Merge pull request #202 from D-T-666/master

[urgent] Separated every function into a separate file under "funcs" folder.
This commit is contained in:
Luke Weiler
2020-10-18 15:44:19 -04:00
committed by GitHub
72 changed files with 1407 additions and 1048 deletions

View File

@@ -0,0 +1,16 @@
---
name: New Generator Idea
about: Use this template if you have an idea for a new generator.
title: ''
labels: New generator, hacktoberfest
assignees: ''
---
**Example Problem:**
**Example Solution:**
**Further explanation:**
**Would you like to be assigned to this:**

10
.github/ISSUE_TEMPLATE/other-issue.md vendored Normal file
View File

@@ -0,0 +1,10 @@
---
name: Other Issue
about: If your issue lies outside of the other templates
title: ''
labels: ''
assignees: ''
---

View File

@@ -0,0 +1,12 @@
---
name: Request changes to a generator
about: If you find a faulty generator that needs a fix, use this template.
title: ''
labels: bug, hacktoberfest
assignees: ''
---
**Name or Id of generator:**
**Issue:**

View File

@@ -1,7 +1,11 @@
FLAKE_FLAGS = --ignore=E501,F401,F403,F405 IGNORE_ERRORS = E501,F401,F403,F405
PKG = mathgenerator
format:
python -m autopep8 --ignore=$(IGNORE_ERRORS) -i $(PKG)/*
lint: lint:
python -m flake8 $(FLAKE_FLAGS) python -m flake8 --ignore=$(IGNORE_ERRORS) $(PKG)
test: test:
python -m pytest --verbose -s tests python -m pytest --verbose -s tests

