mirror of
https://github.com/DeaDvey/mathgenerator.git
synced 2025-11-28 14:35:23 +01:00
yapf edits
This commit is contained in:
@@ -3,22 +3,22 @@ from .__init__ import *
|
||||
|
||||
def DiceSumProbFunc(maxDice=3):
|
||||
a = random.randint(1, maxDice)
|
||||
b = random.randint(a, 6*a)
|
||||
b = random.randint(a, 6 * a)
|
||||
|
||||
count = 0
|
||||
for i in [1, 2, 3, 4, 5, 6]:
|
||||
if a == 1:
|
||||
if i == b:
|
||||
count = count+1
|
||||
count = count + 1
|
||||
elif a == 2:
|
||||
for j in [1, 2, 3, 4, 5, 6]:
|
||||
if i+j == b:
|
||||
count = count+1
|
||||
if i + j == b:
|
||||
count = count + 1
|
||||
elif a == 3:
|
||||
for j in [1, 2, 3, 4, 5, 6]:
|
||||
for k in [1, 2, 3, 4, 5, 6]:
|
||||
if i+j+k == b:
|
||||
count = count+1
|
||||
if i + j + k == b:
|
||||
count = count + 1
|
||||
|
||||
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(
|
||||
a, b)
|
||||
|
||||
@@ -77,8 +77,8 @@ from .absoluteDifferenceFunc import *
|
||||
from .vectorDotFunc import *
|
||||
from .binary2sComplement import *
|
||||
from .matrixInversion import *
|
||||
from .sectorAreaFunc import*
|
||||
from .meanMedianFunc import*
|
||||
from .sectorAreaFunc import *
|
||||
from .meanMedianFunc import *
|
||||
from .determinantToMatrix22 import *
|
||||
from .compoundInterestFunc import *
|
||||
from .deciToHexaFunc import *
|
||||
|
||||
@@ -7,7 +7,7 @@ def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
||||
c = random.randint(1, maxC)
|
||||
|
||||
s = (a + b + c) / 2
|
||||
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
|
||||
area = (s * (s - a) * (s - b) * (s - c))**0.5
|
||||
|
||||
problem = "Area of triangle with side lengths: " + \
|
||||
str(a) + " " + str(b) + " " + str(c) + " = "
|
||||
|
||||
@@ -8,7 +8,7 @@ def basicAlgebraFunc(maxVariable=10):
|
||||
|
||||
# calculate gcd
|
||||
def calculate_gcd(x, y):
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
return x
|
||||
|
||||
|
||||
@@ -2,15 +2,23 @@ from .__init__ import *
|
||||
|
||||
|
||||
# Handles degrees in quadrant one
|
||||
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90], functions=["sin", "cos", "tan"]):
|
||||
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90],
|
||||
functions=["sin", "cos", "tan"]):
|
||||
angle = random.choice(angles)
|
||||
function = random.choice(functions)
|
||||
|
||||
problem = f"What is {function}({angle})?"
