mirror of
https://github.com/DeaDvey/mathgenerator.git
synced 2025-11-28 06:25:23 +01:00
pep8 fixes
This commit is contained in:
@@ -5,10 +5,11 @@ from mathgenerator.mathgen import *
|
|||||||
wList = getGenList()
|
wList = getGenList()
|
||||||
lines = []
|
lines = []
|
||||||
with open('mathgenerator/mathgen.py', 'r') as f:
|
with open('mathgenerator/mathgen.py', 'r') as f:
|
||||||
lines=f.readlines()
|
lines = f.readlines()
|
||||||
|
|
||||||
allRows = []
|
allRows = []
|
||||||
line = lines.index('# Funcs_start - DO NOT REMOVE!\n')+1 # get the first line of the functions in mathgen.py
|
# get the first line of the functions in mathgen.py
|
||||||
|
line = lines.index('# Funcs_start - DO NOT REMOVE!\n')+1
|
||||||
for item in wList:
|
for item in wList:
|
||||||
myGen = item[2]
|
myGen = item[2]
|
||||||
# NOTE: renamed 'sol' to 'solu' to make it look nicer
|
# NOTE: renamed 'sol' to 'solu' to make it look nicer
|
||||||
@@ -27,7 +28,8 @@ for item in wList:
|
|||||||
print(prob)
|
print(prob)
|
||||||
|
|
||||||
instName = lines[line]
|
instName = lines[line]
|
||||||
func_name = instName[:instName.find('=')].strip() # NOTE: renamed 'def_name' to 'func_name' because it suits it more
|
# NOTE: renamed 'def_name' to 'func_name' because it suits it more
|
||||||
|
func_name = instName[:instName.find('=')].strip()
|
||||||
row = [myGen.id, myGen.title, prob, solu, func_name]
|
row = [myGen.id, myGen.title, prob, solu, func_name]
|
||||||
# print(item[1], func_name)
|
# print(item[1], func_name)
|
||||||
line += 1
|
line += 1
|
||||||
@@ -42,7 +44,8 @@ with open('README.md', "r") as g:
|
|||||||
lines = lines[:line+1]
|
lines = lines[:line+1]
|
||||||
|
|
||||||
for row in allRows:
|
for row in allRows:
|
||||||
tableLine = "| " + str(row[0]) + " | " + str(row[1]) + " | " + str(row[2]) + " | " + str(row[3]) + " | " + str(row[4]) + " |\n"
|
tableLine = "| " + str(row[0]) + " | " + str(row[1]) + " | " + str(
|
||||||
|
row[2]) + " | " + str(row[3]) + " | " + str(row[4]) + " |\n"
|
||||||
lines.append(tableLine)
|
lines.append(tableLine)
|
||||||
|
|
||||||
with open('README.md', "w") as g:
|
with open('README.md', "w") as g:
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
|
|
||||||
genList = []
|
genList = []
|
||||||
|
|
||||||
|
|
||||||
class Generator:
|
class Generator:
|
||||||
def __init__(self, title, id, generalProb, generalSol, func):
|
def __init__(self, title, id, generalProb, generalSol, func):
|
||||||
self.title = title
|
self.title = title
|
||||||
@@ -16,5 +17,6 @@ class Generator:
|
|||||||
def __call__(self, **kwargs):
|
def __call__(self, **kwargs):
|
||||||
return self.func(**kwargs)
|
return self.func(**kwargs)
|
||||||
|
|
||||||
|
|
||||||
def getGenList():
|
def getGenList():
|
||||||
return genList
|
return genList
|
||||||
|
|||||||
@@ -1,12 +1,12 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def BinaryToDecimalFunc(max_dig=10):
|
def BinaryToDecimalFunc(max_dig=10):
|
||||||
problem = ''
|
problem = ''
|
||||||
|
|
||||||
for i in range(random.randint(1, max_dig)):
|
for i in range(random.randint(1, max_dig)):
|
||||||
temp = str(random.randint(0, 1))
|
temp = str(random.randint(0, 1))
|
||||||
problem += temp
|
problem += temp
|
||||||
|
|
||||||
solution = int(problem, 2)
|
solution = int(problem, 2)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -7,5 +7,5 @@ def DecimalToBinaryFunc(max_dec=99):
|
|||||||
|
|
||||||
problem = "Binary of " + str(a) + "="
|
problem = "Binary of " + str(a) + "="
|
||||||
solution = str(b)
|
solution = str(b)
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -2,24 +2,25 @@ from .__init__ import *
|
|||||||
|
|
||||||
|
|
||||||
def DiceSumProbFunc(maxDice=3):
|
def DiceSumProbFunc(maxDice=3):
|
||||||
a = random.randint(1,maxDice)
|
a = random.randint(1, maxDice)
|
||||||
b = random.randint(a,6*a)
|
b = random.randint(a, 6*a)
|
||||||
|
|
||||||
count=0
|
count = 0
|
||||||
for i in [1,2,3,4,5,6]:
|
for i in [1, 2, 3, 4, 5, 6]:
|
||||||
if a==1:
|
if a == 1:
|
||||||
if i==b:
|
if i == b:
|
||||||
count=count+1
|
count = count+1
|
||||||
elif a==2:
|
elif a == 2:
|
||||||
for j in [1,2,3,4,5,6]:
|
for j in [1, 2, 3, 4, 5, 6]:
|
||||||
if i+j==b:
|
if i+j == b:
|
||||||
count=count+1
|
count = count+1
|
||||||
elif a==3:
|
elif a == 3:
|
||||||
for j in [1,2,3,4,5,6]:
|
for j in [1, 2, 3, 4, 5, 6]:
|
||||||
for k in [1,2,3,4,5,6]:
|
for k in [1, 2, 3, 4, 5, 6]:
|
||||||
if i+j+k==b:
|
if i+j+k == b:
|
||||||
count=count+1
|
count = count+1
|
||||||
|
|
||||||
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(a,b)
|
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(
|
||||||
solution="{}/{}".format(count, 6**a)
|
a, b)
|
||||||
|
solution = "{}/{}".format(count, 6**a)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -6,7 +6,7 @@ def MidPointOfTwoPointFunc(maxValue=20):
|
|||||||
y1 = random.randint(-20, maxValue)
|
y1 = random.randint(-20, maxValue)
|
||||||
x2 = random.randint(-20, maxValue)
|
x2 = random.randint(-20, maxValue)
|
||||||
y2 = random.randint(-20, maxValue)
|
y2 = random.randint(-20, maxValue)
|
||||||
|
|
||||||
problem = f"({x1},{y1}),({x2},{y2})="
|
problem = f"({x1},{y1}),({x2},{y2})="
|
||||||
solution = f"({(x1+x2)/2},{(y1+y2)/2})"
|
solution = f"({(x1+x2)/2},{(y1+y2)/2})"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,10 +1,12 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
def absoluteDifferenceFunc (maxA = 100, maxB = 100):
|
|
||||||
a = random.randint(-1*maxA, maxA)
|
|
||||||
b = random.randint(-1*maxB, maxB)
|
|
||||||
absDiff = abs(a-b)
|
|
||||||
|
|
||||||
problem = "Absolute difference between numbers " + str(a) + " and " + str(b) + " = "
|
def absoluteDifferenceFunc(maxA=100, maxB=100):
|
||||||
solution = absDiff
|
a = random.randint(-1*maxA, maxA)
|
||||||
return problem, solution
|
b = random.randint(-1*maxB, maxB)
|
||||||
|
absDiff = abs(a-b)
|
||||||
|
|
||||||
|
problem = "Absolute difference between numbers " + \
|
||||||
|
str(a) + " and " + str(b) + " = "
|
||||||
|
solution = absDiff
|
||||||
|
return problem, solution
|
||||||
|
|||||||
@@ -1,12 +1,15 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
from ..__init__ import Generator
|
from ..__init__ import Generator
|
||||||
|
|
||||||
|
|
||||||
def additionFunc(maxSum=99, maxAddend=50):
|
def additionFunc(maxSum=99, maxAddend=50):
|
||||||
a = random.randint(0, maxAddend)
|
a = random.randint(0, maxAddend)
|
||||||
b = random.randint(0, min((maxSum - a), maxAddend)) # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
# The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
||||||
|
b = random.randint(0, min((maxSum - a), maxAddend))
|
||||||
c = a + b
|
c = a + b
|
||||||
problem = str(a) + "+" + str(b) + "="
|
problem = str(a) + "+" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
||||||
@@ -9,6 +9,7 @@ def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
|||||||
s = (a + b + c) / 2
|
s = (a + b + c) / 2
|
||||||
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
|
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
|
||||||
|
|
||||||
problem = "Area of triangle with side lengths: " + str(a) + " " + str(b) + " " + str(c) + " = "
|
problem = "Area of triangle with side lengths: " + \
|
||||||
|
str(a) + " " + str(b) + " " + str(c) + " = "
|
||||||
solution = area
|
solution = area
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def basicAlgebraFunc(maxVariable=10):
|
def basicAlgebraFunc(maxVariable=10):
|
||||||
@@ -19,7 +19,7 @@ def basicAlgebraFunc(maxVariable=10):
|
|||||||
x = "0"
|
x = "0"
|
||||||
elif a == 1 or a == i:
|
elif a == 1 or a == i:
|
||||||
x = f"{c - b}"
|
x = f"{c - b}"
|
||||||
|
|
||||||
problem = f"{a}x + {b} = {c}"
|
problem = f"{a}x + {b} = {c}"
|
||||||
solution = x
|
solution = x
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,14 +1,17 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def basicTrigonometryFunc(angles=[0,30,45,60,90],functions=["sin","cos","tan"]): #Handles degrees in quadrant one
|
# Handles degrees in quadrant one
|
||||||
angle=random.choice(angles)
|
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90], functions=["sin", "cos", "tan"]):
|
||||||
function=random.choice(functions)
|
angle = random.choice(angles)
|
||||||
|
function = random.choice(functions)
|
||||||
|
|
||||||
problem=f"What is {function}({angle})?"