137
README.md
View File

@@ -30,53 +30,90 @@ problem, solution = mathgen.genById(0)
| Id | Skill | Example problem | Example Solution | Function Name | | Id | Skill | Example problem | Example Solution | Function Name |
|------|-----------------------------------|--------------------|-----------------------|--------------------------| |------|-----------------------------------|--------------------|-----------------------|--------------------------|
| 0 | Addition | 29+33= | 62 | addition | | 0 | Addition | 42+2= | 44 | addition |
| 1 | Subtraction | 62-7= | 55 | subtraction | | 1 | Subtraction | 32-26= | 6 | subtraction |
| 2 | Multiplication | 93*1= | 93 | multiplication | | 2 | Multiplication | 77*1= | 77 | multiplication |
| 3 | Division | 59/47= | 1.2553191489361701 | division | | 3 | Division | 66/9= | 7.333333333333333 | division |
| 4 | Binary Complement 1s | 001110000 | 110001111 | binaryComplement1s | | 4 | Binary Complement 1s | 1010000 | 0101111 | binaryComplement1s |
| 5 | Modulo Division | 89%34= | 21 | moduloDivision | | 5 | Modulo Division | 61%35= | 26 | moduloDivision |
| 6 | Square Root | sqrt(16)= | 4 | squareRoot | | 6 | Square Root | sqrt(1)= | 1 | squareRoot |
| 7 | Power Rule Differentiation | 4x^3 | 12x^2 | powerRuleDifferentiation | | 7 | Power Rule Differentiation | 5x^5 | 25x^4 | powerRuleDifferentiation |
| 8 | Square | 12^2= | 144 | square | | 8 | Square | 20^2= | 400 | square |
| 9 | LCM (Least Common Multiple) | LCM of 10 and 1 = | 10 | lcm | | 9 | LCM (Least Common Multiple) | LCM of 19 and 5 = | 95 | lcm |
| 10 | GCD (Greatest Common Denominator) | GCD of 12 and 5 = | 1 | gcd | | 10 | GCD (Greatest Common Denominator) | GCD of 10 and 11 = | 1 | gcd |
| 11 | Basic Algebra | 8x + 7 = 10 | 3/8 | basicAlgebra | | 11 | Basic Algebra | 3x + 7 = 8 | 1/3 | basicAlgebra |
| 12 | Logarithm | log3(729) | 6 | log | | 12 | Logarithm | log2(128) | 7 | log |
| 13 | Easy Division | 378/21 = | 18 | intDivision | | 13 | Easy Division | 306/18 = | 17 | intDivision |
| 14 | Decimal to Binary | Binary of 4= | 100 | decimalToBinary | | 14 | Decimal to Binary | Binary of 28= | 11100 | decimalToBinary |
| 15 | Binary to Decimal | 10011 | 19 | binaryToDecimal | | 15 | Binary to Decimal | 10001101 | 141 | binaryToDecimal |
| 16 | Fraction Division | (1/2)/(4/3) | 3/8 | fractionDivision | | 16 | Fraction Division | (4/1)/(6/3) | 2 | fractionDivision |
| 17 | Integer Multiplication with 2x2 Matrix | 2 * [[0, 7], [7, 7]] = | [[0,14],[14,14]] | intMatrix22Multiplication | | 17 | Integer Multiplication with 2x2 Matrix | 5 * [[10, 3], [0, 1]] = | [[50,15],[0,5]] | intMatrix22Multiplication |
| 18 | Area of Triangle | Area of triangle with side lengths: 9 14 15 = | 61.644140029689765 | areaOfTriangle | | 18 | Area of Triangle | Area of triangle with side lengths: 13 2 14 = | 11.659223816361019 | areaOfTriangle |
| 19 | Triangle exists check | Does triangle with sides 33, 6 and 43 exist? | No | doesTriangleExist | | 19 | Triangle exists check | Does triangle with sides 3, 4 and 25 exist? | No | doesTriangleExist |
| 20 | Midpoint of the two point | (-15,-10),(-5,2)= | (-10.0,-4.0) | midPointOfTwoPoint | | 20 | Midpoint of the two point | (4,-11),(17,-5)= | (10.5,-8.0) | midPointOfTwoPoint |
| 21 | Factoring Quadratic | x^2-17x+72 | (x-9)(x-8) | factoring | | 21 | Factoring Quadratic | x^2-12x+35 | (x-7)(x-5) | factoring |
| 22 | Third Angle of Triangle | Third angle of triangle with angles 4 and 31 = | 145 | thirdAngleOfTriangle | | 22 | Third Angle of Triangle | Third angle of triangle with angles 20 and 62 = | 98 | thirdAngleOfTriangle |
| 23 | Solve a System of Equations in R^2 | 4x - 8y = 48, 3x - 8y = 40 | x = 8, y = -2 | systemOfEquations | | 23 | Solve a System of Equations in R^2 | 5x - 7y = -84, 4x + 5y = 7 | x = -7, y = 7 | systemOfEquations |
| 24 | Distance between 2 points | Find the distance between (-9, -20) and (18, -19) | sqrt(730) | distance2Point | | 24 | Distance between 2 points | Find the distance between (5, -18) and (1, 19) | sqrt(1385) | distance2Point |
| 25 | Pythagorean Theorem | The hypotenuse of a right triangle given the other two lengths 18 and 13 = | 22.20 | pythagoreanTheorem | | 25 | Pythagorean Theorem | The hypotenuse of a right triangle given the other two lengths 15 and 5 = | 15.81 | pythagoreanTheorem |
| 26 | Linear Equations | -11x + -16y = -302 , 1x + 20y = 250 | x = 10, y = 12 | linearEquations | | 26 | Linear Equations | -6x + -17y = -220
| 27 | Prime Factorisation | Find prime factors of 55 | [5, 11] | primeFactors | -13x + -19y = -120 | x = -20, y = 20 | linearEquations |
| 28 | Fraction Multiplication | (4/9)*(8/10) | 16/45 | fractionMultiplication | | 27 | Prime Factorisation | Find prime factors of 62 | [2, 31] | primeFactors |
| 29 | Angle of a Regular Polygon | Find the angle of a regular polygon with 15 sides | 156.0 | angleRegularPolygon | | 28 | Fraction Multiplication | (8/4)*(1/2) | 1 | fractionMultiplication |
| 30 | Combinations of Objects | Number of combinations from 13 objects picked 1 at a time | 13 | combinations | | 29 | Angle of a Regular Polygon | Find the angle of a regular polygon with 19 sides | 161.05 | angleRegularPolygon |
| 31 | Factorial | 2! = | 2 | factorial | | 30 | Combinations of Objects | Number of combinations from 12 objects picked 1 at a time | 12 | combinations |
| 32 | Surface Area of Cube | Surface area of cube with side = 13m is | 1014 m^2 | surfaceAreaCubeGen | | 31 | Factorial | 0! = | 1 | factorial |
| 33 | Surface Area of Cuboid | Surface area of cuboid with sides = 5m, 3m, 7m is | 142 m^2 | surfaceAreaCuboidGen | | 32 | Surface Area of Cube | Surface area of cube with side = 8m is | 384 m^2 | surfaceAreaCubeGen |
| 34 | Surface Area of Cylinder | Surface area of cylinder with height = 15m and radius = 7m is | 967 m^2 | surfaceAreaCylinderGen | | 33 | Surface Area of Cuboid | Surface area of cuboid with sides = 18m, 17m, 1m is | 682 m^2 | surfaceAreaCuboidGen |
| 35 | Volum of Cube | Volume of cube with side = 11m is | 1331 m^3 | volumeCubeGen | | 34 | Surface Area of Cylinder | Surface area of cylinder with height = 31m and radius = 1m is | 201 m^2 | surfaceAreaCylinderGen |
| 36 | Volume of Cuboid | Volume of cuboid with sides = 6m, 1m, 10m is | 60 m^3 | volumeCuboidGen | | 35 | Volum of Cube | Volume of cube with side = 9m is | 729 m^3 | volumeCubeGen |