|
||||
|
||||
expression = 'math.'+function+'(math.radians(angle))'
|
||||
result_fraction_map = {0.0: "0", 0.5: "1/2", 0.71: "1/√2",
|
||||
0.87: "√3/2", 1.0: "1", 0.58: "1/√3", 1.73: "√3"}
|
||||
expression = 'math.' + function + '(math.radians(angle))'
|
||||
result_fraction_map = {
|
||||
0.0: "0",
|
||||
0.5: "1/2",
|
||||
0.71: "1/√2",
|
||||
0.87: "√3/2",
|
||||
1.0: "1",
|
||||
0.58: "1/√3",
|
||||
1.73: "√3"
|
||||
}
|
||||
|
||||
solution = result_fraction_map[round(eval(expression), 2)] if round(
|
||||
eval(expression), 2) <= 99999 else "∞" # for handling the ∞ condition
|
||||
|
||||
@@ -10,6 +10,6 @@ def binaryComplement1sFunc(maxDigits=10):
|
||||
question += temp
|
||||
answer += "0" if temp == "1" else "1"
|
||||
|
||||
problem = question+"="
|
||||
problem = question + "="
|
||||
solution = answer
|
||||
return problem, solution
|
||||
|
||||
@@ -2,7 +2,6 @@ from .__init__ import *
|
||||
|
||||
|
||||
def combinationsFunc(maxlength=20):
|
||||
|
||||
def factorial(a):
|
||||
d = 1
|
||||
for i in range(a):
|
||||
|
||||
@@ -15,9 +15,9 @@ def compareFractionsFunc(maxVal=10):
|
||||
first = a / b
|
||||
second = c / d
|
||||
|
||||
if(first > second):
|
||||
if (first > second):
|
||||
solution = ">"
|
||||
elif(first < second):
|
||||
elif (first < second):
|
||||
solution = "<"
|
||||
else:
|
||||
solution = "="
|
||||
|
||||
@@ -1,13 +1,18 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def compoundInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10, maxPeriod=10):
|
||||
def compoundInterestFunc(maxPrinciple=10000,
|
||||
maxRate=10,
|
||||
maxTime=10,
|
||||
maxPeriod=10):
|
||||
p = random.randint(100, maxPrinciple)
|
||||
r = random.randint(1, maxRate)
|
||||
t = random.randint(1, maxTime)
|
||||
n = random.randint(1, maxPeriod)
|
||||
A = p * ((1 + (r/(100*n))**(n*t)))
|
||||
problem = "Compound Interest for a principle amount of " + str(p) + " dollars, " + str(
|
||||
r) + "% rate of interest and for a time period of " + str(t) + " compounded monthly is = "
|
||||
A = p * ((1 + (r / (100 * n))**(n * t)))
|
||||
problem = "Compound Interest for a principle amount of " + str(
|
||||
p) + " dollars, " + str(
|
||||
r) + "% rate of interest and for a time period of " + str(
|
||||
t) + " compounded monthly is = "
|
||||
solution = round(A, 2)
|
||||
return problem, solution
|
||||
|
||||
@@ -16,16 +16,16 @@ def confidenceIntervalFunc():
|
||||
count = i + mean
|
||||
mean = count
|
||||
|
||||
mean = mean/n
|
||||
mean = mean / n
|
||||
|
||||
for i in lst:
|
||||
x = (i-mean)**2+sd
|
||||
x = (i - mean)**2 + sd
|
||||
sd = x
|
||||
|
||||
sd = sd/n
|
||||
standard_error = lst_t[j]*math.sqrt(sd/n)
|
||||
sd = sd / n
|
||||
standard_error = lst_t[j] * math.sqrt(sd / n)
|
||||
|
||||
problem = 'The confidence interval for sample {} with {}% confidence is'.format(
|
||||
[x for x in lst], lst_per[j])
|
||||
solution = '({}, {})'.format(mean+standard_error, mean-standard_error)
|
||||
solution = '({}, {})'.format(mean + standard_error, mean - standard_error)
|
||||
return problem, solution
|
||||
|
||||
@@ -9,20 +9,20 @@ def dataSummaryFunc(number_values=15, minval=5, maxval=50):
|
||||
random_list.append(n)
|
||||
|
||||
a = sum(random_list)
|
||||
mean = a/number_values
|
||||
mean = a / number_values
|
||||
|
||||
var = 0
|
||||
for i in range(number_values):
