d)=", "x/y",
multiplyFractionsFunc)
angleRegularPolygon = Generator(
"Angle of a Regular Polygon", 29,
"Find the angle of a regular polygon with 6 sides", "120",
regularPolygonAngleFunc)
combinations = Generator(
"Combinations of Objects", 30,
"Combinations available for picking 4 objects at a time from 6 distinct objects =",
" 15", combinationsFunc)
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc) factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
surfaceAreaCubeGen = Generator("Surface Area of Cube", 32, "Surface area of cube with side a units is", "b units^2", surfaceAreaCube) surfaceAreaCubeGen = Generator("Surface Area of Cube", 32,
surfaceAreaCuboidGen = Generator("Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is", "d units^2", surfaceAreaCuboid) "Surface area of cube with side a units is",
surfaceAreaCylinderGen = Generator("Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is", "c units^2", surfaceAreaCylinder) "b units^2", surfaceAreaCube)
volumeCubeGen = Generator("Volum of Cube", 35, "Volume of cube with side a units is", "b units^3", volumeCube) surfaceAreaCuboidGen = Generator(
volumeCuboidGen = Generator("Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is", "d units^3", volumeCuboid) "Surface Area of Cuboid", 33,
volumeCylinderGen = Generator( "Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is", "c units^3", volumeCylinder) "Surface area of cuboid with sides = a units, b units, c units is",
surfaceAreaConeGen = Generator( "Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is", "c units^2", surfaceAreaCone) "d units^2", surfaceAreaCuboid)
volumeConeGen = Generator( "Volume of cone", 39, "Volume of cone with height = a units and radius = b units is", "c units^3", volumeCone) surfaceAreaCylinderGen = Generator(
commonFactors = Generator("Common Factors", 40, "Common Factors of {a} and {b} = ", "[c, d, ...]", commonFactorsFunc) "Surface Area of Cylinder", 34,
intersectionOfTwoLines = Generator("Intersection of Two Lines", 41,"Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc) "Surface area of cylinder with height = a units and radius = b units is",
permutations = Generator("Permutations", 42, "Total permutations of 4 objects at a time from 10 objects is", "5040", permutationFunc) "c units^2", surfaceAreaCylinder)
vectorCross = Generator("Cross Product of 2 Vectors",43, "a X b = ", "c", vectorCrossFunc) volumeCubeGen = Generator("Volum of Cube", 35,
compareFractions = Generator("Compare Fractions", 44, "Which symbol represents the comparison between a/b and c/d?", ">/</=", compareFractionsFunc) "Volume of cube with side a units is", "b units^3",
simpleInterest = Generator("Simple Interest", 45, "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", simpleInterestFunc) volumeCube)
matrixMultiplication = Generator("Multiplication of two matrices",46, "Multiply two matrices A and B", "C", matrixMultiplicationFunc) volumeCuboidGen = Generator(
CubeRoot = Generator("Cube Root", 47, "Cuberoot of a upto 2 decimal places is", "b", cubeRootFunc) "Volume of Cuboid", 36,
powerRuleIntegration = Generator("Power Rule Integration", 48, "nx^m=", "(n/m)x^(m+1)", powerRuleIntegrationFunc) "Volume of cuboid with sides = a units, b units, c units is", "d units^3",
fourthAngleOfQuadrilateral = Generator("Fourth Angle of Quadrilateral", 49,"Fourth angle of Quadrilateral with angles a,b,c =", "angle4", fourthAngleOfQuadriFunc) volumeCuboid)
quadraticEquationSolve = Generator("Quadratic Equation", 50, "Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2", quadraticEquation) volumeCylinderGen = Generator(
hcf = Generator("HCF (Highest Common Factor)", 51,"HCF of a and b = ", "c", hcfFunc) "Volume of cylinder", 37,
