yapf edits

This commit is contained in:
lukew3
2020-10-19 14:08:13 -04:00
parent 233f8bf180
commit 90a794cc05
41 changed files with 347 additions and 240 deletions

View File

@@ -3,22 +3,22 @@ from .__init__ import *
def DiceSumProbFunc(maxDice=3):
a = random.randint(1, maxDice)
b = random.randint(a, 6*a)
b = random.randint(a, 6 * a)
count = 0
for i in [1, 2, 3, 4, 5, 6]:
if a == 1:
if i == b:
count = count+1
count = count + 1
elif a == 2:
for j in [1, 2, 3, 4, 5, 6]:
if i+j == b:
count = count+1
if i + j == b:
count = count + 1
elif a == 3:
for j in [1, 2, 3, 4, 5, 6]:
for k in [1, 2, 3, 4, 5, 6]:
if i+j+k == b:
count = count+1
if i + j + k == b:
count = count + 1
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(
a, b)

View File

@@ -77,8 +77,8 @@ from .absoluteDifferenceFunc import *
from .vectorDotFunc import *
from .binary2sComplement import *
from .matrixInversion import *
from .sectorAreaFunc import*
from .meanMedianFunc import*
from .sectorAreaFunc import *
from .meanMedianFunc import *
from .determinantToMatrix22 import *
from .compoundInterestFunc import *
from .deciToHexaFunc import *

View File

@@ -7,7 +7,7 @@ def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
c = random.randint(1, maxC)
s = (a + b + c) / 2
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
area = (s * (s - a) * (s - b) * (s - c))**0.5
problem = "Area of triangle with side lengths: " + \
str(a) + " " + str(b) + " " + str(c) + " = "

View File

@@ -8,7 +8,7 @@ def basicAlgebraFunc(maxVariable=10):
# calculate gcd
def calculate_gcd(x, y):
while(y):
while (y):
x, y = y, x % y
return x

View File

@@ -2,15 +2,23 @@ from .__init__ import *
# Handles degrees in quadrant one
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90], functions=["sin", "cos", "tan"]):
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90],
functions=["sin", "cos", "tan"]):
angle = random.choice(angles)
function = random.choice(functions)
problem = f"What is {function}({angle})?"
expression = 'math.'+function+'(math.radians(angle))'
result_fraction_map = {0.0: "0", 0.5: "1/2", 0.71: "1/√2",
0.87: "√3/2", 1.0: "1", 0.58: "1/√3", 1.73: "√3"}
expression = 'math.' + function + '(math.radians(angle))'
result_fraction_map = {
0.0: "0",
0.5: "1/2",
0.71: "1/√2",
0.87: "√3/2",
1.0: "1",
0.58: "1/√3",
1.73: "√3"
}
solution = result_fraction_map[round(eval(expression), 2)] if round(
eval(expression), 2) <= 99999 else "" # for handling the ∞ condition

View File

@@ -10,6 +10,6 @@ def binaryComplement1sFunc(maxDigits=10):
question += temp
answer += "0" if temp == "1" else "1"
problem = question+"="
problem = question + "="
solution = answer
return problem, solution

View File

@@ -2,7 +2,6 @@ from .__init__ import *
def combinationsFunc(maxlength=20):
def factorial(a):
d = 1
for i in range(a):

View File

@@ -15,9 +15,9 @@ def compareFractionsFunc(maxVal=10):
first = a / b
second = c / d
if(first > second):
if (first > second):
solution = ">"
elif(first < second):
elif (first < second):
solution = "<"
else:
solution = "="

View File

@@ -1,13 +1,18 @@
from .__init__ import *
def compoundInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10, maxPeriod=10):
def compoundInterestFunc(maxPrinciple=10000,
maxRate=10,
maxTime=10,
maxPeriod=10):
p = random.randint(100, maxPrinciple)
r = random.randint(1, maxRate)
t = random.randint(1, maxTime)
n = random.randint(1, maxPeriod)
A = p * ((1 + (r/(100*n))**(n*t)))
problem = "Compound Interest for a principle amount of " + str(p) + " dollars, " + str(
r) + "% rate of interest and for a time period of " + str(t) + " compounded monthly is = "
A = p * ((1 + (r / (100 * n))**(n * t)))
problem = "Compound Interest for a principle amount of " + str(
p) + " dollars, " + str(
r) + "% rate of interest and for a time period of " + str(
t) + " compounded monthly is = "
solution = round(A, 2)
return problem, solution