|
||||
var += (random_list[i]-mean)**2
|
||||
var += (random_list[i] - mean)**2
|
||||
|
||||
# we're printing stuff here?
|
||||
print(random_list)
|
||||
print(mean)
|
||||
print(var/number_values)
|
||||
print((var/number_values)**0.5)
|
||||
print(var / number_values)
|
||||
print((var / number_values)**0.5)
|
||||
|
||||
problem = "Find the mean,standard deviation and variance for the data" + \
|
||||
str(random_list)
|
||||
solution = "The Mean is {} , Standard Deviation is {}, Variance is {}".format(
|
||||
mean, var/number_values, (var/number_values)**0.5)
|
||||
mean, var / number_values, (var / number_values)**0.5)
|
||||
return problem, solution
|
||||
|
||||
@@ -7,7 +7,7 @@ def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
|
||||
point2X = random.randint(minValXY, maxValXY + 1)
|
||||
point2Y = random.randint(minValXY, maxValXY + 1)
|
||||
|
||||
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
|
||||
distanceSq = (point1X - point2X)**2 + (point1Y - point2Y)**2
|
||||
|
||||
solution = f"sqrt({distanceSq})"
|
||||
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
|
||||
|
||||
@@ -14,7 +14,7 @@ def divideFractionsFunc(maxVal=10):
|
||||
d = random.randint(1, maxVal)
|
||||
|
||||
def calculate_gcd(x, y):
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
return x
|
||||
|
||||
|
||||
@@ -6,5 +6,5 @@ def exponentiationFunc(maxBase=20, maxExpo=10):
|
||||
expo = random.randint(1, maxExpo)
|
||||
|
||||
problem = f"{base}^{expo} ="
|
||||
solution = str(base ** expo)
|
||||
solution = str(base**expo)
|
||||
return problem, solution
|
||||
|
||||
@@ -10,12 +10,12 @@ def fibonacciSeriesFunc(minNo=1):
|
||||
if i < 2:
|
||||
l.append(i)
|
||||
else:
|
||||
val = l[i-1]+l[i-2]
|
||||
val = l[i - 1] + l[i - 2]
|
||||
l.append(val)
|
||||
return l
|
||||
|
||||
fibList = createFibList(n)
|
||||
|
||||
problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?"
|
||||
problem = "The Fibonacci Series of the first " + str(n) + " numbers is ?"
|
||||
solution = fibList
|
||||
return problem, solution
|
||||
|
||||
@@ -1,18 +1,23 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term=5):
|
||||
def geomProgrFunc(number_values=6,
|
||||
min_value=2,
|
||||
max_value=12,
|
||||
n_term=7,
|
||||
sum_term=5):
|
||||
r = random.randint(min_value, max_value)
|
||||
a = random.randint(min_value, max_value)
|
||||
n_term = random.randint(number_values, number_values + 5)
|
||||
sum_term = random.randint(number_values, number_values + 5)
|
||||
GP = []
|
||||
for i in range(number_values):
|
||||
GP.append(a * (r ** i))
|
||||
problem = "For the given GP " + str(GP) + " ,Find the value of a,common ratio,"+str(
|
||||
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
|
||||
value_nth_term = a * (r ** (n_term - 1))
|
||||
sum_till_nth_term = a * ((r ** sum_term - 1)/(r - 1))
|
||||
GP.append(a * (r**i))
|
||||
problem = "For the given GP " + str(
|
||||
GP) + " ,Find the value of a,common ratio," + str(
|
||||
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
|
||||
value_nth_term = a * (r**(n_term - 1))
|
||||
sum_till_nth_term = a * ((r**sum_term - 1) / (r - 1))
|
||||
solution = "The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(
|
||||
a, r, n_term, value_nth_term, sum_term, sum_till_nth_term)
|
||||
return problem, solution
|
||||
|
||||
@@ -8,13 +8,13 @@ def geometricMeanFunc(maxValue=100, maxNum=4):
|
||||
d = random.randint(1, maxValue)
|
||||
num = random.randint(2, 4)
|
||||
if num == 2:
|
||||
product = a*b
|
||||
product = a * b
|
||||
elif num == 3:
|
||||
product = a*b*c
|
||||
product = a * b * c
|
||||
elif num == 4:
|
||||
product = a*b*c*d
|
||||
product = a * b * c * d
|
||||
|
||||
ans = product**(1/num)
|
||||
ans = product**(1 / num)
|
||||
if num == 2:
|
||||
problem = f"Geometric mean of {num} numbers {a} and {b} = "
|
||||
solution = f"({a}*{b})^(1/{num}) = {ans}"
|
||||
|
||||
@@ -9,13 +9,13 @@ def harmonicMeanFunc(maxValue=100, maxNum=4):
|
||||
d = random.randint(1, maxValue)
|
||||
num = random.randint(2, 4)
|
||||
if num == 2:
|
||||
sum = (1/a)+(1/b)
|
||||
sum = (1 / a) + (1 / b)
|
||||
elif num == 3:
|
||||
sum = (1/a)+(1/b)+(1/c)
|
||||
sum = (1 / a) + (1 / b) + (1 / c)
|
||||
elif num == 4:
|
||||
sum = (1/a)+(1/b)+(1/c)+(1/d)
|
||||
sum = (1 / a) + (1 / b) + (1 / c) + (1 / d)
|
||||
|
||||
ans = num/sum
|
||||
ans = num / sum
|
||||
if num == 2:
|
||||
problem = f"Harmonic mean of {num} numbers {a} and {b} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
|
||||
|
||||
@@ -5,7 +5,7 @@ def hcfFunc(maxVal=20):
|
||||
a = random.randint(1, maxVal)
|
||||
b = random.randint(1, maxVal)
|
||||
x, y = a, b
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
problem = f"HCF of {a} and {b} = "
|
||||
solution = str(x)
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def intersectionOfTwoLinesFunc(
|
||||
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
|
||||
):
|
||||
|
||||
def intersectionOfTwoLinesFunc(minM=-10,
|
||||
maxM=10,
|
||||
minB=-10,
|
||||
maxB=10,
|
||||
minDenominator=1,
|
||||
maxDenominator=6):
|
||||
def generateEquationString(m, b):
|
||||
"""
|
||||
Generates an equation given the slope and intercept.