diceSumProbability = Generator("Probability of a certain sum appearing on faces of dice",52, "If n dices are rolled then probabilty of getting sum of x is =", "z", DiceSumProbFunc) "Volume of cylinder with height = a units and radius = b units is",
exponentiation = Generator("Exponentiation", 53, "a^b = ", "c", exponentiationFunc) "c units^3", volumeCylinder)
confidenceInterval = Generator("Confidence interval For sample S",54, "With X% confidence", "is (A,B)", confidenceIntervalFunc) surfaceAreaConeGen = Generator(
surdsComparison = Generator("Comparing surds", 55, "Fill in the blanks a^(1/b) _ c^(1/d)", "</>/=", surdsComparisonFunc) "Surface Area of cone", 38,
fibonacciSeries = Generator("Fibonacci Series", 56, "fibonacci series of first a numbers","prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc) "Surface area of cone with height = a units and radius = b units is",
basicTrigonometry = Generator("Trigonometric Values", 57, "What is sin(X)?", "ans", basicTrigonometryFunc) "c units^2", surfaceAreaCone)
sumOfAnglesOfPolygon = Generator("Sum of Angles of Polygon", 58,"Sum of angles of polygon with n sides = ", "sum", sumOfAnglesOfPolygonFunc) volumeConeGen = Generator(
dataSummary = Generator("Mean,Standard Deviation,Variance",59, "a,b,c", "Mean:a+b+c/3,Std,Var", dataSummaryFunc) "Volume of cone", 39,
surfaceAreaSphereGen = Generator("Surface Area of Sphere", 60, "Surface area of sphere with radius = a units is", "d units^2", surfaceAreaSphere) "Volume of cone with height = a units and radius = b units is",
volumeSphere = Generator("Volume of Sphere", 61, "Volume of sphere with radius r m = ", "(4*pi/3)*r*r*r", volumeSphereFunc) "c units^3", volumeCone)
nthFibonacciNumberGen = Generator("nth Fibonacci number", 62, "What is the nth Fibonacci number", "Fn", nthFibonacciNumberFunc) commonFactors = Generator("Common Factors", 40,
profitLossPercent = Generator("Profit or Loss Percent", 63, "Profit/ Loss percent when CP = cp and SP = sp is: ", "percent", profitLossPercentFunc) "Common Factors of {a} and {b} = ", "[c, d, ...]",
binaryToHex = Generator("Binary to Hexidecimal", 64, "Hexidecimal of a=", "b", binaryToHexFunc) commonFactorsFunc)
complexNumMultiply = Generator("Multiplication of 2 complex numbers", 65, "(x + j) (y + j) = ", "xy + xj + yj -1", multiplyComplexNumbersFunc) intersectionOfTwoLines = Generator(
geometricprogression=Generator("Geometric Progression", 66, "Initial value,Common Ratio,nth Term,Sum till nth term =", "a,r,ar^n-1,sum(ar^n-1", geomProgrFunc) "Intersection of Two Lines", 41,
geometricMean=Generator("Geometric Mean of N Numbers",67,"Geometric mean of n numbers A1 , A2 , ... , An = ","(A1*A2*...An)^(1/n) = ans",geometricMeanFunc) "Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2",
harmonicMean=Generator("Harmonic Mean of N Numbers",68,"Harmonic mean of n numbers A1 , A2 , ... , An = "," n/((1/A1) + (1/A2) + ... + (1/An)) = ans",harmonicMeanFunc) "(x, y)", intersectionOfTwoLinesFunc)
eucldianNorm=Generator("Euclidian norm or L2 norm of a vector", 69, "Euclidian Norm of a vector V:[v1, v2, ......., vn]", "sqrt(v1^2 + v2^2 ........ +vn^2)", euclidianNormFunc) permutations = Generator(
angleBtwVectors=Generator("Angle between 2 vectors", 70, "Angle Between 2 vectors V1=[v11, v12, ..., v1n] and V2=[v21, v22, ....., v2n]", "V1.V2 / (euclidNorm(V1)*euclidNorm(V2))", angleBtwVectorsFunc) "Permutations", 42,
absoluteDifference=Generator("Absolute difference between two numbers", 71, "Absolute difference betweeen two numbers a and b =", "|a-b|", absoluteDifferenceFunc) "Total permutations of 4 objects at a time from 10 objects is", "5040",
vectorDot = Generator("Dot Product of 2 Vectors", 72, "a . b = ", "c", vectorDotFunc) permutationFunc)
binary2sComplement = Generator("Binary 2's Complement", 73, "2's complement of 11010110 =", "101010", binary2sComplementFunc) vectorCross = Generator("Cross Product of 2 Vectors", 43, "a X b = ", "c",