View File

@@ -16,16 +16,16 @@ def confidenceIntervalFunc():
count = i + mean
mean = count
mean = mean/n
mean = mean / n
for i in lst:
x = (i-mean)**2+sd
x = (i - mean)**2 + sd
sd = x
sd = sd/n
standard_error = lst_t[j]*math.sqrt(sd/n)
sd = sd / n
standard_error = lst_t[j] * math.sqrt(sd / n)
problem = 'The confidence interval for sample {} with {}% confidence is'.format(
[x for x in lst], lst_per[j])
solution = '({}, {})'.format(mean+standard_error, mean-standard_error)
solution = '({}, {})'.format(mean + standard_error, mean - standard_error)
return problem, solution

View File

@@ -9,20 +9,20 @@ def dataSummaryFunc(number_values=15, minval=5, maxval=50):
random_list.append(n)
a = sum(random_list)
mean = a/number_values
mean = a / number_values
var = 0
for i in range(number_values):
var += (random_list[i]-mean)**2
var += (random_list[i] - mean)**2
# we're printing stuff here?
print(random_list)
print(mean)
print(var/number_values)
print((var/number_values)**0.5)
print(var / number_values)
print((var / number_values)**0.5)
problem = "Find the mean,standard deviation and variance for the data" + \
str(random_list)
solution = "The Mean is {} , Standard Deviation is {}, Variance is {}".format(
mean, var/number_values, (var/number_values)**0.5)
mean, var / number_values, (var / number_values)**0.5)
return problem, solution

View File

@@ -7,7 +7,7 @@ def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
point2X = random.randint(minValXY, maxValXY + 1)
point2Y = random.randint(minValXY, maxValXY + 1)
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
distanceSq = (point1X - point2X)**2 + (point1Y - point2Y)**2
solution = f"sqrt({distanceSq})"
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"

View File

@@ -14,7 +14,7 @@ def divideFractionsFunc(maxVal=10):
d = random.randint(1, maxVal)
def calculate_gcd(x, y):
while(y):
while (y):
x, y = y, x % y
return x

View File

@@ -6,5 +6,5 @@ def exponentiationFunc(maxBase=20, maxExpo=10):
expo = random.randint(1, maxExpo)
problem = f"{base}^{expo} ="
solution = str(base ** expo)
solution = str(base**expo)
return problem, solution

View File

@@ -10,12 +10,12 @@ def fibonacciSeriesFunc(minNo=1):
if i < 2:
l.append(i)
else:
val = l[i-1]+l[i-2]
val = l[i - 1] + l[i - 2]
l.append(val)
return l
fibList = createFibList(n)
problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?"
problem = "The Fibonacci Series of the first " + str(n) + " numbers is ?"
solution = fibList
return problem, solution

View File

@@ -1,18 +1,23 @@
from .__init__ import *
def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term=5):
def geomProgrFunc(number_values=6,
min_value=2,
max_value=12,
n_term=7,
sum_term=5):
r = random.randint(min_value, max_value)
a = random.randint(min_value, max_value)
n_term = random.randint(number_values, number_values + 5)
sum_term = random.randint(number_values, number_values + 5)
GP = []
for i in range(number_values):
GP.append(a * (r ** i))
problem = "For the given GP " + str(GP) + " ,Find the value of a,common ratio,"+str(
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
value_nth_term = a * (r ** (n_term - 1))
sum_till_nth_term = a * ((r ** sum_term - 1)/(r - 1))
GP.append(a * (r**i))
problem = "For the given GP " + str(
GP) + " ,Find the value of a,common ratio," + str(
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
value_nth_term = a * (r**(n_term - 1))
sum_till_nth_term = a * ((r**sum_term - 1) / (r - 1))
solution = "The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(
a, r, n_term, value_nth_term, sum_term, sum_till_nth_term)
return problem, solution

View File

@@ -8,13 +8,13 @@ def geometricMeanFunc(maxValue=100, maxNum=4):
d = random.randint(1, maxValue)
num = random.randint(2, 4)
if num == 2:
product = a*b
product = a * b
elif num == 3:
product = a*b*c
product = a * b * c
elif num == 4:
product = a*b*c*d
product = a * b * c * d
ans = product**(1/num)
ans = product**(1 / num)
if num == 2:
problem = f"Geometric mean of {num} numbers {a} and {b} = "
solution = f"({a}*{b})^(1/{num}) = {ans}"

View File

@@ -9,13 +9,13 @@ def harmonicMeanFunc(maxValue=100, maxNum=4):
d = random.randint(1, maxValue)
num = random.randint(2, 4)
if num == 2:
sum = (1/a)+(1/b)
sum = (1 / a) + (1 / b)
elif num == 3:
sum = (1/a)+(1/b)+(1/c)
sum = (1 / a) + (1 / b) + (1 / c)
elif num == 4:
sum = (1/a)+(1/b)+(1/c)+(1/d)
sum = (1 / a) + (1 / b) + (1 / c) + (1 / d)
ans = num/sum
ans = num / sum
if num == 2:
problem = f"Harmonic mean of {num} numbers {a} and {b} = "
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"