| 37 | Volume of cylinder | Volume of cylinder with height = 26m and radius = 15m is | 18378 m^3 | volumeCylinderGen | | 36 | Volume of Cuboid | Volume of cuboid with sides = 20m, 1m, 10m is | 200 m^3 | volumeCuboidGen |
| 38 | Surface Area of cone | Surface area of cone with height = 46m and radius = 14m is | 2730 m^2 | surfaceAreaConeGen | | 37 | Volume of cylinder | Volume of cylinder with height = 7m and radius = 7m is | 1077 m^3 | volumeCylinderGen |
| 39 | Volume of cone | Volume of cone with height = 7m and radius = 11m is | 886 m^3 | volumeConeGen | | 38 | Surface Area of cone | Surface area of cone with height = 47m and radius = 13m is | 2522 m^2 | surfaceAreaConeGen |
| 40 | Common Factors | Common Factors of 91 and 51 = | [1] | commonFactors | | 39 | Volume of cone | Volume of cone with height = 4m and radius = 4m is | 67 m^3 | volumeConeGen |
| 41 | Intersection of Two Lines | Find the point of intersection of the two lines: y = 6/4x + 5 and y = -7/2x + 3 | (-2/5, 22/5) | intersectionOfTwoLines | | 40 | Common Factors | Common Factors of 20 and 90 = | [1, 2, 5, 10] | commonFactors |
| 42 | Permutations | Number of Permutations from 13 objects picked 4 at a time = | 17160 | permutations | | 41 | Intersection of Two Lines | Find the point of intersection of the two lines: y = -3/6x + 1 and y = 0/2x + 6 | (-10, 6) | intersectionOfTwoLines |
| 43 | Cross Product of 2 Vectors | [-14, 13, 20] X [-5, -18, 19] = | [607, 166, 317] | vectorCross | | 42 | Permutations | Number of Permutations from 11 objects picked 2 at a time = | 110 | permutations |
| 44 | Compare Fractions | Which symbol represents the comparison between 8/3 and 6/7? | > | compareFractions | | 43 | Cross Product of 2 Vectors | [-19, -3, 2] X [-15, -12, 7] = | [3, 103, 183] | vectorCross |
| 45 | Simple Interest | Simple interest for a principle amount of 6128 dollars, 5% rate of interest and for a time period of 5 years is = | 1532.0 | simpleInterest | | 44 | Compare Fractions | Which symbol represents the comparison between 8/6 and 3/1? | < | compareFractions |
| 46 | Multiplication of two matrices | Multiply [[-20, -14, -88, -62, 39, 94, 21, 75, 26], [89, -67, -80, -60, 32, -23, -79, 11, -69], [13, -75, -66, 3, 67, -79, -49, 6, 36], [-44, -84, 68, -27, -86, -95, -71, -77, -62], [45, 58, 89, 82, 30, -83, -23, 51, 95], [11, 46, 100, -15, 60, -34, 85, 50, -44], [93, -100, -62, 63, -73, -64, 90, -15, 23], [-8, 91, -22, 53, -42, 25, 32, -26, 31], [-60, 90, 75, -42, 19, 33, -30, 74, 13]] and [[-80, 54, -39, 37, -99], [31, -28, -31, 64, 73], [-21, -34, -28, -21, -76], [-94, 55, 66, 0, 17], [-28, 25, -65, -74, 100], [76, 74, -96, -98, -5], [-90, -70, -66, -71, -35], [65, 49, -100, 72, -23], [-95, -97, -31, -84, -86]] | [[15409, 6508, -21665, -10161, 5326], [9859, 17962, 3267, 12768, 3119], [-8761, 1272, 8611, 738, 3881], [4489, -5790, 29652, 11947, -5940], [-22167, -8208, -1142, 6747, -10714], [-4628, -5167, -15527, 1404, 243], [-29240, -2432, 11103, 615, -22487], [-5498, -5038, 1462, -100, 2495], [18214, -3238, -15548, 3691, 6061]] | matrixMultiplication | | 45 | Simple Interest | Simple interest for a principle amount of 9862 dollars, 4% rate of interest and for a time period of 1 years is = | 394.48 | simpleInterest |
| 47 | Cube Root | cuberoot of 711 upto 2 decimal places is: | 8.93 | CubeRoot | | 46 | Multiplication of two matrices | Multiply
| 48 | Power Rule Integration | 3x^1 | (3/2)x^2 + c | powerRuleIntegration | -50 36 7 -26 -2 63
| 49 | Fourth Angle of Quadrilateral | Fourth angle of quadrilateral with angles 94 , 101, 102 = | 63 | fourthAngleOfQuadrilateral | 88 -37 60 -19 61 -56
48 -5 69 -87 -64 -92
-84 -50 -79 -19 86 -13
0 28 12 -14 73 -49
94 -90 2 26 -38 19
2 -11 79 -77 98 -77
-87 70 72 -32 64 -99
and
34 32 -6 -32 46 -23 78 -81 -18
-17 24 49 -62 -50 77 38 -98 -64
-23 -78 43 5 -83 -5 4 -92 -16
46 -47 -92 52 -25 -37 44 51 -7
20 26 70 37 96 -73 49 84 42
-72 -15 -80 -24 58 -47 -41 45 -69 | -8245 -1057 -423 -3535 -569 2034 -6329 1219 -5765
6619 567 10737 2391 4001 -6291 10147 -7387 6383
1472 -161 13318 -5565 -12574 10381 638 -23699 2621
1593 5598 3465 7899 13170 -6487 -4857 24642 10618
3592 3027 12206 1473 2120 -412 6082 -635 4561
3748 -1803 -11460 2072 5462 -8183 2423 11 947
2400 960 22950 2483 952 -1974 4625 -5512 9372
1132 -2067 22392 1884 -12276 8196 1949 -7148 5677 | matrixMultiplication |
| 47 | Cube Root | cuberoot of 771 upto 2 decimal places is: | 9.17 | CubeRoot |
| 48 | Power Rule Integration | 1x^3 + 8x^8 + 10x^10 | (1/3)x^4 + (8/8)x^9 + (10/10)x^11 + c | powerRuleIntegration |
| 49 | Fourth Angle of Quadrilateral | Fourth angle of quadrilateral with angles 52 , 84, 154 = | 70 | fourthAngleOfQuadrilateral |
| 50 | Quadratic Equation | Zeros of the Quadratic Equation 51x^2+152x+80=0 | [-0.68, -2.3] | quadraticEquationSolve |
| 51 | HCF (Highest Common Factor) | HCF of 11 and 7 = | 1 | hcf |
| 52 | Probability of a certain sum appearing on faces of dice | If 2 dice are rolled at the same time, the probability of getting a sum of 11 = | 2/36 | diceSumProbability |
| 53 | Exponentiation | 9^9 = | 387420489 | exponentiation |
| 54 | Confidence interval For sample S | The confidence interval for sample [291, 254, 274, 207, 253, 289, 268, 280, 225, 240, 278, 270, 247, 252, 211, 212, 295, 241, 290, 206, 222, 263, 264, 228, 229, 256, 209, 292] with 99% confidence is | (265.560249263099, 237.72546502261523) | confidenceInterval |
| 55 | Comparing surds | Fill in the blanks 16^(1/7) _ 67^(1/6) | < | surdsComparison |
| 56 | Fibonacci Series | The Fibonacci Series of the first 11 numbers is ? | [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] | fibonacciSeries |
| 57 | Trigonometric Values | What is cos(60)? | 1/2 | basicTrigonometry |
| 58 | Sum of Angles of Polygon | Sum of angles of polygon with 5 sides = | 540 | sumOfAnglesOfPolygon |
| 59 | Mean,Standard Deviation,Variance | Find the mean,standard deviation and variance for the data[38, 29, 43, 25, 7, 10, 13, 14, 43, 44, 30, 42, 48, 48, 42] | The Mean is 31.733333333333334 , Standard Deviation is 199.26222222222222, Variance is 14.116027140177303 | dataSummary |
| 59 | Surface Area of Sphere | Surface area of Sphere with radius = 13m is | 2123.7166338267 m^2 | surfaceAreaSphereGen |
| 60 | Volume of Sphere | Volume of sphere with radius 84 m = | 2482712.7095377133 m^3 | volumeSphere |