invertmatrix = Generator("Inverse of a Matrix", 74, "Inverse of a matrix A is", "A^(-1)", matrixInversion) vectorCrossFunc)
sectorArea=Generator("Area of a Sector", 75,"Area of a sector with radius, r and angle, a ","Area",sectorAreaFunc) compareFractions = Generator(
meanMedian=Generator("Mean and Median", 76,"Mean and median of given set of numbers","Mean, Median",meanMedianFunc) "Compare Fractions", 44,
intMatrix22determinant = Generator("Determinant to 2x2 Matrix", 77, "Det([[a,b],[c,d]]) =", " a * d - b * c", determinantToMatrix22) "Which symbol represents the comparison between a/b and c/d?", ">/</=",
compoundInterest = Generator("Compound Interest", 78, "Compound interest for a principle amount of p dollars, r% rate of interest and for a time period of t years with n times compounded annually is = ", "A dollars", compoundInterestFunc) compareFractionsFunc)
decimalToHexadeci = Generator("Decimal to Hexadecimal", 79,"Binary of a=", "b", deciToHexaFunc) simpleInterest = Generator(
percentage = Generator("Percentage of a number",80,"What is a% of b?","percentage",percentageFunc) "Simple Interest", 45,
celsiustofahrenheit = Generator("Celsius To Fahrenheit", 81, "(C +(9/5))+32=", "F", celsiustofahrenheit) "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ",
"d dollars", simpleInterestFunc)
matrixMultiplication = Generator("Multiplication of two matrices", 46,
"Multiply two matrices A and B", "C",
matrixMultiplicationFunc)
CubeRoot = Generator("Cube Root", 47, "Cuberoot of a upto 2 decimal places is",
"b", cubeRootFunc)
powerRuleIntegration = Generator("Power Rule Integration", 48, "nx^m=",
"(n/m)x^(m+1)", powerRuleIntegrationFunc)
fourthAngleOfQuadrilateral = Generator(
"Fourth Angle of Quadrilateral", 49,
"Fourth angle of Quadrilateral with angles a,b,c =", "angle4",
fourthAngleOfQuadriFunc)
quadraticEquationSolve = Generator(
"Quadratic Equation", 50,
"Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2",
quadraticEquation)
hcf = Generator("HCF (Highest Common Factor)", 51, "HCF of a and b = ", "c",
hcfFunc)
diceSumProbability = Generator(
"Probability of a certain sum appearing on faces of dice", 52,
"If n dices are rolled then probabilty of getting sum of x is =", "z",
DiceSumProbFunc)
exponentiation = Generator("Exponentiation", 53, "a^b = ", "c",
exponentiationFunc)
confidenceInterval = Generator("Confidence interval For sample S", 54,
"With X% confidence", "is (A,B)",
confidenceIntervalFunc)
surdsComparison = Generator("Comparing surds", 55,
"Fill in the blanks a^(1/b) _ c^(1/d)", "</>/=",
surdsComparisonFunc)
fibonacciSeries = Generator(
"Fibonacci Series", 56, "fibonacci series of first a numbers",
"prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc)
basicTrigonometry = Generator("Trigonometric Values", 57, "What is sin(X)?",
"ans", basicTrigonometryFunc)
sumOfAnglesOfPolygon = Generator("Sum of Angles of Polygon", 58,
"Sum of angles of polygon with n sides = ",
"sum", sumOfAnglesOfPolygonFunc)
dataSummary = Generator("Mean,Standard Deviation,Variance", 59, "a,b,c",
"Mean:a+b+c/3,Std,Var", dataSummaryFunc)
surfaceAreaSphereGen = Generator(
"Surface Area of Sphere", 60,
"Surface area of sphere with radius = a units is", "d units^2",
surfaceAreaSphere)
volumeSphere = Generator("Volume of Sphere", 61,
"Volume of sphere with radius r m = ",
"(4*pi/3)*r*r*r", volumeSphereFunc)
nthFibonacciNumberGen = Generator("nth Fibonacci number", 62,
"What is the nth Fibonacci number", "Fn",
nthFibonacciNumberFunc)
profitLossPercent = Generator(
"Profit or Loss Percent", 63,
"Profit/ Loss percent when CP = cp and SP = sp is: ", "percent",
profitLossPercentFunc)
binaryToHex = Generator("Binary to Hexidecimal", 64, "Hexidecimal of a=", "b",
binaryToHexFunc)
complexNumMultiply = Generator("Multiplication of 2 complex numbers", 65,
"(x + j) (y + j) = ", "xy + xj + yj -1",
