mirror of
https://github.com/DeaDvey/mathgenerator.git
synced 2025-11-28 06:25:23 +01:00
yapf edits
This commit is contained in:
@@ -1,4 +1,3 @@
|
|||||||
|
|
||||||
genList = []
|
genList = []
|
||||||
|
|
||||||
|
|
||||||
@@ -12,7 +11,9 @@ class Generator:
|
|||||||
genList.append([id, title, self])
|
genList.append([id, title, self])
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return str(self.id) + " " + self.title + " " + self.generalProb + " " + self.generalSol
|
return str(
|
||||||
|
self.id
|
||||||
|
) + " " + self.title + " " + self.generalProb + " " + self.generalSol
|
||||||
|
|
||||||
def __call__(self, **kwargs):
|
def __call__(self, **kwargs):
|
||||||
return self.func(**kwargs)
|
return self.func(**kwargs)
|
||||||
|
|||||||
@@ -2,15 +2,23 @@ from .__init__ import *
|
|||||||
|
|
||||||
|
|
||||||
# Handles degrees in quadrant one
|
# Handles degrees in quadrant one
|
||||||
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90], functions=["sin", "cos", "tan"]):
|
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90],
|
||||||
|
functions=["sin", "cos", "tan"]):
|
||||||
angle = random.choice(angles)
|
angle = random.choice(angles)
|
||||||
function = random.choice(functions)
|
function = random.choice(functions)
|
||||||
|
|
||||||
problem = f"What is {function}({angle})?"
|
problem = f"What is {function}({angle})?"
|
||||||
|
|
||||||
expression = 'math.' + function + '(math.radians(angle))'
|
expression = 'math.' + function + '(math.radians(angle))'
|
||||||
result_fraction_map = {0.0: "0", 0.5: "1/2", 0.71: "1/√2",
|
result_fraction_map = {
|
||||||
0.87: "√3/2", 1.0: "1", 0.58: "1/√3", 1.73: "√3"}
|
0.0: "0",
|
||||||
|
0.5: "1/2",
|
||||||
|
0.71: "1/√2",
|
||||||
|
0.87: "√3/2",
|
||||||
|
1.0: "1",
|
||||||
|
0.58: "1/√3",
|
||||||
|
1.73: "√3"
|
||||||
|
}
|
||||||
|
|
||||||
solution = result_fraction_map[round(eval(expression), 2)] if round(
|
solution = result_fraction_map[round(eval(expression), 2)] if round(
|
||||||
eval(expression), 2) <= 99999 else "∞" # for handling the ∞ condition
|
eval(expression), 2) <= 99999 else "∞" # for handling the ∞ condition
|
||||||
|
|||||||
@@ -2,7 +2,6 @@ from .__init__ import *
|
|||||||
|
|
||||||
|
|
||||||
def combinationsFunc(maxlength=20):
|
def combinationsFunc(maxlength=20):
|
||||||
|
|
||||||
def factorial(a):
|
def factorial(a):
|
||||||
d = 1
|
d = 1
|
||||||
for i in range(a):
|
for i in range(a):
|
||||||
|
|||||||
@@ -1,13 +1,18 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def compoundInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10, maxPeriod=10):
|
def compoundInterestFunc(maxPrinciple=10000,
|
||||||
|
maxRate=10,
|
||||||
|
maxTime=10,
|
||||||
|
maxPeriod=10):
|
||||||
p = random.randint(100, maxPrinciple)
|
p = random.randint(100, maxPrinciple)
|
||||||
r = random.randint(1, maxRate)
|
r = random.randint(1, maxRate)
|
||||||
t = random.randint(1, maxTime)
|
t = random.randint(1, maxTime)
|
||||||
n = random.randint(1, maxPeriod)
|
n = random.randint(1, maxPeriod)
|
||||||
A = p * ((1 + (r / (100 * n))**(n * t)))
|
A = p * ((1 + (r / (100 * n))**(n * t)))
|
||||||
problem = "Compound Interest for a principle amount of " + str(p) + " dollars, " + str(
|
problem = "Compound Interest for a principle amount of " + str(
|
||||||
r) + "% rate of interest and for a time period of " + str(t) + " compounded monthly is = "
|
p) + " dollars, " + str(
|
||||||
|
r) + "% rate of interest and for a time period of " + str(
|
||||||
|
t) + " compounded monthly is = "
|
||||||
solution = round(A, 2)
|
solution = round(A, 2)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,7 +1,11 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term=5):
|
def geomProgrFunc(number_values=6,
|
||||||
|
min_value=2,
|
||||||
|
max_value=12,
|
||||||
|
n_term=7,
|
||||||
|
sum_term=5):
|
||||||
r = random.randint(min_value, max_value)
|
r = random.randint(min_value, max_value)
|
||||||
a = random.randint(min_value, max_value)
|
a = random.randint(min_value, max_value)
|
||||||
n_term = random.randint(number_values, number_values + 5)
|
n_term = random.randint(number_values, number_values + 5)
|
||||||
@@ -9,7 +13,8 @@ def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term
|
|||||||
GP = []
|
GP = []
|
||||||
for i in range(number_values):
|
for i in range(number_values):
|
||||||
GP.append(a * (r**i))
|
GP.append(a * (r**i))
|
||||||
problem = "For the given GP " + str(GP) + " ,Find the value of a,common ratio,"+str(
|
problem = "For the given GP " + str(
|
||||||
|
GP) + " ,Find the value of a,common ratio," + str(
|
||||||
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
|
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
|
||||||
value_nth_term = a * (r**(n_term - 1))
|
value_nth_term = a * (r**(n_term - 1))
|
||||||
sum_till_nth_term = a * ((r**sum_term - 1) / (r - 1))
|
sum_till_nth_term = a * ((r**sum_term - 1) / (r - 1))
|
||||||
|
|||||||
@@ -1,10 +1,12 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def intersectionOfTwoLinesFunc(
|
def intersectionOfTwoLinesFunc(minM=-10,
|
||||||
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
|
maxM=10,
|
||||||
):
|
minB=-10,
|
||||||
|
maxB=10,
|
||||||
|
minDenominator=1,
|
||||||
|
maxDenominator=6):
|
||||||
def generateEquationString(m, b):
|
def generateEquationString(m, b):
|
||||||
"""
|
"""
|
||||||
Generates an equation given the slope and intercept.