View File

@@ -1,3 +1,4 @@
pytest pytest
hypothesis hypothesis
flake8 flake8
autopep8

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def BinaryToDecimalFunc(max_dig=10):
problem = ''
for i in range(random.randint(1, max_dig)):
temp = str(random.randint(0, 1))
problem += temp
solution = int(problem, 2)
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def DecimalToBinaryFunc(max_dec=99):
a = random.randint(1, max_dec)
b = bin(a).replace("0b", "")
problem = "Binary of " + str(a) + "="
solution = str(b)
return problem, solution

View File

@@ -0,0 +1,25 @@
from .__init__ import *
def DiceSumProbFunc(maxDice=3):
a = random.randint(1,maxDice)
b = random.randint(a,6*a)
count=0
for i in [1,2,3,4,5,6]:
if a==1:
if i==b:
count=count+1
elif a==2:
for j in [1,2,3,4,5,6]:
if i+j==b:
count=count+1
elif a==3:
for j in [1,2,3,4,5,6]:
for k in [1,2,3,4,5,6]:
if i+j+k==b:
count=count+1
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(a,b)
solution="{}/{}".format(count, 6**a)
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def MidPointOfTwoPointFunc(maxValue=20):
x1 = random.randint(-20, maxValue)
y1 = random.randint(-20, maxValue)
x2 = random.randint(-20, maxValue)
y2 = random.randint(-20, maxValue)
problem = f"({x1},{y1}),({x2},{y2})="
solution = f"({(x1+x2)/2},{(y1+y2)/2})"
return problem, solution

View File

@@ -0,0 +1,65 @@
import random
import math
import fractions
from .additionFunc import *
from .subtractionFunc import *
from .multiplicationFunc import *
from .divisionFunc import *
from .binaryComplement1sFunc import *
from .moduloFunc import *
from .squareRootFunc import *
from .powerRuleDifferentiationFunc import *
from .squareFunc import *
from .gcdFunc import *
from .lcmFunc import *
from .basicAlgebraFunc import *
from .logFunc import *
from .divisionToIntFunc import *
from .DecimalToBinaryFunc import *
from .BinaryToDecimalFunc import *
from .divideFractionsFunc import *
from .multiplyIntToMatrix22 import *
from .areaOfTriangleFunc import *
from .isTriangleValidFunc import *
from .MidPointOfTwoPointFunc import *
from .factoringFunc import *
from .thirdAngleOfTriangleFunc import *
from .systemOfEquationsFunc import *
from .distanceTwoPointsFunc import *
from .pythagoreanTheoremFunc import *
from .linearEquationsFunc import *
from .primeFactorsFunc import *
from .multiplyFractionsFunc import *
from .regularPolygonAngleFunc import *
from .combinationsFunc import *
from .factorialFunc import *
from .surfaceAreaCube import *
from .volumeCube import *
from .surfaceAreaCuboid import *
from .volumeCuboid import *
from .surfaceAreaCylinder import *
from .volumeCylinder import *
from .surfaceAreaCone import *
from .volumeCone import *
from .commonFactorsFunc import *
from .intersectionOfTwoLinesFunc import *
from .permutationFunc import *
from .vectorCrossFunc import *
from .compareFractionsFunc import *
from .simpleInterestFunc import *
from .matrixMultiplicationFunc import *
from .cubeRootFunc import *
from .powerRuleIntegrationFunc import *
from .fourthAngleOfQuadriFunc import *
from .quadraticEquation import *
from .DiceSumProbFunc import *
from .exponentiationFunc import *
from .confidenceIntervalFunc import *
from .surdsComparisonFunc import *
from .fibonacciSeriesFunc import *
from .basicTrigonometryFunc import *
from .sumOfAnglesOfPolygonFunc import *
from .dataSummaryFunc import *
from .surfaceAreaSphere import *
from .volumeSphereFunc import *

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def additionFunc(maxSum=99, maxAddend=50):
a = random.randint(0, maxAddend)
b = random.randint(0, min((maxSum - a), maxAddend)) # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
c = a + b
problem = str(a) + "+" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,14 @@
from .__init__ import *
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
a = random.randint(1, maxA)
b = random.randint(1, maxB)
c = random.randint(1, maxC)
s = (a + b + c) / 2
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
problem = "Area of triangle with side lengths: " + str(a) + " " + str(b) + " " + str(c) + " = "
solution = area
return problem, solution

View File

@@ -0,0 +1,25 @@
from .__init__ import *
def basicAlgebraFunc(maxVariable=10):
a = random.randint(1, maxVariable)
b = random.randint(1, maxVariable)
c = random.randint(b, maxVariable)
# calculate gcd
def calculate_gcd(x, y):
while(y):
x, y = y, x % y
return x
i = calculate_gcd((c - b), a)
x = f"{(c - b)//i}/{a//i}"
if (c - b == 0):
x = "0"
elif a == 1 or a == i:
x = f"{c - b}"
problem = f"{a}x + {b} = {c}"
solution = x
return problem, solution