|
||||
@@ -33,10 +35,10 @@ def intersectionOfTwoLinesFunc(
|
||||
x = f"{x.numerator}/{x.denominator}"
|
||||
return x
|
||||
|
||||
m1 = (random.randint(minM, maxM), random.randint(
|
||||
minDenominator, maxDenominator))
|
||||
m2 = (random.randint(minM, maxM), random.randint(
|
||||
minDenominator, maxDenominator))
|
||||
m1 = (random.randint(minM,
|
||||
maxM), random.randint(minDenominator, maxDenominator))
|
||||
m2 = (random.randint(minM,
|
||||
maxM), random.randint(minDenominator, maxDenominator))
|
||||
|
||||
b1 = random.randint(minB, maxB)
|
||||
b2 = random.randint(minB, maxB)
|
||||
|
||||
@@ -9,8 +9,8 @@ def isTriangleValidFunc(maxSideLength=50):
|
||||
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
|
||||
sides = [sideC, sideA, sideB]
|
||||
|
||||
exists = True & (sides[0] < sideSums[0]) & (
|
||||
sides[1] < sideSums[1]) & (sides[2] < sideSums[2])
|
||||
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (
|
||||
sides[2] < sideSums[2])
|
||||
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
|
||||
|
||||
if exists:
|
||||
|
||||
@@ -9,14 +9,16 @@ def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
|
||||
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
||||
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
||||
problem = list()
|
||||
solution = ", ".join(["{} = {}".format(vars[i], soln[i])
|
||||
for i in range(n)])
|
||||
solution = ", ".join(
|
||||
["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
||||
|
||||
for _ in range(n):
|
||||
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
||||
res = sum([coeff[i] * soln[i] for i in range(n)])
|
||||
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i]
|
||||
!= 0 else "" for i in range(n)]
|
||||
prob = [
|
||||
"{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else ""
|
||||
for i in range(n)
|
||||
]
|
||||
|
||||
while "" in prob:
|
||||
prob.remove("")
|
||||
|
||||
@@ -2,7 +2,9 @@ from .__init__ import *
|
||||
import sympy
|
||||
|
||||
|
||||
def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerElementsInInvertedMatrix=False):
|
||||
def matrixInversion(SquareMatrixDimension=3,
|
||||
MaxMatrixElement=99,
|
||||
OnlyIntegerElementsInInvertedMatrix=False):
|
||||
if OnlyIntegerElementsInInvertedMatrix is True:
|
||||
isItOk = False
|
||||
Mat = list()
|
||||
@@ -16,20 +18,25 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
||||
Mat.append(z)
|
||||
MaxAllowedMatrixElement = math.ceil(
|
||||
pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
|
||||
randomlist = random.sample(
|
||||
range(0, MaxAllowedMatrixElement + 1), SquareMatrixDimension)
|
||||
randomlist = random.sample(range(0, MaxAllowedMatrixElement + 1),
|
||||
SquareMatrixDimension)
|
||||
|
||||
for i in range(0, SquareMatrixDimension):
|
||||
if i == SquareMatrixDimension - 1:
|
||||
Mat[0] = [j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[0], Mat[i])]
|
||||
Mat[0] = [
|
||||
j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[0], Mat[i])
|
||||
]
|
||||
else:
|
||||