|
Generates an equation given the slope and intercept.
|
||||||
@@ -33,10 +35,10 @@ def intersectionOfTwoLinesFunc(
|
|||||||
x = f"{x.numerator}/{x.denominator}"
|
x = f"{x.numerator}/{x.denominator}"
|
||||||
return x
|
return x
|
||||||
|
|
||||||
m1 = (random.randint(minM, maxM), random.randint(
|
m1 = (random.randint(minM,
|
||||||
minDenominator, maxDenominator))
|
maxM), random.randint(minDenominator, maxDenominator))
|
||||||
m2 = (random.randint(minM, maxM), random.randint(
|
m2 = (random.randint(minM,
|
||||||
minDenominator, maxDenominator))
|
maxM), random.randint(minDenominator, maxDenominator))
|
||||||
|
|
||||||
b1 = random.randint(minB, maxB)
|
b1 = random.randint(minB, maxB)
|
||||||
b2 = random.randint(minB, maxB)
|
b2 = random.randint(minB, maxB)
|
||||||
|
|||||||
@@ -9,8 +9,8 @@ def isTriangleValidFunc(maxSideLength=50):
|
|||||||
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
|
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
|
||||||
sides = [sideC, sideA, sideB]
|
sides = [sideC, sideA, sideB]
|
||||||
|
|
||||||
exists = True & (sides[0] < sideSums[0]) & (
|
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (
|
||||||
sides[1] < sideSums[1]) & (sides[2] < sideSums[2])
|
sides[2] < sideSums[2])
|
||||||
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
|
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
|
||||||
|
|
||||||
if exists:
|
if exists:
|
||||||
|
|||||||
@@ -9,14 +9,16 @@ def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
|
|||||||
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
||||||
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
||||||
problem = list()
|
problem = list()
|
||||||
solution = ", ".join(["{} = {}".format(vars[i], soln[i])
|
solution = ", ".join(
|
||||||
for i in range(n)])
|
["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
||||||
|
|
||||||
for _ in range(n):
|
for _ in range(n):
|
||||||
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
||||||
res = sum([coeff[i] * soln[i] for i in range(n)])
|
res = sum([coeff[i] * soln[i] for i in range(n)])
|
||||||
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i]
|
prob = [
|
||||||
!= 0 else "" for i in range(n)]
|
"{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else ""
|
||||||
|
for i in range(n)
|
||||||
|
]
|
||||||
|
|
||||||
while "" in prob:
|
while "" in prob:
|
||||||
prob.remove("")
|
prob.remove("")
|
||||||
|
|||||||
@@ -2,7 +2,9 @@ from .__init__ import *
|
|||||||
import sympy
|
import sympy
|
||||||
|
|
||||||
|
|
||||||
def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerElementsInInvertedMatrix=False):
|
def matrixInversion(SquareMatrixDimension=3,
|
||||||
|
MaxMatrixElement=99,
|
||||||
|
OnlyIntegerElementsInInvertedMatrix=False):
|
||||||
if OnlyIntegerElementsInInvertedMatrix is True:
|
if OnlyIntegerElementsInInvertedMatrix is True:
|
||||||
isItOk = False
|
isItOk = False
|
||||||
Mat = list()
|
Mat = list()
|
||||||
@@ -16,20 +18,25 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
|||||||
Mat.append(z)
|
Mat.append(z)
|
||||||
MaxAllowedMatrixElement = math.ceil(
|
MaxAllowedMatrixElement = math.ceil(
|
||||||
pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
|
pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
|
||||||
randomlist = random.sample(
|
randomlist = random.sample(range(0, MaxAllowedMatrixElement + 1),
|
||||||
range(0, MaxAllowedMatrixElement + 1), SquareMatrixDimension)
|
SquareMatrixDimension)
|
||||||
|
|
||||||
for i in range(0, SquareMatrixDimension):
|
for i in range(0, SquareMatrixDimension):
|
||||||
if i == SquareMatrixDimension - 1:
|
if i == SquareMatrixDimension - 1:
|
||||||
Mat[0] = [j + (k * randomlist[i])
|
Mat[0] = [
|
||||||
for j, k in zip(Mat[0], Mat[i])]
|
j + (k * randomlist[i])
|
||||||
|
for j, k in zip(Mat[0], Mat[i])
|
||||||
|
]
|
||||||
else:
|
else:
|
||||||
Mat[i + 1] = [j + (k * randomlist[i])
|
Mat[i + 1] = [
|
||||||
for j, k in zip(Mat[i + 1], Mat[i])]
|
j + (k * randomlist[i])
|
||||||
|
for j, k in zip(Mat[i + 1], Mat[i])
|
||||||
|
]
|
||||||
|
|
||||||
for i in range(1, SquareMatrixDimension - 1):
|
for i in range(1, SquareMatrixDimension - 1):
|
||||||
Mat[i] = [sum(i)
|
Mat[i] = [
|
||||||
for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])]
|
sum(i) for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])
|
||||||
|
]
|
||||||
|
|
||||||
isItOk = True
|
isItOk = True
|
||||||
for i in Mat:
|
for i in Mat:
|
||||||
@@ -52,7 +59,8 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
|||||||
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
|
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
|
||||||
plist = random.sample(randomlist, SquareMatrixDimension)
|
plist = random.sample(randomlist, SquareMatrixDimension)
|
||||||
randomlist = random.sample(
|
randomlist = random.sample(
|
||||||
range(0, MaxMatrixElement + 1), SquareMatrixDimension * SquareMatrixDimension)
|
range(0, MaxMatrixElement + 1),
|
||||||
|
SquareMatrixDimension * SquareMatrixDimension)
|
||||||
randomlist = list(set(randomlist) - set(plist))
|
randomlist = list(set(randomlist) - set(plist))
|
||||||
n_list = random.sample(
|
n_list = random.sample(
|
||||||
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))
|
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))
|
||||||
|
|||||||
@@ -1,7 +1,8 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20, maxRealImaginaryNum=20):
|
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20,
|
||||||
|
maxRealImaginaryNum=20):
|
||||||
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||||
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||||
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ def nthFibonacciNumberFunc(maxN=100):
|
|||||||
golden_ratio = (1 + math.sqrt(5)) / 2
|
golden_ratio = (1 + math.sqrt(5)) / 2
|
||||||
n = random.randint(1, maxN)
|
n = random.randint(1, maxN)
|
||||||
problem = f"What is the {n}th Fibonacci number?"