View File

@@ -0,0 +1,14 @@
from .__init__ import *
def basicTrigonometryFunc(angles=[0,30,45,60,90],functions=["sin","cos","tan"]): #Handles degrees in quadrant one
angle=random.choice(angles)
function=random.choice(functions)
problem=f"What is {function}({angle})?"
expression='math.'+function+'(math.radians(angle))'
result_fraction_map={0.0:"0",0.5:"1/2",0.71:"1/√2",0.87:"√3/2",1.0:"1",0.58:"1/√3",1.73:"√3"}
solution=result_fraction_map[round(eval(expression),2)] if round(eval(expression),2)<=99999 else "" #for handling the ∞ condition
return problem,solution

View File

@@ -0,0 +1,15 @@
from .__init__ import *
def binaryComplement1sFunc(maxDigits=10):
question = ''
answer = ''
for i in range(random.randint(1, maxDigits)):
temp = str(random.randint(0, 1))
question += temp
answer += "0" if temp == "1" else "1"
problem = question+"="
solution = answer
return problem, solution

View File

@@ -0,0 +1,19 @@
from .__init__ import *
def combinationsFunc(maxlength=20):
def factorial(a):
d = 1
for i in range(a):
a = (i + 1) * d
d = a
return d
a = random.randint(10, maxlength)
b = random.randint(0, 9)
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
problem = "Number of combinations from {} objects picked {} at a time ".format(a, b)
return problem, solution

View File

@@ -0,0 +1,24 @@
from .__init__ import *
def commonFactorsFunc(maxVal=100):
a = x = random.randint(1, maxVal)
b = y = random.randint(1, maxVal)
if (x < y):
min = x
else:
min = y
count = 0
arr = []
for i in range(1, min + 1):
if (x % i == 0):
if (y % i == 0):
count = count + 1
arr.append(i)
problem = f"Common Factors of {a} and {b} = "
solution = arr
return problem, solution

View File

@@ -0,0 +1,26 @@
from .__init__ import *
def compareFractionsFunc(maxVal=10):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
c = random.randint(1, maxVal)
d = random.randint(1, maxVal)
while (a == b):
b = random.randint(1, maxVal)
while (c == d):
d = random.randint(1, maxVal)
first = a / b
second = c / d
if(first > second):
solution = ">"
elif(first < second):
solution = "<"
else:
solution = "="
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
return problem, solution

View File

@@ -0,0 +1,30 @@
from .__init__ import *
def confidenceIntervalFunc():
n=random.randint(20,40)
j=random.randint(0,3)
lst=random.sample(range(200,300),n)
lst_per=[80 ,90, 95, 99]
lst_t = [1.282, 1.645, 1.960, 2.576]
mean=0
sd=0
for i in lst:
count= i + mean
mean=count
mean = mean/n
for i in lst:
x=(i-mean)**2+sd
sd=x
sd=sd/n
standard_error = lst_t[j]*math.sqrt(sd/n)
problem= 'The confidence interval for sample {} with {}% confidence is'.format([x for x in lst], lst_per[j])
solution= '({}, {})'.format(mean+standard_error, mean-standard_error)
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def cubeRootFunc(minNo=1, maxNo=1000):
b = random.randint(minNo, maxNo)
a = b**(1 / 3)
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
solution = str(round(a, 2))
return problem, solution

View File

@@ -0,0 +1,26 @@
from .__init__ import *
def dataSummaryFunc(number_values=15,minval=5,maxval=50):
random_list=[]
for i in range(number_values):
n=random.randint(minval,maxval)
random_list.append(n)
a=sum(random_list)
mean=a/number_values
var=0
for i in range(number_values):
var+=(random_list[i]-mean)**2
# we're printing stuff here?
print(random_list)
print(mean)
print(var/number_values)
print((var/number_values)**0.5)
problem="Find the mean,standard deviation and variance for the data"+str(random_list)
solution="The Mean is {} , Standard Deviation is {}, Variance is {}".format(mean,var/number_values,(var/number_values)**0.5)
return problem,solution

View File

@@ -0,0 +1,14 @@
from .__init__ import *
def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
point1X = random.randint(minValXY, maxValXY + 1)
point1Y = random.randint(minValXY, maxValXY + 1)
point2X = random.randint(minValXY, maxValXY + 1)
point2Y = random.randint(minValXY, maxValXY + 1)
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
solution = f"sqrt({distanceSq})"
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
return problem, solution

View File

@@ -0,0 +1,32 @@
from .__init__ import *
def divideFractionsFunc(maxVal=10):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
while (a == b):
b = random.randint(1, maxVal)
c = random.randint(1, maxVal)
d = random.randint(1, maxVal)
while (c == d):
d = random.randint(1, maxVal)
def calculate_gcd(x, y):
while(y):
x, y = y, x % y
return x
tmp_n = a * d
tmp_d = b * c
gcd = calculate_gcd(tmp_n, tmp_d)
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
if (tmp_d == 1 or tmp_d == gcd):
x = f"{tmp_n//gcd}"
# for equal numerator and denominators
problem = f"({a}/{b})/({c}/{d})"
solution = x
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def divisionFunc(maxRes=99, maxDivid=99):
a = random.randint(0, maxDivid)
b = random.randint(0, min(maxRes, maxDivid))
c = a / b
problem = str(a) + "/" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,13 @@
from .__init__ import *
def divisionToIntFunc(maxA=25, maxB=25):
a = random.randint(1, maxA)
b = random.randint(1, maxB)
divisor = a * b
dividend = random.choice([a, b])
problem = f"{divisor}/{dividend} = "
solution = int(divisor / dividend)
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def exponentiationFunc(maxBase = 20,maxExpo = 10):
base = random.randint(1, maxBase)
expo = random.randint(1, maxExpo)
problem = f"{base}^{expo} ="
solution = str(base ** expo)
return problem, solution