Mat[i + 1] = [j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[i + 1], Mat[i])]
|
||||
Mat[i + 1] = [
|
||||
j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[i + 1], Mat[i])
|
||||
]
|
||||
|
||||
for i in range(1, SquareMatrixDimension - 1):
|
||||
Mat[i] = [sum(i)
|
||||
for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])]
|
||||
Mat[i] = [
|
||||
sum(i) for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])
|
||||
]
|
||||
|
||||
isItOk = True
|
||||
for i in Mat:
|
||||
@@ -52,7 +59,8 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
||||
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
|
||||
plist = random.sample(randomlist, SquareMatrixDimension)
|
||||
randomlist = random.sample(
|
||||
range(0, MaxMatrixElement + 1), SquareMatrixDimension * SquareMatrixDimension)
|
||||
range(0, MaxMatrixElement + 1),
|
||||
SquareMatrixDimension * SquareMatrixDimension)
|
||||
randomlist = list(set(randomlist) - set(plist))
|
||||
n_list = random.sample(
|
||||
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))
|
||||
|
||||
@@ -46,7 +46,7 @@ def matrixMultiplicationFuncHelper(inp):
|
||||
for i in range(m):
|
||||
for j in range(n):
|
||||
string += f"{inp[i][j]: 6d}"
|
||||
string += ", "if j < n - 1 else ""
|
||||
string += ", " if j < n - 1 else ""
|
||||
string += "]\n [" if i < m - 1 else ""
|
||||
string += "]]"
|
||||
|
||||
|
||||
@@ -6,9 +6,9 @@ def meanMedianFunc(maxlen=10):
|
||||
total = 0
|
||||
for n in randomlist:
|
||||
total = total + n
|
||||
mean = total/10
|
||||
mean = total / 10
|
||||
problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series"
|
||||
randomlist.sort()
|
||||
median = (randomlist[4]+randomlist[5])/2
|
||||
median = (randomlist[4] + randomlist[5]) / 2
|
||||
solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}"
|
||||
return problem, solution
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20, maxRealImaginaryNum=20):
|
||||
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20,
|
||||
maxRealImaginaryNum=20):
|
||||
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||
|
||||
@@ -14,7 +14,7 @@ def multiplyFractionsFunc(maxVal=10):
|
||||
d = random.randint(1, maxVal)
|
||||
|
||||
def calculate_gcd(x, y):
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
return x
|
||||
|
||||
|
||||
@@ -2,10 +2,10 @@ from .__init__ import *
|
||||
|
||||
|
||||
def nthFibonacciNumberFunc(maxN=100):
|
||||
golden_ratio = (1 + math.sqrt(5))/2
|
||||
golden_ratio = (1 + math.sqrt(5)) / 2
|
||||
n = random.randint(1, maxN)
|
||||
problem = f"What is the {n}th Fibonacci number?"
|
||||
ans = round((math.pow(golden_ratio, n) -
|
||||
math.pow(-golden_ratio, -n))/(math.sqrt(5)))
|
||||
ans = round((math.pow(golden_ratio, n) - math.pow(-golden_ratio, -n)) /
|
||||
(math.sqrt(5)))
|
||||
solution = f"{ans}"
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def percentageFunc(maxValue=99, maxpercentage=99):
|
||||
a = random.randint(1, maxpercentage)
|
||||
b = random.randint(1, maxValue)
|
||||
problem = f"What is {a}% of {b}?"