|
problem = f"What is the {n}th Fibonacci number?"
|
||||||
ans = round((math.pow(golden_ratio, n) -
|
ans = round((math.pow(golden_ratio, n) - math.pow(-golden_ratio, -n)) /
|
||||||
math.pow(-golden_ratio, -n))/(math.sqrt(5)))
|
(math.sqrt(5)))
|
||||||
solution = f"{ans}"
|
solution = f"{ans}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -4,11 +4,12 @@ from .__init__ import *
|
|||||||
def quadraticEquation(maxVal=100):
|
def quadraticEquation(maxVal=100):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
c = random.randint(1, maxVal)
|
c = random.randint(1, maxVal)
|
||||||
b = random.randint(round(math.sqrt(4 * a * c)) + 1,
|
b = random.randint(
|
||||||
round(math.sqrt(4 * maxVal * maxVal)))
|
round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
|
||||||
|
|
||||||
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
||||||
D = math.sqrt(b * b - 4 * a * c)
|
D = math.sqrt(b * b - 4 * a * c)
|
||||||
solution = str([round((-b + D) / (2 * a), 2),
|
solution = str(
|
||||||
|
[round((-b + D) / (2 * a), 2),
|
||||||
round((-b - D) / (2 * a), 2)])
|
round((-b - D) / (2 * a), 2)])
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -7,7 +7,9 @@ def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
|
|||||||
c = random.randint(1, maxTime)
|
c = random.randint(1, maxTime)
|
||||||
d = (a * b * c) / 100
|
d = (a * b * c) / 100
|
||||||
|
|
||||||
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(
|
problem = "Simple interest for a principle amount of " + str(
|
||||||
b) + "% rate of interest and for a time period of " + str(c) + " years is = "
|
a) + " dollars, " + str(
|
||||||
|
b) + "% rate of interest and for a time period of " + str(
|
||||||
|
c) + " years is = "
|
||||||
solution = round(d, 2)
|
solution = round(d, 2)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -10,8 +10,9 @@ def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
|
|||||||
c2 = [0, 1, y]
|
c2 = [0, 1, y]
|
||||||
|
|
||||||
def randNonZero():
|
def randNonZero():
|
||||||
return random.choice([i for i in range(-coeff_mult_range, coeff_mult_range)
|
return random.choice(
|
||||||
if i != 0])
|
[i for i in range(-coeff_mult_range, coeff_mult_range) if i != 0])
|
||||||
|
|
||||||
# Add random (non-zero) multiple of equations (rows) to each other
|
# Add random (non-zero) multiple of equations (rows) to each other
|
||||||
c1_mult = randNonZero()
|
c1_mult = randNonZero()
|
||||||
c2_mult = randNonZero()
|
c2_mult = randNonZero()
|
||||||
|
|||||||
@@ -4,9 +4,10 @@ from .__init__ import *
|
|||||||
def vectorCrossFunc(minVal=-20, maxVal=20):
|
def vectorCrossFunc(minVal=-20, maxVal=20):
|
||||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||||
c = [a[1] * b[2] - a[2] * b[1],
|
c = [
|
||||||
a[2] * b[0] - a[0] * b[2],
|
a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2],
|
||||||
a[0] * b[1] - a[1] * b[0]]
|
a[0] * b[1] - a[1] * b[0]
|
||||||
|
]
|
||||||
|
|
||||||
problem = str(a) + " X " + str(b) + " = "
|
problem = str(a) + " X " + str(b) + " = "
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
|
|||||||
@@ -19,7 +19,9 @@ class Generator:
|
|||||||
genList.append([id, title, self])
|
genList.append([id, title, self])
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return str(self.id) + " " + self.title + " " + self.generalProb + " " + self.generalSol
|
return str(
|
||||||
|
self.id
|
||||||
|
) + " " + self.title + " " + self.generalProb + " " + self.generalSol
|
||||||
|
|
||||||
def __call__(self, **kwargs):
|
def __call__(self, **kwargs):
|
||||||
return self.func(**kwargs)
|
return self.func(**kwargs)
|
||||||
@@ -30,165 +32,238 @@ def genById(id):
|
|||||||
generator = genList[id][2]
|
generator = genList[id][2]
|
||||||
return (generator())
|
return (generator())