View File

@@ -0,0 +1,15 @@
from .__init__ import *
def factorialFunc(maxInput=6):
a = random.randint(0, maxInput)
n = a
problem = str(a) + "! = "
b = 1
while a != 1 and n > 0:
b *= n
n -= 1
solution = str(b)
return problem, solution

View File

@@ -0,0 +1,29 @@
from .__init__ import *
def factoringFunc(range_x1=10, range_x2=10):
x1 = random.randint(-range_x1, range_x1)
x2 = random.randint(-range_x2, range_x2)
def intParser(z):
if (z == 0):
return ""
if (z > 0):
return "+" + str(z)
if (z < 0):
return "-" + str(abs(z))
b = intParser(x1 + x2)
c = intParser(x1 * x2)
if b == "+1":
b = "+"
if b == "":
problem = f"x^2{c}"
else:
problem = f"x^2{b}x{c}"
x1 = intParser(x1)
x2 = intParser(x2)
solution = f"(x{x1})(x{x2})"
return problem, solution

View File

@@ -0,0 +1,21 @@
from .__init__ import *
def fibonacciSeriesFunc(minNo=1):
n = random.randint(minNo,20)
def createFibList(n):
l=[]
for i in range(n):
if i<2:
l.append(i)
else:
val = l[i-1]+l[i-2]
l.append(val)
return l
fibList=createFibList(n)
problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?"
solution = fibList
return problem,solution

View File

@@ -0,0 +1,14 @@
from .__init__ import *
def fourthAngleOfQuadriFunc(maxAngle=180):
angle1 = random.randint(1, maxAngle)
angle2 = random.randint(1, 240 - angle1)
angle3 = random.randint(1, 340 - (angle1 + angle2))
sum_ = angle1 + angle2 + angle3
angle4 = 360 - sum_
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
solution = angle4
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def gcdFunc(maxVal=20):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
x, y = a, b
while y:
x, y = y, x % y
problem = f"GCD of {a} and {b} = "
solution = str(x)
return problem, solution

View File

@@ -0,0 +1,62 @@
from .__init__ import *
def intersectionOfTwoLinesFunc(
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
):
def generateEquationString(m, b):
"""
Generates an equation given the slope and intercept.
It handles cases where m is fractional.
It also ensures that we don't have weird signs such as y = mx + -b.
"""
if m[1] == 1:
m = m[0]
else:
m = f"{m[0]}/{m[1]}"
base = f"y = {m}x"
if b > 0:
return f"{base} + {b}"
elif b < 0:
return f"{base} - {b * -1}"
else:
return base
def fractionToString(x):
"""
Converts the given fractions.Fraction into a string.
"""
if x.denominator == 1:
x = x.numerator
else:
x = f"{x.numerator}/{x.denominator}"
return x
m1 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator))
m2 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator))
b1 = random.randint(minB, maxB)
b2 = random.randint(minB, maxB)
equation1 = generateEquationString(m1, b1)
equation2 = generateEquationString(m2, b2)
problem = "Find the point of intersection of the two lines: "
problem += f"{equation1} and {equation2}"
m1 = fractions.Fraction(*m1)
m2 = fractions.Fraction(*m2)
# if m1 == m2 then the slopes are equal
# This can happen if both line are the same
# Or if they are parallel
# In either case there is no intersection
if m1 == m2:
solution = "No Solution"
else:
intersection_x = (b1 - b2) / (m2 - m1)
intersection_y = ((m2 * b1) - (m1 * b2)) / (m2 - m1)
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
return problem, solution

View File

@@ -0,0 +1,19 @@
from .__init__ import *
def isTriangleValidFunc(maxSideLength=50):
sideA = random.randint(1, maxSideLength)
sideB = random.randint(1, maxSideLength)
sideC = random.randint(1, maxSideLength)
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
sides = [sideC, sideA, sideB]
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (sides[2] < sideSums[2])
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
if exists:
solution = "Yes"
return problem, solution
solution = "No"
return problem, solution

View File

@@ -0,0 +1,17 @@
from .__init__ import *
def lcmFunc(maxVal=20):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
c = a * b
x, y = a, b
while y:
x, y = y, x % y
d = c // x
problem = f"LCM of {a} and {b} ="
solution = str(d)
return problem, solution

View File

@@ -0,0 +1,25 @@
from .__init__ import *
def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
if n > 10:
print("[!] n cannot be greater than 10")
return None, None
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
soln = [random.randint(-varRange, varRange) for i in range(n)]
problem = list()
solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)])
for _ in range(n):
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
res = sum([coeff[i] * soln[i] for i in range(n)])
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)]
while "" in prob:
prob.remove("")
prob = " + ".join(prob) + " = " + str(res)
problem.append(prob)
problem = "\n".join(problem)
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def logFunc(maxBase=3, maxVal=8):
a = random.randint(1, maxVal)
b = random.randint(2, maxBase)
c = pow(b, a)
problem = "log" + str(b) + "(" + str(c) + ")"
solution = str(a)
return problem, solution