|
problem = f"What is {function}({angle})?"
|
||||||
|
|
||||||
expression='math.'+function+'(math.radians(angle))'
|
|
||||||
result_fraction_map={0.0:"0",0.5:"1/2",0.71:"1/√2",0.87:"√3/2",1.0:"1",0.58:"1/√3",1.73:"√3"}
|
|
||||||
|
|
||||||
solution=result_fraction_map[round(eval(expression),2)] if round(eval(expression),2)<=99999 else "∞" #for handling the ∞ condition
|
expression = 'math.'+function+'(math.radians(angle))'
|
||||||
return problem,solution
|
result_fraction_map = {0.0: "0", 0.5: "1/2", 0.71: "1/√2",
|
||||||
|
0.87: "√3/2", 1.0: "1", 0.58: "1/√3", 1.73: "√3"}
|
||||||
|
|
||||||
|
solution = result_fraction_map[round(eval(expression), 2)] if round(
|
||||||
|
eval(expression), 2) <= 99999 else "∞" # for handling the ∞ condition
|
||||||
|
return problem, solution
|
||||||
|
|||||||
@@ -1,8 +1,10 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def binary2sComplementFunc(maxDigits=10):
|
def binary2sComplementFunc(maxDigits=10):
|
||||||
digits = random.randint(1, maxDigits)
|
digits = random.randint(1, maxDigits)
|
||||||
question = ''.join([str(random.randint(0, 1)) for i in range(digits)]).lstrip('0')
|
question = ''.join([str(random.randint(0, 1))
|
||||||
|
for i in range(digits)]).lstrip('0')
|
||||||
|
|
||||||
answer = []
|
answer = []
|
||||||
for i in question:
|
for i in question:
|
||||||
@@ -23,4 +25,4 @@ def binary2sComplementFunc(maxDigits=10):
|
|||||||
|
|
||||||
problem = "2's complement of " + question + " ="
|
problem = "2's complement of " + question + " ="
|
||||||
solution = ''.join(answer).lstrip('0')
|
solution = ''.join(answer).lstrip('0')
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def binaryComplement1sFunc(maxDigits=10):
|
def binaryComplement1sFunc(maxDigits=10):
|
||||||
@@ -9,7 +9,7 @@ def binaryComplement1sFunc(maxDigits=10):
|
|||||||
temp = str(random.randint(0, 1))
|
temp = str(random.randint(0, 1))
|
||||||
question += temp
|
question += temp
|
||||||
answer += "0" if temp == "1" else "1"
|
answer += "0" if temp == "1" else "1"
|
||||||
|
|
||||||
problem = question+"="
|
problem = question+"="
|
||||||
solution = answer
|
solution = answer
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def binaryToHexFunc(max_dig=10):
|
def binaryToHexFunc(max_dig=10):
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def combinationsFunc(maxlength=20):
|
def combinationsFunc(maxlength=20):
|
||||||
@@ -14,6 +14,7 @@ def combinationsFunc(maxlength=20):
|
|||||||
b = random.randint(0, 9)
|
b = random.randint(0, 9)
|
||||||
|
|
||||||
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
|
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
|
||||||
problem = "Number of combinations from {} objects picked {} at a time ".format(a, b)
|
problem = "Number of combinations from {} objects picked {} at a time ".format(
|
||||||
|
a, b)
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def commonFactorsFunc(maxVal=100):
|
def commonFactorsFunc(maxVal=100):
|
||||||
@@ -18,7 +18,7 @@ def commonFactorsFunc(maxVal=100):
|
|||||||
if (y % i == 0):
|
if (y % i == 0):
|
||||||
count = count + 1
|
count = count + 1
|
||||||
arr.append(i)
|
arr.append(i)
|
||||||
|
|
||||||
problem = f"Common Factors of {a} and {b} = "
|
problem = f"Common Factors of {a} and {b} = "
|
||||||
solution = arr
|
solution = arr
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -21,6 +21,6 @@ def compareFractionsFunc(maxVal=10):
|
|||||||
solution = "<"
|
solution = "<"
|
||||||
else:
|
else:
|
||||||
solution = "="
|
solution = "="
|
||||||
|
|
||||||
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
|
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,11 +1,13 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