|
||||
percentage = a/100*b
|
||||
percentage = a / 100 * b
|
||||
formatted_float = "{:.2f}".format(percentage)
|
||||
solution = f"Required percentage = {formatted_float}%"
|
||||
return problem, solution
|
||||
|
||||
@@ -4,12 +4,12 @@ from .__init__ import *
|
||||
def profitLossPercentFunc(maxCP=1000, maxSP=1000):
|
||||
cP = random.randint(1, maxCP)
|
||||
sP = random.randint(1, maxSP)
|
||||
diff = abs(sP-cP)
|
||||
if (sP-cP >= 0):
|
||||
diff = abs(sP - cP)
|
||||
if (sP - cP >= 0):
|
||||
profitOrLoss = "Profit"
|
||||
else:
|
||||
profitOrLoss = "Loss"
|
||||
percent = diff/cP * 100
|
||||
percent = diff / cP * 100
|
||||
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
|
||||
solution = percent
|
||||
|
||||
|
||||
@@ -4,11 +4,12 @@ from .__init__ import *
|
||||
def quadraticEquation(maxVal=100):
|
||||
a = random.randint(1, maxVal)
|
||||
c = random.randint(1, maxVal)
|
||||
b = random.randint(round(math.sqrt(4 * a * c)) + 1,
|
||||
round(math.sqrt(4 * maxVal * maxVal)))
|
||||
b = random.randint(
|
||||
round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
|
||||
|
||||
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
||||
D = math.sqrt(b * b - 4 * a * c)
|
||||
solution = str([round((-b + D) / (2 * a), 2),
|
||||
round((-b - D) / (2 * a), 2)])
|
||||
solution = str(
|
||||
[round((-b + D) / (2 * a), 2),
|
||||
round((-b - D) / (2 * a), 2)])
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def sectorAreaFunc(maxRadius=49, maxAngle=359):
|
||||
Radius = random.randint(1, maxRadius)
|
||||
Angle = random.randint(1, maxAngle)
|
||||
problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector."
|
||||
secArea = float((Angle / 360) * math.pi*Radius*Radius)
|
||||
secArea = float((Angle / 360) * math.pi * Radius * Radius)
|
||||
formatted_float = "{:.5f}".format(secArea)
|
||||
solution = f"Area of sector = {formatted_float}"
|
||||
return problem, solution
|
||||
|
||||
@@ -7,7 +7,9 @@ def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
|
||||
c = random.randint(1, maxTime)
|
||||
d = (a * b * c) / 100
|
||||
|
||||
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(
|
||||
b) + "% rate of interest and for a time period of " + str(c) + " years is = "
|
||||
problem = "Simple interest for a principle amount of " + str(
|
||||
a) + " dollars, " + str(
|
||||
b) + "% rate of interest and for a time period of " + str(
|
||||
c) + " years is = "
|
||||
solution = round(d, 2)
|
||||
return problem, solution
|
||||
|
||||
@@ -10,8 +10,9 @@ def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
|
||||
c2 = [0, 1, y]
|
||||
|
||||
def randNonZero():
|
||||
return random.choice([i for i in range(-coeff_mult_range, coeff_mult_range)
|
||||
if i != 0])
|
||||
return random.choice(
|
||||
[i for i in range(-coeff_mult_range, coeff_mult_range) if i != 0])
|
||||
|
||||
# Add random (non-zero) multiple of equations (rows) to each other
|
||||
c1_mult = randNonZero()
|
||||
c2_mult = randNonZero()
|
||||
|
||||
@@ -4,9 +4,10 @@ from .__init__ import *
|
||||
def vectorCrossFunc(minVal=-20, maxVal=20):
|
||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
c = [a[1] * b[2] - a[2] * b[1],
|
||||
a[2] * b[0] - a[0] * b[2],
|
||||
a[0] * b[1] - a[1] * b[0]]
|
||||
c = [
|
||||
a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2],
|
||||
a[0] * b[1] - a[1] * b[0]
|
||||
]
|
||||
|
||||
problem = str(a) + " X " + str(b) + " = "
|
||||
solution = str(c)
|
||||
|
||||
@@ -5,6 +5,6 @@ def volumeSphereFunc(maxRadius=100):
|
||||
r = random.randint(1, maxRadius)
|
||||
|
||||
problem = f"Volume of sphere with radius {r} m = "
|
||||
ans = (4*math.pi/3)*r*r*r
|
||||
ans = (4 * math.pi / 3) * r * r * r
|
||||
solution = f"{ans} m^3"
|
||||
return problem, solution
|
||||
|
||||
Reference in New Issue
Block a user