View File

@@ -5,7 +5,7 @@ def hcfFunc(maxVal=20):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
x, y = a, b
while(y):
while (y):
x, y = y, x % y
problem = f"HCF of {a} and {b} = "
solution = str(x)

View File

@@ -1,10 +1,12 @@
from .__init__ import *
def intersectionOfTwoLinesFunc(
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
):
def intersectionOfTwoLinesFunc(minM=-10,
maxM=10,
minB=-10,
maxB=10,
minDenominator=1,
maxDenominator=6):
def generateEquationString(m, b):
"""
Generates an equation given the slope and intercept.
@@ -33,10 +35,10 @@ def intersectionOfTwoLinesFunc(
x = f"{x.numerator}/{x.denominator}"
return x
m1 = (random.randint(minM, maxM), random.randint(
minDenominator, maxDenominator))
m2 = (random.randint(minM, maxM), random.randint(
minDenominator, maxDenominator))
m1 = (random.randint(minM,
maxM), random.randint(minDenominator, maxDenominator))
m2 = (random.randint(minM,
maxM), random.randint(minDenominator, maxDenominator))
b1 = random.randint(minB, maxB)
b2 = random.randint(minB, maxB)

View File

@@ -9,8 +9,8 @@ def isTriangleValidFunc(maxSideLength=50):
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
sides = [sideC, sideA, sideB]
exists = True & (sides[0] < sideSums[0]) & (
sides[1] < sideSums[1]) & (sides[2] < sideSums[2])
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (
sides[2] < sideSums[2])
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
if exists:

View File

@@ -9,14 +9,16 @@ def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
soln = [random.randint(-varRange, varRange) for i in range(n)]
problem = list()
solution = ", ".join(["{} = {}".format(vars[i], soln[i])
for i in range(n)])
solution = ", ".join(
["{} = {}".format(vars[i], soln[i]) for i in range(n)])
for _ in range(n):
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
res = sum([coeff[i] * soln[i] for i in range(n)])
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i]
!= 0 else "" for i in range(n)]
prob = [
"{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else ""
for i in range(n)
]
while "" in prob:
prob.remove("")

View File

@@ -2,7 +2,9 @@ from .__init__ import *
import sympy
def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerElementsInInvertedMatrix=False):
def matrixInversion(SquareMatrixDimension=3,
MaxMatrixElement=99,
OnlyIntegerElementsInInvertedMatrix=False):
if OnlyIntegerElementsInInvertedMatrix is True:
isItOk = False
Mat = list()
@@ -16,20 +18,25 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
Mat.append(z)
MaxAllowedMatrixElement = math.ceil(
pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
randomlist = random.sample(
range(0, MaxAllowedMatrixElement + 1), SquareMatrixDimension)
randomlist = random.sample(range(0, MaxAllowedMatrixElement + 1),
SquareMatrixDimension)
for i in range(0, SquareMatrixDimension):
if i == SquareMatrixDimension - 1:
Mat[0] = [j + (k * randomlist[i])
for j, k in zip(Mat[0], Mat[i])]
Mat[0] = [
j + (k * randomlist[i])
for j, k in zip(Mat[0], Mat[i])
]
else:
Mat[i + 1] = [j + (k * randomlist[i])
for j, k in zip(Mat[i + 1], Mat[i])]
Mat[i + 1] = [
j + (k * randomlist[i])
for j, k in zip(Mat[i + 1], Mat[i])
]
for i in range(1, SquareMatrixDimension - 1):
Mat[i] = [sum(i)
for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])]
Mat[i] = [
sum(i) for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])
]
isItOk = True
for i in Mat:
@@ -52,7 +59,8 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
plist = random.sample(randomlist, SquareMatrixDimension)
randomlist = random.sample(
range(0, MaxMatrixElement + 1), SquareMatrixDimension * SquareMatrixDimension)
range(0, MaxMatrixElement + 1),
SquareMatrixDimension * SquareMatrixDimension)
randomlist = list(set(randomlist) - set(plist))
n_list = random.sample(
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))

View File

@@ -46,7 +46,7 @@ def matrixMultiplicationFuncHelper(inp):
for i in range(m):
for j in range(n):
string += f"{inp[i][j]: 6d}"
string += ", "if j < n - 1 else ""
string += ", " if j < n - 1 else ""
string += "]\n [" if i < m - 1 else ""
string += "]]"

View File

@@ -6,9 +6,9 @@ def meanMedianFunc(maxlen=10):
total = 0
for n in randomlist:
total = total + n
mean = total/10
mean = total / 10
problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series"
randomlist.sort()
median = (randomlist[4]+randomlist[5])/2
median = (randomlist[4] + randomlist[5]) / 2
solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}"
return problem, solution