def compoundInterestFunc(maxPrinciple = 10000, maxRate = 10, maxTime = 10, maxPeriod = 10):
|
|
||||||
|
def compoundInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10, maxPeriod=10):
|
||||||
p = random.randint(100, maxPrinciple)
|
p = random.randint(100, maxPrinciple)
|
||||||
r = random.randint(1, maxRate)
|
r = random.randint(1, maxRate)
|
||||||
t = random.randint(1, maxTime)
|
t = random.randint(1, maxTime)
|
||||||
n = random.randint(1, maxPeriod)
|
n = random.randint(1, maxPeriod)
|
||||||
A = p * ((1 + (r/(100*n))**(n*t)))
|
A = p * ((1 + (r/(100*n))**(n*t)))
|
||||||
problem = "Compound Interest for a principle amount of " + str(p) + " dollars, " + str(r) + "% rate of interest and for a time period of " + str(t) + " compounded monthly is = "
|
problem = "Compound Interest for a principle amount of " + str(p) + " dollars, " + str(
|
||||||
|
r) + "% rate of interest and for a time period of " + str(t) + " compounded monthly is = "
|
||||||
solution = round(A, 2)
|
solution = round(A, 2)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -2,29 +2,30 @@ from .__init__ import *
|
|||||||
|
|
||||||
|
|
||||||
def confidenceIntervalFunc():
|
def confidenceIntervalFunc():
|
||||||
n=random.randint(20,40)
|
n = random.randint(20, 40)
|
||||||
j=random.randint(0,3)
|
j = random.randint(0, 3)
|
||||||
|
|
||||||
lst=random.sample(range(200,300),n)
|
lst = random.sample(range(200, 300), n)
|
||||||
lst_per=[80 ,90, 95, 99]
|
lst_per = [80, 90, 95, 99]
|
||||||
lst_t = [1.282, 1.645, 1.960, 2.576]
|
lst_t = [1.282, 1.645, 1.960, 2.576]
|
||||||
|
|
||||||
mean=0
|
mean = 0
|
||||||
sd=0
|
sd = 0
|
||||||
|
|
||||||
for i in lst:
|
for i in lst:
|
||||||
count= i + mean
|
count = i + mean
|
||||||
mean=count
|
mean = count
|
||||||
|
|
||||||
mean = mean/n
|
mean = mean/n
|
||||||
|
|
||||||
for i in lst:
|
for i in lst:
|
||||||
x=(i-mean)**2+sd
|
x = (i-mean)**2+sd
|
||||||
sd=x
|
sd = x
|
||||||
|
|
||||||
sd=sd/n
|
sd = sd/n
|
||||||
standard_error = lst_t[j]*math.sqrt(sd/n)
|
standard_error = lst_t[j]*math.sqrt(sd/n)
|
||||||
|
|
||||||
problem= 'The confidence interval for sample {} with {}% confidence is'.format([x for x in lst], lst_per[j])
|
problem = 'The confidence interval for sample {} with {}% confidence is'.format(
|
||||||
solution= '({}, {})'.format(mean+standard_error, mean-standard_error)
|
[x for x in lst], lst_per[j])
|
||||||
|
solution = '({}, {})'.format(mean+standard_error, mean-standard_error)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
|||||||
def cubeRootFunc(minNo=1, maxNo=1000):
|
def cubeRootFunc(minNo=1, maxNo=1000):
|
||||||
b = random.randint(minNo, maxNo)
|
b = random.randint(minNo, maxNo)
|
||||||
a = b**(1 / 3)
|
a = b**(1 / 3)
|
||||||
|
|
||||||
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
|
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
|
||||||
solution = str(round(a, 2))
|
solution = str(round(a, 2))
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,19 +1,19 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def dataSummaryFunc(number_values=15,minval=5,maxval=50):
|
def dataSummaryFunc(number_values=15, minval=5, maxval=50):
|
||||||
random_list=[]
|
random_list = []
|
||||||
|
|
||||||
for i in range(number_values):
|
for i in range(number_values):
|
||||||
n=random.randint(minval,maxval)
|
n = random.randint(minval, maxval)
|
||||||
random_list.append(n)
|
random_list.append(n)
|
||||||
|
|
||||||
a=sum(random_list)
|
a = sum(random_list)
|
||||||
mean=a/number_values
|
mean = a/number_values
|
||||||
|
|
||||||
var=0
|
var = 0
|
||||||
for i in range(number_values):
|
for i in range(number_values):