|
||||||
|
|
||||||
|
|
||||||
#
|
#
|
||||||
# def getGenList():
|
# def getGenList():
|
||||||
# return(genList)
|
# return(genList)
|
||||||
|
|
||||||
|
|
||||||
# Format is:
|
# Format is:
|
||||||
# <title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>)
|
# <title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>)
|
||||||
# Funcs_start - DO NOT REMOVE!
|
# Funcs_start - DO NOT REMOVE!
|
||||||
#addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
#addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
||||||
subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc)
|
subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc)
|
||||||
multiplication = Generator(
|
multiplication = Generator("Multiplication", 2, "a*b=", "c",
|
||||||
"Multiplication", 2, "a*b=", "c", multiplicationFunc)
|
multiplicationFunc)
|
||||||
division = Generator("Division", 3, "a/b=", "c", divisionFunc)
|
division = Generator("Division", 3, "a/b=", "c", divisionFunc)
|
||||||
binaryComplement1s = Generator(
|
binaryComplement1s = Generator("Binary Complement 1s", 4, "1010=", "0101",
|
||||||
"Binary Complement 1s", 4, "1010=", "0101", binaryComplement1sFunc)
|
binaryComplement1sFunc)
|
||||||
moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
|
moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
|
||||||
squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc)
|
squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc)
|
||||||
powerRuleDifferentiation = Generator(
|
powerRuleDifferentiation = Generator("Power Rule Differentiation", 7, "nx^m=",
|
||||||
"Power Rule Differentiation", 7, "nx^m=", "(n*m)x^(m-1)", powerRuleDifferentiationFunc)
|
"(n*m)x^(m-1)",
|
||||||
|
powerRuleDifferentiationFunc)
|
||||||
square = Generator("Square", 8, "a^2", "b", squareFunc)
|
square = Generator("Square", 8, "a^2", "b", squareFunc)
|
||||||
lcm = Generator("LCM (Least Common Multiple)", 9,
|
lcm = Generator("LCM (Least Common Multiple)", 9, "LCM of a and b = ", "c",
|
||||||
"LCM of a and b = ", "c", lcmFunc)
|
lcmFunc)
|
||||||
gcd = Generator("GCD (Greatest Common Denominator)",
|
gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ",
|
||||||
10, "GCD of a and b = ", "c", gcdFunc)
|
"c", gcdFunc)
|
||||||
basicAlgebra = Generator(
|
basicAlgebra = Generator("Basic Algebra", 11, "ax + b = c", "d",
|
||||||
"Basic Algebra", 11, "ax + b = c", "d", basicAlgebraFunc)
|
basicAlgebraFunc)
|
||||||
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
|
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
|
||||||
intDivision = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)
|
intDivision = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)
|
||||||
decimalToBinary = Generator("Decimal to Binary", 14,
|
decimalToBinary = Generator("Decimal to Binary", 14, "Binary of a=", "b",
|
||||||
"Binary of a=", "b", DecimalToBinaryFunc)
|
DecimalToBinaryFunc)
|
||||||
binaryToDecimal = Generator("Binary to Decimal", 15,
|
binaryToDecimal = Generator("Binary to Decimal", 15, "Decimal of a=", "b",
|
||||||
"Decimal of a=", "b", BinaryToDecimalFunc)
|
BinaryToDecimalFunc)
|
||||||
fractionDivision = Generator(
|
fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y",
|
||||||
"Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc)
|
divideFractionsFunc)
|
||||||
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix",
|
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix",
|
||||||
17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22)
|
17, "k * [[a,b],[c,d]]=",
|
||||||
areaOfTriangle = Generator(
|
"[[k*a,k*b],[k*c,k*d]]",
|
||||||
"Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc)
|
multiplyIntToMatrix22)
|
||||||
|
areaOfTriangle = Generator("Area of Triangle", 18,
|
||||||
|
"Area of Triangle with side lengths a, b, c = ",
|
||||||
|
"area", areaOfTriangleFunc)
|
||||||
doesTriangleExist = Generator("Triangle exists check", 19,
|
doesTriangleExist = Generator("Triangle exists check", 19,
|
||||||
"Does triangle with sides a, b and c exist?", "Yes/No", isTriangleValidFunc)
|
"Does triangle with sides a, b and c exist?",
|
||||||
|
"Yes/No", isTriangleValidFunc)
|
||||||
midPointOfTwoPoint = Generator("Midpoint of the two point", 20,
|
midPointOfTwoPoint = Generator("Midpoint of the two point", 20,
|
||||||
"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)", MidPointOfTwoPointFunc)
|
"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)",
|
||||||
factoring = Generator("Factoring Quadratic", 21,
|
MidPointOfTwoPointFunc)
|
||||||
"x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc)
|
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2",
|
||||||
|
"(x-x1)(x-x2)", factoringFunc)
|
||||||
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22,
|
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22,
|
||||||
"Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc)
|
"Third Angle of the triangle = ", "angle3",
|
||||||
|
thirdAngleOfTriangleFunc)
|
||||||
systemOfEquations = Generator("Solve a System of Equations in R^2", 23,
|
systemOfEquations = Generator("Solve a System of Equations in R^2", 23,
|
||||||
"2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3", systemOfEquationsFunc)
|
"2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3",
|
||||||
|
systemOfEquationsFunc)
|
||||||
distance2Point = Generator("Distance between 2 points", 24,
|
distance2Point = Generator("Distance between 2 points", 24,
|
||||||
"Find the distance between (x1,y1) and (x2,y2)", "sqrt(distanceSquared)", distanceTwoPointsFunc)
|
"Find the distance between (x1,y1) and (x2,y2)",
|
||||||
|
"sqrt(distanceSquared)", distanceTwoPointsFunc)
|
||||||
pythagoreanTheorem = Generator(
|
pythagoreanTheorem = Generator(
|
||||||
"Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc)
|
"Pythagorean Theorem", 25,
|
||||||
|
"The hypotenuse of a right triangle given the other two lengths a and b = ",
|
||||||
|
"hypotenuse", pythagoreanTheoremFunc)
|
||||||
# This has multiple variables whereas #23 has only x and y
|
# This has multiple variables whereas #23 has only x and y
|
||||||
linearEquations = Generator(
|
linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12",
|
||||||
"Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc)
|
"x=-20 & y=12", linearEquationsFunc)
|
||||||
primeFactors = Generator("Prime Factorisation", 27,
|
primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =",
|
||||||
"Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc)
|
"[b, c, d, ...]", primeFactorsFunc)
|
||||||
fractionMultiplication = Generator(
|
fractionMultiplication = Generator("Fraction Multiplication", 28,
|
||||||
"Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc)
|
"(a/b)*(c/d)=", "x/y",
|
||||||
angleRegularPolygon = Generator("Angle of a Regular Polygon", 29,
|
multiplyFractionsFunc)
|
||||||
"Find the angle of a regular polygon with 6 sides", "120", regularPolygonAngleFunc)
|
angleRegularPolygon = Generator(
|
||||||
combinations = Generator("Combinations of Objects", 30,
|
"Angle of a Regular Polygon", 29,
|
||||||
"Combinations available for picking 4 objects at a time from 6 distinct objects =", " 15", combinationsFunc)
|
"Find the angle of a regular polygon with 6 sides", "120",
|
||||||
|
regularPolygonAngleFunc)
|
||||||
|
combinations = Generator(
|
||||||
|
"Combinations of Objects", 30,
|
||||||
|
"Combinations available for picking 4 objects at a time from 6 distinct objects =",
|
||||||
|
" 15", combinationsFunc)
|
||||||
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
|
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
|
||||||
surfaceAreaCubeGen = Generator(
|
surfaceAreaCubeGen = Generator("Surface Area of Cube", 32,
|
||||||
"Surface Area of Cube", 32, "Surface area of cube with side a units is", "b units^2", surfaceAreaCube)
|
"Surface area of cube with side a units is",
|
||||||
|
"b units^2", surfaceAreaCube)
|
||||||
surfaceAreaCuboidGen = Generator(
|
surfaceAreaCuboidGen = Generator(
|
||||||
"Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is", "d units^2", surfaceAreaCuboid)
|
"Surface Area of Cuboid", 33,
|
||||||
|
"Surface area of cuboid with sides = a units, b units, c units is",
|
||||||
|
"d units^2", surfaceAreaCuboid)
|
||||||
surfaceAreaCylinderGen = Generator(
|
surfaceAreaCylinderGen = Generator(
|
||||||
"Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is", "c units^2", surfaceAreaCylinder)
|
"Surface Area of Cylinder", 34,
|
||||||
volumeCubeGen = Generator(
|
"Surface area of cylinder with height = a units and radius = b units is",
|
||||||
"Volum of Cube", 35, "Volume of cube with side a units is", "b units^3", volumeCube)
|
"c units^2", surfaceAreaCylinder)
|
||||||
|
volumeCubeGen = Generator("Volum of Cube", 35,
|
||||||
|
"Volume of cube with side a units is", "b units^3",
|
||||||
|
volumeCube)
|
||||||
volumeCuboidGen = Generator(
|
volumeCuboidGen = Generator(
|
||||||
"Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is", "d units^3", volumeCuboid)
|
"Volume of Cuboid", 36,
|
||||||
|
"Volume of cuboid with sides = a units, b units, c units is", "d units^3",
|
||||||
|
volumeCuboid)
|
||||||
volumeCylinderGen = Generator(
|
volumeCylinderGen = Generator(
|
||||||
"Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is", "c units^3", volumeCylinder)
|
"Volume of cylinder", 37,
|
||||||
|
"Volume of cylinder with height = a units and radius = b units is",
|
||||||
|
"c units^3", volumeCylinder)
|
||||||
surfaceAreaConeGen = Generator(
|
surfaceAreaConeGen = Generator(
|
||||||
"Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is", "c units^2", surfaceAreaCone)
|
"Surface Area of cone", 38,