View File

@@ -1,7 +1,8 @@
from .__init__ import *
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20, maxRealImaginaryNum=20):
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20,
maxRealImaginaryNum=20):
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),

View File

@@ -14,7 +14,7 @@ def multiplyFractionsFunc(maxVal=10):
d = random.randint(1, maxVal)
def calculate_gcd(x, y):
while(y):
while (y):
x, y = y, x % y
return x

View File

@@ -2,10 +2,10 @@ from .__init__ import *
def nthFibonacciNumberFunc(maxN=100):
golden_ratio = (1 + math.sqrt(5))/2
golden_ratio = (1 + math.sqrt(5)) / 2
n = random.randint(1, maxN)
problem = f"What is the {n}th Fibonacci number?"
ans = round((math.pow(golden_ratio, n) -
math.pow(-golden_ratio, -n))/(math.sqrt(5)))
ans = round((math.pow(golden_ratio, n) - math.pow(-golden_ratio, -n)) /
(math.sqrt(5)))
solution = f"{ans}"
return problem, solution

View File

@@ -5,7 +5,7 @@ def percentageFunc(maxValue=99, maxpercentage=99):
a = random.randint(1, maxpercentage)
b = random.randint(1, maxValue)
problem = f"What is {a}% of {b}?"
percentage = a/100*b
percentage = a / 100 * b
formatted_float = "{:.2f}".format(percentage)
solution = f"Required percentage = {formatted_float}%"
return problem, solution

View File

@@ -4,12 +4,12 @@ from .__init__ import *
def profitLossPercentFunc(maxCP=1000, maxSP=1000):
cP = random.randint(1, maxCP)
sP = random.randint(1, maxSP)
diff = abs(sP-cP)
if (sP-cP >= 0):
diff = abs(sP - cP)
if (sP - cP >= 0):
profitOrLoss = "Profit"
else:
profitOrLoss = "Loss"
percent = diff/cP * 100
percent = diff / cP * 100
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
solution = percent

View File

@@ -4,11 +4,12 @@ from .__init__ import *
def quadraticEquation(maxVal=100):
a = random.randint(1, maxVal)
c = random.randint(1, maxVal)
b = random.randint(round(math.sqrt(4 * a * c)) + 1,
round(math.sqrt(4 * maxVal * maxVal)))
b = random.randint(
round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
D = math.sqrt(b * b - 4 * a * c)
solution = str([round((-b + D) / (2 * a), 2),
round((-b - D) / (2 * a), 2)])
solution = str(
[round((-b + D) / (2 * a), 2),
round((-b - D) / (2 * a), 2)])
return problem, solution

View File

@@ -5,7 +5,7 @@ def sectorAreaFunc(maxRadius=49, maxAngle=359):
Radius = random.randint(1, maxRadius)
Angle = random.randint(1, maxAngle)
problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector."
secArea = float((Angle / 360) * math.pi*Radius*Radius)
secArea = float((Angle / 360) * math.pi * Radius * Radius)
formatted_float = "{:.5f}".format(secArea)
solution = f"Area of sector = {formatted_float}"
return problem, solution

View File

@@ -7,7 +7,9 @@ def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
c = random.randint(1, maxTime)
d = (a * b * c) / 100
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(
b) + "% rate of interest and for a time period of " + str(c) + " years is = "
problem = "Simple interest for a principle amount of " + str(
a) + " dollars, " + str(
b) + "% rate of interest and for a time period of " + str(
c) + " years is = "
solution = round(d, 2)
return problem, solution

View File

@@ -10,8 +10,9 @@ def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
c2 = [0, 1, y]
def randNonZero():
return random.choice([i for i in range(-coeff_mult_range, coeff_mult_range)
if i != 0])
return random.choice(
[i for i in range(-coeff_mult_range, coeff_mult_range) if i != 0])
# Add random (non-zero) multiple of equations (rows) to each other
c1_mult = randNonZero()
c2_mult = randNonZero()

View File

@@ -4,9 +4,10 @@ from .__init__ import *
def vectorCrossFunc(minVal=-20, maxVal=20):
a = [random.randint(minVal, maxVal) for i in range(3)]
b = [random.randint(minVal, maxVal) for i in range(3)]
c = [a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]]
c = [
a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]
]
problem = str(a) + " X " + str(b) + " = "
solution = str(c)

View File

@@ -5,6 +5,6 @@ def volumeSphereFunc(maxRadius=100):
r = random.randint(1, maxRadius)
problem = f"Volume of sphere with radius {r} m = "
ans = (4*math.pi/3)*r*r*r
ans = (4 * math.pi / 3) * r * r * r
solution = f"{ans} m^3"
return problem, solution