|
||||||
var+=(random_list[i]-mean)**2
|
var += (random_list[i]-mean)**2
|
||||||
|
|
||||||
# we're printing stuff here?
|
# we're printing stuff here?
|
||||||
print(random_list)
|
print(random_list)
|
||||||
@@ -21,6 +21,8 @@ def dataSummaryFunc(number_values=15,minval=5,maxval=50):
|
|||||||
print(var/number_values)
|
print(var/number_values)
|
||||||
print((var/number_values)**0.5)
|
print((var/number_values)**0.5)
|
||||||
|
|
||||||
problem="Find the mean,standard deviation and variance for the data"+str(random_list)
|
problem = "Find the mean,standard deviation and variance for the data" + \
|
||||||
solution="The Mean is {} , Standard Deviation is {}, Variance is {}".format(mean,var/number_values,(var/number_values)**0.5)
|
str(random_list)
|
||||||
return problem,solution
|
solution = "The Mean is {} , Standard Deviation is {}, Variance is {}".format(
|
||||||
|
mean, var/number_values, (var/number_values)**0.5)
|
||||||
|
return problem, solution
|
||||||
|
|||||||
@@ -5,6 +5,6 @@ def deciToHexaFunc(max_dec=1000):
|
|||||||
a = random.randint(0, max_dec)
|
a = random.randint(0, max_dec)
|
||||||
b = hex(a)
|
b = hex(a)
|
||||||
problem = "Binary of " + str(a) + "="
|
problem = "Binary of " + str(a) + "="
|
||||||
solution = str(b)
|
solution = str(b)
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
def determinantToMatrix22(maxMatrixVal = 100):
|
|
||||||
|
def determinantToMatrix22(maxMatrixVal=100):
|
||||||
a = random.randint(0, maxMatrixVal)
|
a = random.randint(0, maxMatrixVal)
|
||||||
b = random.randint(0, maxMatrixVal)
|
b = random.randint(0, maxMatrixVal)
|
||||||
c = random.randint(0, maxMatrixVal)
|
c = random.randint(0, maxMatrixVal)
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
|
|||||||
point2Y = random.randint(minValXY, maxValXY + 1)
|
point2Y = random.randint(minValXY, maxValXY + 1)
|
||||||
|
|
||||||
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
|
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
|
||||||
|
|
||||||
solution = f"sqrt({distanceSq})"
|
solution = f"sqrt({distanceSq})"
|
||||||
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
|
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -20,7 +20,7 @@ def divideFractionsFunc(maxVal=10):
|
|||||||
|
|
||||||
tmp_n = a * d
|
tmp_n = a * d
|
||||||
tmp_d = b * c
|
tmp_d = b * c
|
||||||
|
|
||||||
gcd = calculate_gcd(tmp_n, tmp_d)
|
gcd = calculate_gcd(tmp_n, tmp_d)
|
||||||
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
|
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
|
||||||
|
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ def divisionFunc(maxRes=99, maxDivid=99):
|
|||||||
a = random.randint(0, maxDivid)
|
a = random.randint(0, maxDivid)
|
||||||
b = random.randint(0, min(maxRes, maxDivid))
|
b = random.randint(0, min(maxRes, maxDivid))
|
||||||
c = a / b
|
c = a / b
|
||||||
|
|
||||||
problem = str(a) + "/" + str(b) + "="
|
problem = str(a) + "/" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ def divisionToIntFunc(maxA=25, maxB=25):
|
|||||||
|
|
||||||
divisor = a * b
|
divisor = a * b
|
||||||
dividend = random.choice([a, b])
|
dividend = random.choice([a, b])
|
||||||
|
|
||||||
problem = f"{divisor}/{dividend} = "
|
problem = f"{divisor}/{dividend} = "
|
||||||
solution = int(divisor / dividend)
|
solution = int(divisor / dividend)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,10 +1,10 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def exponentiationFunc(maxBase = 20,maxExpo = 10):
|
def exponentiationFunc(maxBase=20, maxExpo=10):
|
||||||
base = random.randint(1, maxBase)
|
base = random.randint(1, maxBase)
|
||||||
expo = random.randint(1, maxExpo)
|
expo = random.randint(1, maxExpo)
|
||||||
|
|
||||||
problem = f"{base}^{expo} ="
|
problem = f"{base}^{expo} ="
|
||||||
solution = str(base ** expo)
|
solution = str(base ** expo)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -4,12 +4,12 @@ from .__init__ import *
|
|||||||
def factorialFunc(maxInput=6):
|
def factorialFunc(maxInput=6):
|
||||||
a = random.randint(0, maxInput)
|
a = random.randint(0, maxInput)
|
||||||
n = a
|
n = a
|
||||||
|
|
||||||
problem = str(a) + "! = "
|
problem = str(a) + "! = "
|
||||||
b = 1
|
b = 1
|
||||||
|
|
||||||
while a != 1 and n > 0:
|
while a != 1 and n > 0:
|
||||||
b *= n
|
b *= n
|
||||||