|
||||||
|
"Surface area of cone with height = a units and radius = b units is",
|
||||||
|
"c units^2", surfaceAreaCone)
|
||||||
volumeConeGen = Generator(
|
volumeConeGen = Generator(
|
||||||
"Volume of cone", 39, "Volume of cone with height = a units and radius = b units is", "c units^3", volumeCone)
|
"Volume of cone", 39,
|
||||||
commonFactors = Generator(
|
"Volume of cone with height = a units and radius = b units is",
|
||||||
"Common Factors", 40, "Common Factors of {a} and {b} = ", "[c, d, ...]", commonFactorsFunc)
|
"c units^3", volumeCone)
|
||||||
intersectionOfTwoLines = Generator("Intersection of Two Lines", 41,
|
commonFactors = Generator("Common Factors", 40,
|
||||||
"Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc)
|
"Common Factors of {a} and {b} = ", "[c, d, ...]",
|
||||||
|
commonFactorsFunc)
|
||||||
|
intersectionOfTwoLines = Generator(
|
||||||
|
"Intersection of Two Lines", 41,
|
||||||
|
"Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2",
|
||||||
|
"(x, y)", intersectionOfTwoLinesFunc)
|
||||||
permutations = Generator(
|
permutations = Generator(
|
||||||
"Permutations", 42, "Total permutations of 4 objects at a time from 10 objects is", "5040", permutationFunc)
|
"Permutations", 42,
|
||||||
vectorCross = Generator("Cross Product of 2 Vectors",
|
"Total permutations of 4 objects at a time from 10 objects is", "5040",
|
||||||
43, "a X b = ", "c", vectorCrossFunc)
|
permutationFunc)
|
||||||
|
vectorCross = Generator("Cross Product of 2 Vectors", 43, "a X b = ", "c",
|
||||||
|
vectorCrossFunc)
|
||||||
compareFractions = Generator(
|
compareFractions = Generator(
|
||||||
"Compare Fractions", 44, "Which symbol represents the comparison between a/b and c/d?", ">/</=", compareFractionsFunc)
|
"Compare Fractions", 44,
|
||||||
|
"Which symbol represents the comparison between a/b and c/d?", ">/</=",
|
||||||
|
compareFractionsFunc)
|
||||||
simpleInterest = Generator(
|
simpleInterest = Generator(
|
||||||
"Simple Interest", 45, "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", simpleInterestFunc)
|
"Simple Interest", 45,
|
||||||
matrixMultiplication = Generator("Multiplication of two matrices",
|
"Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ",
|
||||||
46, "Multiply two matrices A and B", "C", matrixMultiplicationFunc)
|
"d dollars", simpleInterestFunc)
|
||||||
CubeRoot = Generator(
|
matrixMultiplication = Generator("Multiplication of two matrices", 46,
|
||||||
"Cube Root", 47, "Cuberoot of a upto 2 decimal places is", "b", cubeRootFunc)
|
"Multiply two matrices A and B", "C",
|
||||||
powerRuleIntegration = Generator(
|
matrixMultiplicationFunc)
|
||||||
"Power Rule Integration", 48, "nx^m=", "(n/m)x^(m+1)", powerRuleIntegrationFunc)
|
CubeRoot = Generator("Cube Root", 47, "Cuberoot of a upto 2 decimal places is",
|
||||||
fourthAngleOfQuadrilateral = Generator("Fourth Angle of Quadrilateral", 49,
|
"b", cubeRootFunc)
|
||||||
"Fourth angle of Quadrilateral with angles a,b,c =", "angle4", fourthAngleOfQuadriFunc)
|
powerRuleIntegration = Generator("Power Rule Integration", 48, "nx^m=",
|
||||||
|
"(n/m)x^(m+1)", powerRuleIntegrationFunc)
|
||||||
|
fourthAngleOfQuadrilateral = Generator(
|
||||||
|
"Fourth Angle of Quadrilateral", 49,
|
||||||
|
"Fourth angle of Quadrilateral with angles a,b,c =", "angle4",
|
||||||
|
fourthAngleOfQuadriFunc)
|
||||||
quadraticEquationSolve = Generator(
|
quadraticEquationSolve = Generator(
|
||||||
"Quadratic Equation", 50, "Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2", quadraticEquation)
|
"Quadratic Equation", 50,
|
||||||
hcf = Generator("HCF (Highest Common Factor)", 51,
|
"Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2",
|
||||||
"HCF of a and b = ", "c", hcfFunc)
|
quadraticEquation)
|
||||||
diceSumProbability = Generator("Probability of a certain sum appearing on faces of dice",
|
hcf = Generator("HCF (Highest Common Factor)", 51, "HCF of a and b = ", "c",
|
||||||
52, "If n dices are rolled then probabilty of getting sum of x is =", "z", DiceSumProbFunc)
|
hcfFunc)
|
||||||
exponentiation = Generator(
|
diceSumProbability = Generator(
|
||||||
"Exponentiation", 53, "a^b = ", "c", exponentiationFunc)
|
"Probability of a certain sum appearing on faces of dice", 52,
|
||||||
confidenceInterval = Generator("Confidence interval For sample S",
|
"If n dices are rolled then probabilty of getting sum of x is =", "z",
|
||||||
54, "With X% confidence", "is (A,B)", confidenceIntervalFunc)
|
DiceSumProbFunc)
|
||||||
surdsComparison = Generator(
|
exponentiation = Generator("Exponentiation", 53, "a^b = ", "c",
|
||||||
"Comparing surds", 55, "Fill in the blanks a^(1/b) _ c^(1/d)", "</>/=", surdsComparisonFunc)
|
exponentiationFunc)
|
||||||
fibonacciSeries = Generator("Fibonacci Series", 56, "fibonacci series of first a numbers",