multiplyComplexNumbersFunc)
geometricprogression = Generator(
"Geometric Progression", 66,
"Initial value,Common Ratio,nth Term,Sum till nth term =",
"a,r,ar^n-1,sum(ar^n-1", geomProgrFunc)
geometricMean = Generator("Geometric Mean of N Numbers", 67,
"Geometric mean of n numbers A1 , A2 , ... , An = ",
"(A1*A2*...An)^(1/n) = ans", geometricMeanFunc)
harmonicMean = Generator("Harmonic Mean of N Numbers", 68,
"Harmonic mean of n numbers A1 , A2 , ... , An = ",
" n/((1/A1) + (1/A2) + ... + (1/An)) = ans",
harmonicMeanFunc)
eucldianNorm = Generator("Euclidian norm or L2 norm of a vector", 69,
"Euclidian Norm of a vector V:[v1, v2, ......., vn]",
"sqrt(v1^2 + v2^2 ........ +vn^2)", euclidianNormFunc)
angleBtwVectors = Generator(
"Angle between 2 vectors", 70,
"Angle Between 2 vectors V1=[v11, v12, ..., v1n] and V2=[v21, v22, ....., v2n]",
"V1.V2 / (euclidNorm(V1)*euclidNorm(V2))", angleBtwVectorsFunc)
absoluteDifference = Generator(
"Absolute difference between two numbers", 71,
"Absolute difference betweeen two numbers a and b =", "|a-b|",
absoluteDifferenceFunc)
vectorDot = Generator("Dot Product of 2 Vectors", 72, "a . b = ", "c",
vectorDotFunc)
binary2sComplement = Generator("Binary 2's Complement", 73,
"2's complement of 11010110 =", "101010",
binary2sComplementFunc)
invertmatrix = Generator("Inverse of a Matrix", 74, "Inverse of a matrix A is",
"A^(-1)", matrixInversion)
sectorArea = Generator("Area of a Sector", 75,
"Area of a sector with radius, r and angle, a ", "Area",
sectorAreaFunc)
meanMedian = Generator("Mean and Median", 76,
"Mean and median of given set of numbers",
"Mean, Median", meanMedianFunc)
intMatrix22determinant = Generator("Determinant to 2x2 Matrix", 77,
"Det([[a,b],[c,d]]) =", " a * d - b * c",
determinantToMatrix22)
compoundInterest = Generator(
"Compound Interest", 78,
"Compound interest for a principle amount of p dollars, r% rate of interest and for a time period of t years with n times compounded annually is = ",
"A dollars", compoundInterestFunc)
decimalToHexadeci = Generator("Decimal to Hexadecimal", 79, "Binary of a=",
"b", deciToHexaFunc)
percentage = Generator("Percentage of a number", 80, "What is a% of b?",
"percentage", percentageFunc)
celsiustofahrenheit = Generator("Celsius To Fahrenheit", 81, "(C +(9/5))+32=", "F", celsiustofahrenheitFunc)

View File

@@ -1,7 +1,6 @@
from setuptools import setup, find_packages from setuptools import setup, find_packages
setup( setup(name='mathgenerator',
name='mathgenerator',
version='1.1.3', version='1.1.3',
description='An open source solution for generating math problems', description='An open source solution for generating math problems',
url='https://github.com/todarith/mathgenerator', url='https://github.com/todarith/mathgenerator',
@@ -9,9 +8,5 @@ setup(
author_email='lukew25073@gmail.com', author_email='lukew25073@gmail.com',
license='MIT', license='MIT',
packages=find_packages(), packages=find_packages(),
install_requires=[ install_requires=[],
entry_points={})
],
entry_points={
}
)

View File

@@ -1,6 +1,6 @@
from mathgenerator import mathgen from mathgenerator import mathgen
#test your generators here # test your generators here
print(mathgen.addition()) print(mathgen.addition())
print(mathgen.genById(79)) print(mathgen.genById(79))

View File

@@ -39,7 +39,8 @@ def test_moduloDivision(maxRes, maxModulo):
assert eval(problem[:-1]) == int(solution) assert eval(problem[:-1]) == int(solution)
@given(minNo=st.integers(min_value=1), maxNo=st.integers(min_value=1, max_value=2 ** 50)) @given(minNo=st.integers(min_value=1),
maxNo=st.integers(min_value=1, max_value=2**50))
def test_squareRoot(minNo, maxNo): def test_squareRoot(minNo, maxNo):
assume(maxNo > minNo) assume(maxNo > minNo)
problem, solution = squareRoot.func(minNo, maxNo) problem, solution = squareRoot.func(minNo, maxNo)