n -= 1
|
n -= 1
|
||||||
solution = str(b)
|
solution = str(b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -26,4 +26,4 @@ def factoringFunc(range_x1=10, range_x2=10):
|
|||||||
x1 = intParser(x1)
|
x1 = intParser(x1)
|
||||||
x2 = intParser(x2)
|
x2 = intParser(x2)
|
||||||
solution = f"(x{x1})(x{x2})"
|
solution = f"(x{x1})(x{x2})"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -2,20 +2,20 @@ from .__init__ import *
|
|||||||
|
|
||||||
|
|
||||||
def fibonacciSeriesFunc(minNo=1):
|
def fibonacciSeriesFunc(minNo=1):
|
||||||
n = random.randint(minNo,20)
|
n = random.randint(minNo, 20)
|
||||||
|
|
||||||
def createFibList(n):
|
def createFibList(n):
|
||||||
l=[]
|
l = []
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
if i<2:
|
if i < 2:
|
||||||
l.append(i)
|
l.append(i)
|
||||||
else:
|
else:
|
||||||
val = l[i-1]+l[i-2]
|
val = l[i-1]+l[i-2]
|
||||||
l.append(val)
|
l.append(val)
|
||||||
return l
|
return l
|
||||||
|
|
||||||
fibList=createFibList(n)
|
fibList = createFibList(n)
|
||||||
|
|
||||||
problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?"
|
problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?"
|
||||||
solution = fibList
|
solution = fibList
|
||||||
return problem,solution
|
return problem, solution
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ def fourthAngleOfQuadriFunc(maxAngle=180):
|
|||||||
|
|
||||||
sum_ = angle1 + angle2 + angle3
|
sum_ = angle1 + angle2 + angle3
|
||||||
angle4 = 360 - sum_
|
angle4 = 360 - sum_
|
||||||
|
|
||||||
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
|
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
|
||||||
solution = angle4
|
solution = angle4
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,15 +1,18 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term=5):
|
def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term=5):
|
||||||
r=random.randint(min_value,max_value)
|
r = random.randint(min_value, max_value)
|
||||||
a=random.randint(min_value,max_value)
|
a = random.randint(min_value, max_value)
|
||||||
n_term=random.randint(number_values,number_values+5)
|
n_term = random.randint(number_values, number_values+5)
|
||||||
sum_term=random.randint(number_values,number_values+5)
|
sum_term = random.randint(number_values, number_values+5)
|
||||||
GP=[]
|
GP = []
|
||||||
for i in range(number_values):
|
for i in range(number_values):
|
||||||
GP.append(a*(r**i))
|
GP.append(a*(r**i))
|
||||||
problem="For the given GP "+str(GP)+" ,Find the value of a,common ratio,"+str(n_term)+"th term value, sum upto "+str(sum_term)+"th term"
|
problem = "For the given GP "+str(GP)+" ,Find the value of a,common ratio,"+str(
|
||||||
value_nth_term=a*(r**(n_term-1))
|
n_term)+"th term value, sum upto "+str(sum_term)+"th term"
|
||||||
sum_till_nth_term=a*((r**sum_term-1)/(r-1))
|
value_nth_term = a*(r**(n_term-1))
|
||||||
solution="The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(a,r,n_term,value_nth_term,sum_term,sum_till_nth_term)
|
sum_till_nth_term = a*((r**sum_term-1)/(r-1))
|
||||||
return problem,solution
|
solution = "The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(
|
||||||
|
a, r, n_term, value_nth_term, sum_term, sum_till_nth_term)
|
||||||
|
return problem, solution
|
||||||
|
|||||||
@@ -1,27 +1,27 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def geometricMeanFunc(maxValue=100, maxNum=4):
|
def geometricMeanFunc(maxValue=100, maxNum=4):
|
||||||
a=random.randint(1,maxValue)
|
a = random.randint(1, maxValue)
|
||||||
b=random.randint(1,maxValue)
|
b = random.randint(1, maxValue)
|
||||||
c=random.randint(1,maxValue)
|
c = random.randint(1, maxValue)
|
||||||
d=random.randint(1,maxValue)
|
d = random.randint(1, maxValue)
|
||||||
num=random.randint(2,4)
|
num = random.randint(2, 4)
|
||||||
if num==2:
|
if num == 2:
|
||||||
product=a*b
|
product = a*b
|
||||||
elif num==3:
|
elif num == 3:
|
||||||
product=a*b*c
|
product = a*b*c
|
||||||
elif num==4:
|
elif num == 4:
|
||||||
product=a*b*c*d
|
product = a*b*c*d
|
||||||
|
|
||||||
ans=product**(1/num)
|
ans = product**(1/num)
|
||||||
if num==2:
|
if num == 2:
|
||||||
problem=f"Geometric mean of {num} numbers {a} and {b} = "
|
problem = f"Geometric mean of {num} numbers {a} and {b} = "
|
||||||
solution = f"({a}*{b})^(1/{num}) = {ans}"
|