|
confidenceInterval = Generator("Confidence interval For sample S", 54,
|
||||||
|
"With X% confidence", "is (A,B)",
|
||||||
|
confidenceIntervalFunc)
|
||||||
|
surdsComparison = Generator("Comparing surds", 55,
|
||||||
|
"Fill in the blanks a^(1/b) _ c^(1/d)", "</>/=",
|
||||||
|
surdsComparisonFunc)
|
||||||
|
fibonacciSeries = Generator(
|
||||||
|
"Fibonacci Series", 56, "fibonacci series of first a numbers",
|
||||||
"prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc)
|
"prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc)
|
||||||
basicTrigonometry = Generator(
|
basicTrigonometry = Generator("Trigonometric Values", 57, "What is sin(X)?",
|
||||||
"Trigonometric Values", 57, "What is sin(X)?", "ans", basicTrigonometryFunc)
|
"ans", basicTrigonometryFunc)
|
||||||
sumOfAnglesOfPolygon = Generator("Sum of Angles of Polygon", 58,
|
sumOfAnglesOfPolygon = Generator("Sum of Angles of Polygon", 58,
|
||||||
"Sum of angles of polygon with n sides = ", "sum", sumOfAnglesOfPolygonFunc)
|
"Sum of angles of polygon with n sides = ",
|
||||||
dataSummary = Generator("Mean,Standard Deviation,Variance",
|
"sum", sumOfAnglesOfPolygonFunc)
|
||||||
59, "a,b,c", "Mean:a+b+c/3,Std,Var", dataSummaryFunc)
|
dataSummary = Generator("Mean,Standard Deviation,Variance", 59, "a,b,c",
|
||||||
|
"Mean:a+b+c/3,Std,Var", dataSummaryFunc)
|
||||||
surfaceAreaSphereGen = Generator(
|
surfaceAreaSphereGen = Generator(
|
||||||
"Surface Area of Sphere", 60, "Surface area of sphere with radius = a units is", "d units^2", surfaceAreaSphere)
|
"Surface Area of Sphere", 60,
|
||||||
|
"Surface area of sphere with radius = a units is", "d units^2",
|
||||||
|
surfaceAreaSphere)
|
||||||
volumeSphere = Generator("Volume of Sphere", 61,
|
volumeSphere = Generator("Volume of Sphere", 61,
|
||||||
"Volume of sphere with radius r m = ", "(4*pi/3)*r*r*r", volumeSphereFunc)
|
"Volume of sphere with radius r m = ",
|
||||||
nthFibonacciNumberGen = Generator(
|
"(4*pi/3)*r*r*r", volumeSphereFunc)
|
||||||
"nth Fibonacci number", 62, "What is the nth Fibonacci number", "Fn", nthFibonacciNumberFunc)
|
nthFibonacciNumberGen = Generator("nth Fibonacci number", 62,
|
||||||
profitLossPercent = Generator("Profit or Loss Percent", 63,
|
"What is the nth Fibonacci number", "Fn",
|
||||||
"Profit/ Loss percent when CP = cp and SP = sp is: ", "percent", profitLossPercentFunc)
|
nthFibonacciNumberFunc)
|
||||||
binaryToHex = Generator("Binary to Hexidecimal", 64,
|
profitLossPercent = Generator(
|
||||||
"Hexidecimal of a=", "b", binaryToHexFunc)
|
"Profit or Loss Percent", 63,
|
||||||
|
"Profit/ Loss percent when CP = cp and SP = sp is: ", "percent",
|
||||||
|
profitLossPercentFunc)
|
||||||
|
binaryToHex = Generator("Binary to Hexidecimal", 64, "Hexidecimal of a=", "b",
|
||||||
|
binaryToHexFunc)
|
||||||
complexNumMultiply = Generator("Multiplication of 2 complex numbers", 65,
|
complexNumMultiply = Generator("Multiplication of 2 complex numbers", 65,
|
||||||
"(x + j) (y + j) = ", "xy + xj + yj -1", multiplyComplexNumbersFunc)
|
"(x + j) (y + j) = ", "xy + xj + yj -1",
|
||||||
|
multiplyComplexNumbersFunc)
|
||||||
geometricprogression = Generator(
|
geometricprogression = Generator(
|
||||||
"Geometric Progression", 66, "Initial value,Common Ratio,nth Term,Sum till nth term =", "a,r,ar^n-1,sum(ar^n-1", geomProgrFunc)
|
"Geometric Progression", 66,
|
||||||
|
"Initial value,Common Ratio,nth Term,Sum till nth term =",
|
||||||
|
"a,r,ar^n-1,sum(ar^n-1", geomProgrFunc)
|
||||||
geometricMean = Generator("Geometric Mean of N Numbers", 67,
|
geometricMean = Generator("Geometric Mean of N Numbers", 67,
|
||||||
"Geometric mean of n numbers A1 , A2 , ... , An = ", "(A1*A2*...An)^(1/n) = ans", geometricMeanFunc)
|
"Geometric mean of n numbers A1 , A2 , ... , An = ",
|
||||||
harmonicMean = Generator("Harmonic Mean of N Numbers", 68, "Harmonic mean of n numbers A1 , A2 , ... , An = ",
|
"(A1*A2*...An)^(1/n) = ans", geometricMeanFunc)
|
||||||
" n/((1/A1) + (1/A2) + ... + (1/An)) = ans", harmonicMeanFunc)
|
harmonicMean = Generator("Harmonic Mean of N Numbers", 68,
|
||||||
|
"Harmonic mean of n numbers A1 , A2 , ... , An = ",
|
||||||
|
" n/((1/A1) + (1/A2) + ... + (1/An)) = ans",
|
||||||
|
harmonicMeanFunc)
|
||||||
eucldianNorm = Generator("Euclidian norm or L2 norm of a vector", 69,
|
eucldianNorm = Generator("Euclidian norm or L2 norm of a vector", 69,
|
||||||
"Euclidian Norm of a vector V:[v1, v2, ......., vn]", "sqrt(v1^2 + v2^2 ........ +vn^2)", euclidianNormFunc)
|
"Euclidian Norm of a vector V:[v1, v2, ......., vn]",
|
||||||
angleBtwVectors = Generator("Angle between 2 vectors", 70,
|
"sqrt(v1^2 + v2^2 ........ +vn^2)", euclidianNormFunc)
|
||||||
"Angle Between 2 vectors V1=[v11, v12, ..., v1n] and V2=[v21, v22, ....., v2n]", "V1.V2 / (euclidNorm(V1)*euclidNorm(V2))", angleBtwVectorsFunc)