View File

@@ -0,0 +1,50 @@
from .__init__ import *
def matrixMultiplicationFunc(maxVal=100):
m = random.randint(2, 10)
n = random.randint(2, 10)
k = random.randint(2, 10)
# generate matrices a and b
a = []
for r in range(m):
a.append([])
for c in range(n):
a[r].append(random.randint(-maxVal, maxVal))
b = []
for r in range(n):
b.append([])
for c in range(k):
b[r].append(random.randint(-maxVal, maxVal))
res = []
a_string = matrixMultiplicationFuncHelper(a)
b_string = matrixMultiplicationFuncHelper(b)
for r in range(m):
res.append([])
for c in range(k):
temp = 0
for t in range(n):
temp += a[r][t] * b[t][c]
res[r].append(temp)
problem = f"Multiply \n{a_string}\n and \n\n{b_string}" # consider using a, b instead of a_string, b_string if the problem doesn't look right
solution = matrixMultiplicationFuncHelper(res)
return problem, solution
def matrixMultiplicationFuncHelper(inp):
m = len(inp)
n = len(inp[0])
string = ""
for i in range(m):
for j in range(n):
string += f"{inp[i][j]: 6d}"
string += " "
string += "\n"
return string

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def moduloFunc(maxRes=99, maxModulo=99):
a = random.randint(0, maxModulo)
b = random.randint(0, min(maxRes, maxModulo))
c = a % b
problem = str(a) + "%" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def multiplicationFunc(maxRes=99, maxMulti=99):
a = random.randint(0, maxMulti)
b = random.randint(0, min(int(maxMulti / a), maxRes))
c = a * b
problem = str(a) + "*" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,32 @@
from .__init__ import *
def multiplyFractionsFunc(maxVal=10):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
c = random.randint(1, maxVal)
d = random.randint(1, maxVal)
while (a == b):
b = random.randint(1, maxVal)
while (c == d):
d = random.randint(1, maxVal)
def calculate_gcd(x, y):
while(y):
x, y = y, x % y
return x
tmp_n = a * c
tmp_d = b * d
gcd = calculate_gcd(tmp_n, tmp_d)
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
if (tmp_d == 1 or tmp_d == gcd):
x = f"{tmp_n//gcd}"
problem = f"({a}/{b})*({c}/{d})"
solution = x
return problem, solution

View File

@@ -0,0 +1,13 @@
from .__init__ import *
def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100):
a = random.randint(0, maxMatrixVal)
b = random.randint(0, maxMatrixVal)
c = random.randint(0, maxMatrixVal)
d = random.randint(0, maxMatrixVal)
constant = random.randint(0, int(maxRes / max(a, b, c, d)))
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def permutationFunc(maxlength=20):
a = random.randint(10, maxlength)
b = random.randint(0, 9)
solution = int(math.factorial(a) / (math.factorial(a - b)))
problem = "Number of Permutations from {} objects picked {} at a time = ".format(a, b)
return problem, solution

View File

@@ -0,0 +1,18 @@
from .__init__ import *
def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5):
numTerms = random.randint(1, maxTerms)
problem = ""
solution = ""
for i in range(numTerms):
if i > 0:
problem += " + "
solution += " + "
coefficient = random.randint(1, maxCoef)
exponent = random.randint(1, maxExp)
problem += str(coefficient) + "x^" + str(exponent)
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
return problem, solution

View File

@@ -0,0 +1,20 @@
from .__init__ import *
def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
numTerms = random.randint(1, maxTerms)
problem = ""
solution = ""
for i in range(numTerms):
if i > 0:
problem += " + "
solution += " + "
coefficient = random.randint(1, maxCoef)
exponent = random.randint(1, maxExp)
problem += str(coefficient) + "x^" + str(exponent)
solution += "(" + str(coefficient) + "/" + str(exponent) + ")x^" + str(exponent + 1)
solution += " + c"
return problem, solution

View File

@@ -0,0 +1,22 @@
from .__init__ import *
def primeFactorsFunc(minVal=1, maxVal=200):
a = random.randint(minVal, maxVal)
n = a
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
problem = f"Find prime factors of {a}"
solution = f"{factors}"
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def pythagoreanTheoremFunc(maxLength=20):
a = random.randint(1, maxLength)
b = random.randint(1, maxLength)
c = (a**2 + b**2)**0.5
problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = "
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def quadraticEquation(maxVal=100):
a = random.randint(1, maxVal)
c = random.randint(1, maxVal)
b = random.randint(round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
D = math.sqrt(b * b - 4 * a * c)
solution = str([round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)])
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def regularPolygonAngleFunc(minVal=3, maxVal=20):
sideNum = random.randint(minVal, maxVal)
problem = f"Find the angle of a regular polygon with {sideNum} sides"
exteriorAngle = round((360 / sideNum), 2)
solution = 180 - exteriorAngle
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
a = random.randint(1000, maxPrinciple)
b = random.randint(1, maxRate)
c = random.randint(1, maxTime)
d = (a * b * c) / 100
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(b) + "% rate of interest and for a time period of " + str(c) + " years is = "
solution = round(d, 2)
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def squareFunc(maxSquareNum=20):
a = random.randint(1, maxSquareNum)
b = a * a
problem = str(a) + "^2" + "="
solution = str(b)
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def squareRootFunc(minNo=1, maxNo=12):
b = random.randint(minNo, maxNo)
a = b * b
problem = "sqrt(" + str(a) + ")="
solution = str(b)
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def subtractionFunc(maxMinuend=99, maxDiff=99):
a = random.randint(0, maxMinuend)
b = random.randint(max(0, (a - maxDiff)), a)
c = a - b
problem = str(a) + "-" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def sumOfAnglesOfPolygonFunc(maxSides = 12):
side = random.randint(3, maxSides)
sum = (side - 2) * 180
problem = f"Sum of angles of polygon with {side} sides = "
solution = sum
return problem, solution

View File

@@ -0,0 +1,17 @@
from .__init__ import *
def surdsComparisonFunc(maxValue = 100, maxRoot = 10):
radicand1,radicand2 = tuple(random.sample(range(1,maxValue),2))
degree1, degree2 = tuple(random.sample(range(1,maxRoot),2))
problem = f"Fill in the blanks {radicand1}^(1/{degree1}) _ {radicand2}^(1/{degree2})"
first = math.pow(radicand1, 1/degree1)
second = math.pow(radicand2, 1/degree2)
solution = "="
if first > second:
solution = ">"
elif first < second:
solution = "<"
return problem, solution