solution = f"({a}*{b})^(1/{num}) = {ans}"
|
||||||
elif num==3:
|
elif num == 3:
|
||||||
problem=f"Geometric mean of {num} numbers {a} , {b} and {c} = "
|
problem = f"Geometric mean of {num} numbers {a} , {b} and {c} = "
|
||||||
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
|
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
|
||||||
elif num==4:
|
elif num == 4:
|
||||||
problem=f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
|
problem = f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||||
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
|
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
|
||||||
return problem,solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,28 +1,28 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def harmonicMeanFunc(maxValue=100, maxNum=4):
|
def harmonicMeanFunc(maxValue=100, maxNum=4):
|
||||||
|
|
||||||
a=random.randint(1,maxValue)
|
a = random.randint(1, maxValue)
|
||||||
b=random.randint(1,maxValue)
|
b = random.randint(1, maxValue)
|
||||||
c=random.randint(1,maxValue)
|
c = random.randint(1, maxValue)
|
||||||
d=random.randint(1,maxValue)
|
d = random.randint(1, maxValue)
|
||||||
num=random.randint(2,4)
|
num = random.randint(2, 4)
|
||||||
if num==2:
|
if num == 2:
|
||||||
sum=(1/a)+(1/b)
|
sum = (1/a)+(1/b)
|
||||||
elif num==3:
|
elif num == 3:
|
||||||
sum=(1/a)+(1/b)+(1/c)
|
sum = (1/a)+(1/b)+(1/c)
|
||||||
elif num==4:
|
elif num == 4:
|
||||||
sum=(1/a)+(1/b)+(1/c)+(1/d)
|
sum = (1/a)+(1/b)+(1/c)+(1/d)
|
||||||
|
|
||||||
ans=num/sum
|
ans = num/sum
|
||||||
if num==2:
|
if num == 2:
|
||||||
problem=f"Harmonic mean of {num} numbers {a} and {b} = "
|
problem = f"Harmonic mean of {num} numbers {a} and {b} = "
|
||||||
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
|
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
|
||||||
elif num==3:
|
elif num == 3:
|
||||||
problem=f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
|
problem = f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
|
||||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
|
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
|
||||||
elif num==4:
|
elif num == 4:
|
||||||
problem=f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
|
problem = f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
|
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
|
||||||
return problem,solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def hcfFunc(maxVal=20):
|
def hcfFunc(maxVal=20):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
|
|||||||
@@ -33,8 +33,10 @@ def intersectionOfTwoLinesFunc(
|
|||||||
x = f"{x.numerator}/{x.denominator}"
|
x = f"{x.numerator}/{x.denominator}"
|
||||||
return x
|
return x
|
||||||
|
|
||||||
m1 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator))
|
m1 = (random.randint(minM, maxM), random.randint(
|
||||||
m2 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator))
|
minDenominator, maxDenominator))
|
||||||
|
m2 = (random.randint(minM, maxM), random.randint(
|
||||||
|
minDenominator, maxDenominator))
|
||||||
|
|
||||||
b1 = random.randint(minB, maxB)
|
b1 = random.randint(minB, maxB)
|
||||||
b2 = random.randint(minB, maxB)
|
b2 = random.randint(minB, maxB)
|
||||||
@@ -58,5 +60,5 @@ def intersectionOfTwoLinesFunc(
|
|||||||
intersection_x = (b1 - b2) / (m2 - m1)
|
intersection_x = (b1 - b2) / (m2 - m1)
|
||||||
intersection_y = ((m2 * b1) - (m1 * b2)) / (m2 - m1)
|
intersection_y = ((m2 * b1) - (m1 * b2)) / (m2 - m1)
|
||||||
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
|
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -9,7 +9,8 @@ def isTriangleValidFunc(maxSideLength=50):
|
|||||||
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
|
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
|
||||||
sides = [sideC, sideA, sideB]
|
sides = [sideC, sideA, sideB]
|
||||||
|
|
||||||
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (sides[2] < sideSums[2])
|
exists = True & (sides[0] < sideSums[0]) & (
|
||||||
|
sides[1] < sideSums[1]) & (sides[2] < sideSums[2])
|
||||||
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
|
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
|
||||||
|
|
||||||
if exists:
|
if exists:
|
||||||
|
|||||||
@@ -13,5 +13,5 @@ def lcmFunc(maxVal=20):
|
|||||||
|
|
||||||