|
angleBtwVectors = Generator(
|
||||||
absoluteDifference = Generator("Absolute difference between two numbers", 71,
|
"Angle between 2 vectors", 70,
|
||||||
"Absolute difference betweeen two numbers a and b =", "|a-b|", absoluteDifferenceFunc)
|
"Angle Between 2 vectors V1=[v11, v12, ..., v1n] and V2=[v21, v22, ....., v2n]",
|
||||||
vectorDot = Generator("Dot Product of 2 Vectors", 72,
|
"V1.V2 / (euclidNorm(V1)*euclidNorm(V2))", angleBtwVectorsFunc)
|
||||||
"a . b = ", "c", vectorDotFunc)
|
absoluteDifference = Generator(
|
||||||
|
"Absolute difference between two numbers", 71,
|
||||||
|
"Absolute difference betweeen two numbers a and b =", "|a-b|",
|
||||||
|
absoluteDifferenceFunc)
|
||||||
|
vectorDot = Generator("Dot Product of 2 Vectors", 72, "a . b = ", "c",
|
||||||
|
vectorDotFunc)
|
||||||
binary2sComplement = Generator("Binary 2's Complement", 73,
|
binary2sComplement = Generator("Binary 2's Complement", 73,
|
||||||
"2's complement of 11010110 =", "101010", binary2sComplementFunc)
|
"2's complement of 11010110 =", "101010",
|
||||||
invertmatrix = Generator("Inverse of a Matrix", 74,
|
binary2sComplementFunc)
|
||||||
"Inverse of a matrix A is", "A^(-1)", matrixInversion)
|
invertmatrix = Generator("Inverse of a Matrix", 74, "Inverse of a matrix A is",
|
||||||
|
"A^(-1)", matrixInversion)
|
||||||
sectorArea = Generator("Area of a Sector", 75,
|
sectorArea = Generator("Area of a Sector", 75,
|
||||||
"Area of a sector with radius, r and angle, a ", "Area", sectorAreaFunc)
|
"Area of a sector with radius, r and angle, a ", "Area",
|
||||||
|
sectorAreaFunc)
|
||||||
meanMedian = Generator("Mean and Median", 76,
|
meanMedian = Generator("Mean and Median", 76,
|
||||||
"Mean and median of given set of numbers", "Mean, Median", meanMedianFunc)
|
"Mean and median of given set of numbers",
|
||||||
intMatrix22determinant = Generator(
|
"Mean, Median", meanMedianFunc)
|
||||||
"Determinant to 2x2 Matrix", 77, "Det([[a,b],[c,d]]) =", " a * d - b * c", determinantToMatrix22)
|
intMatrix22determinant = Generator("Determinant to 2x2 Matrix", 77,
|
||||||
|
"Det([[a,b],[c,d]]) =", " a * d - b * c",
|
||||||
|
determinantToMatrix22)
|
||||||
compoundInterest = Generator(
|
compoundInterest = Generator(
|
||||||
"Compound Interest", 78, "Compound interest for a principle amount of p dollars, r% rate of interest and for a time period of t years with n times compounded annually is = ", "A dollars", compoundInterestFunc)
|
"Compound Interest", 78,
|
||||||
decimalToHexadeci = Generator(
|
"Compound interest for a principle amount of p dollars, r% rate of interest and for a time period of t years with n times compounded annually is = ",
|
||||||
"Decimal to Hexadecimal", 79, "Binary of a=", "b", deciToHexaFunc)
|
"A dollars", compoundInterestFunc)
|
||||||
percentage = Generator("Percentage of a number", 80,
|
decimalToHexadeci = Generator("Decimal to Hexadecimal", 79, "Binary of a=",
|
||||||
"What is a% of b?", "percentage", percentageFunc)
|
"b", deciToHexaFunc)
|
||||||
|
percentage = Generator("Percentage of a number", 80, "What is a% of b?",
|
||||||
|
"percentage", percentageFunc)
|
||||||
|
|||||||
11
setup.py
11
setup.py
@@ -1,7 +1,6 @@
|
|||||||
from setuptools import setup, find_packages
|
from setuptools import setup, find_packages
|
||||||
|
|
||||||
setup(
|
setup(name='mathgenerator',
|
||||||
name='mathgenerator',
|
|
||||||
version='1.1.3',
|
version='1.1.3',
|
||||||
description='An open source solution for generating math problems',
|
description='An open source solution for generating math problems',
|
||||||
url='https://github.com/todarith/mathgenerator',
|
url='https://github.com/todarith/mathgenerator',
|
||||||
@@ -9,9 +8,5 @@ setup(
|
|||||||
author_email='lukew25073@gmail.com',
|
author_email='lukew25073@gmail.com',
|
||||||
license='MIT',
|
license='MIT',
|
||||||
packages=find_packages(),
|
packages=find_packages(),
|
||||||
install_requires=[
|
install_requires=[],
|
||||||
|
entry_points={})
|
||||||
],
|
|
||||||
entry_points={
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|||||||
@@ -39,7 +39,8 @@ def test_moduloDivision(maxRes, maxModulo):
|
|||||||
assert eval(problem[:-1]) == int(solution)
|
assert eval(problem[:-1]) == int(solution)
|
||||||
|
|
||||||
|
|
||||||
@given(minNo=st.integers(min_value=1), maxNo=st.integers(min_value=1, max_value=2 ** 50))
|
@given(minNo=st.integers(min_value=1),
|
||||||
|
maxNo=st.integers(min_value=1, max_value=2**50))
|
||||||
def test_squareRoot(minNo, maxNo):
|
def test_squareRoot(minNo, maxNo):
|
||||||
assume(maxNo > minNo)
|
assume(maxNo > minNo)
|
||||||
problem, solution = squareRoot.func(minNo, maxNo)
|
problem, solution = squareRoot.func(minNo, maxNo)
|
||||||
|
|||||||
Reference in New Issue
Block a user