View File

@@ -0,0 +1,13 @@
from .__init__ import *
def surfaceAreaCone(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius)
slopingHeight = math.sqrt(a**2 + b**2)
problem = f"Surface area of cone with height = {a}{unit} and radius = {b}{unit} is"
ans = int(math.pi * b * slopingHeight + math.pi * b * b)
solution = f"{ans} {unit}^2"
return problem, solution

View File

@@ -0,0 +1,9 @@
from .__init__ import *
def surfaceAreaCube(maxSide=20, unit='m'):
a = random.randint(1, maxSide)
problem = f"Surface area of cube with side = {a}{unit} is"
ans = 6 * a * a
solution = f"{ans} {unit}^2"
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def surfaceAreaCuboid(maxSide=20, unit='m'):
a = random.randint(1, maxSide)
b = random.randint(1, maxSide)
c = random.randint(1, maxSide)
problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
ans = 2 * (a * b + b * c + c * a)
solution = f"{ans} {unit}^2"
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def surfaceAreaCylinder(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius)
problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is"
ans = int(2 * math.pi * a * b + 2 * math.pi * b * b)
solution = f"{ans} {unit}^2"
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def surfaceAreaSphere(maxSide = 20, unit = 'm'):
r = random.randint(1, maxSide)
problem = f"Surface area of Sphere with radius = {r}{unit} is"
ans = 4 * math.pi * r * r
solution = f"{ans} {unit}^2"
return problem, solution

View File

@@ -0,0 +1,45 @@
from .__init__ import *
def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
# Generate solution point first
x = random.randint(-range_x, range_x)
y = random.randint(-range_y, range_y)
# Start from reduced echelon form (coeffs 1)
c1 = [1, 0, x]
c2 = [0, 1, y]
def randNonZero():
return random.choice([i for i in range(-coeff_mult_range, coeff_mult_range)
if i != 0])
# Add random (non-zero) multiple of equations (rows) to each other
c1_mult = randNonZero()
c2_mult = randNonZero()
new_c1 = [c1[i] + c1_mult * c2[i] for i in range(len(c1))]
new_c2 = [c2[i] + c2_mult * c1[i] for i in range(len(c2))]
# For extra randomness, now add random (non-zero) multiples of original rows
# to themselves
c1_mult = randNonZero()
c2_mult = randNonZero()
new_c1 = [new_c1[i] + c1_mult * c1[i] for i in range(len(c1))]
new_c2 = [new_c2[i] + c2_mult * c2[i] for i in range(len(c2))]
def coeffToFuncString(coeffs):
# lots of edge cases for perfect formatting!
x_sign = '-' if coeffs[0] < 0 else ''
# No redundant 1s
x_coeff = str(abs(coeffs[0])) if abs(coeffs[0]) != 1 else ''
# If x coeff is 0, dont include x
x_str = f'{x_sign}{x_coeff}x' if coeffs[0] != 0 else ''
# if x isn't included and y is positive, dont include operator
op = ' - ' if coeffs[1] < 0 else (' + ' if x_str != '' else '')
# No redundant 1s
y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else ''
# Don't include if 0, unless x is also 0 (probably never happens)
y_str = f'{y_coeff}y' if coeffs[1] != 0 else ('' if x_str != '' else '0')
return f'{x_str}{op}{y_str} = {coeffs[2]}'
problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}"
solution = f"x = {x}, y = {y}"
return problem, solution
# Add random (non-zero) multiple of equations to each other

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def thirdAngleOfTriangleFunc(maxAngle=89):
angle1 = random.randint(1, maxAngle)
angle2 = random.randint(1, maxAngle)
angle3 = 180 - (angle1 + angle2)
problem = f"Third angle of triangle with angles {angle1} and {angle2} = "
solution = angle3
return problem, solution

View File

@@ -0,0 +1,13 @@
from .__init__ import *
def vectorCrossFunc(minVal=-20, maxVal=20):
a = [random.randint(minVal, maxVal) for i in range(3)]
b = [random.randint(minVal, maxVal) for i in range(3)]
c = [a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]]
problem = str(a) + " X " + str(b) + " = "
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def volumeCone(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius)
problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is"
ans = int(math.pi * b * b * a * (1 / 3))
solution = f"{ans} {unit}^3"
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def volumeCube(maxSide=20, unit='m'):
a = random.randint(1, maxSide)
problem = f"Volume of cube with side = {a}{unit} is"
ans = a * a * a
solution = f"{ans} {unit}^3"
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def volumeCuboid(maxSide=20, unit='m'):
a = random.randint(1, maxSide)
b = random.randint(1, maxSide)
c = random.randint(1, maxSide)
problem = f"Volume of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
ans = a * b * c
solution = f"{ans} {unit}^3"
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def volumeCylinder(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius)
problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is"
ans = int(math.pi * b * b * a)
solution = f"{ans} {unit}^3"
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def volumeSphereFunc(maxRadius = 100):
r=random.randint(1,maxRadius)
problem=f"Volume of sphere with radius {r} m = "
ans=(4*math.pi/3)*r*r*r
solution = f"{ans} m^3"
return problem,solution

File diff suppressed because it is too large Load Diff

View File

@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
setup( setup(
name='mathgenerator', name='mathgenerator',
version='1.1.1', version='1.1.3',
description='An open source solution for generating math problems', description='An open source solution for generating math problems',
url='https://github.com/todarith/mathgenerator', url='https://github.com/todarith/mathgenerator',
author='Luke Weiler', author='Luke Weiler',