problem = f"LCM of {a} and {b} ="
|
problem = f"LCM of {a} and {b} ="
|
||||||
solution = str(d)
|
solution = str(d)
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -9,13 +9,15 @@ def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
|
|||||||
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
||||||
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
||||||
problem = list()
|
problem = list()
|
||||||
solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
solution = ", ".join(["{} = {}".format(vars[i], soln[i])
|
||||||
|
for i in range(n)])
|
||||||
|
|
||||||
for _ in range(n):
|
for _ in range(n):
|
||||||
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
||||||
res = sum([coeff[i] * soln[i] for i in range(n)])
|
res = sum([coeff[i] * soln[i] for i in range(n)])
|
||||||
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)]
|
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i]
|
||||||
|
!= 0 else "" for i in range(n)]
|
||||||
|
|
||||||
while "" in prob:
|
while "" in prob:
|
||||||
prob.remove("")
|
prob.remove("")
|
||||||
prob = " + ".join(prob) + " = " + str(res)
|
prob = " + ".join(prob) + " = " + str(res)
|
||||||
|
|||||||
@@ -8,5 +8,5 @@ def logFunc(maxBase=3, maxVal=8):
|
|||||||
|
|
||||||
problem = "log" + str(b) + "(" + str(c) + ")"
|
problem = "log" + str(b) + "(" + str(c) + ")"
|
||||||
solution = str(a)
|
solution = str(a)
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
import sympy
|
import sympy
|
||||||
|
|
||||||
|
|
||||||
def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerElementsInInvertedMatrix=False):
|
def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerElementsInInvertedMatrix=False):
|
||||||
if OnlyIntegerElementsInInvertedMatrix is True:
|
if OnlyIntegerElementsInInvertedMatrix is True:
|
||||||
isItOk = False
|
isItOk = False
|
||||||
|
|||||||
@@ -32,10 +32,12 @@ def matrixMultiplicationFunc(maxVal=100):
|
|||||||
temp += a[r][t] * b[t][c]
|
temp += a[r][t] * b[t][c]
|
||||||
res[r].append(temp)
|
res[r].append(temp)
|
||||||
|
|
||||||
problem = f"Multiply \n{a_string}\n and \n\n{b_string}" # consider using a, b instead of a_string, b_string if the problem doesn't look right
|
# consider using a, b instead of a_string, b_string if the problem doesn't look right
|
||||||
|
problem = f"Multiply \n{a_string}\n and \n\n{b_string}"
|
||||||
solution = matrixMultiplicationFuncHelper(res)
|
solution = matrixMultiplicationFuncHelper(res)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def matrixMultiplicationFuncHelper(inp):
|
def matrixMultiplicationFuncHelper(inp):
|
||||||
m = len(inp)
|
m = len(inp)
|
||||||
n = len(inp[0])
|
n = len(inp[0])
|
||||||
@@ -47,5 +49,5 @@ def matrixMultiplicationFuncHelper(inp):
|
|||||||
string += ", "if j < n-1 else ""
|
string += ", "if j < n-1 else ""
|
||||||
string += "]\n [" if i < m-1 else ""
|
string += "]\n [" if i < m-1 else ""
|
||||||
string += "]]"
|
string += "]]"
|
||||||
|
|
||||||
return string
|
return string
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
def meanMedianFunc(maxlen = 10):
|
|
||||||
|
def meanMedianFunc(maxlen=10):
|
||||||
randomlist = random.sample(range(1, 99), maxlen)
|
randomlist = random.sample(range(1, 99), maxlen)
|
||||||
total = 0
|
total = 0
|
||||||
for n in randomlist:
|
for n in randomlist:
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ def moduloFunc(maxRes=99, maxModulo=99):
|
|||||||
a = random.randint(0, maxModulo)
|
a = random.randint(0, maxModulo)
|
||||||
b = random.randint(0, min(maxRes, maxModulo))
|
b = random.randint(0, min(maxRes, maxModulo))
|
||||||
c = a % b if b != 0 else 0
|
c = a % b if b != 0 else 0
|
||||||
|
|
||||||
problem = str(a) + "%" + str(b) + "="
|
problem = str(a) + "%" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ def multiplicationFunc(maxRes=99, maxMulti=99):
|
|||||||
a = random.randint(0, maxMulti)
|
a = random.randint(0, maxMulti)
|
||||||
b = random.randint(0, min(int(maxMulti / a), maxRes))
|
b = random.randint(0, min(int(maxMulti / a), maxRes))
|
||||||
c = a * b
|
c = a * b
|
||||||
|
|
||||||
problem = str(a) + "*" + str(b) + "="
|
problem = str(a) + "*" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,9 +1,11 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def multiplyComplexNumbersFunc(minRealImaginaryNum = -20, maxRealImaginaryNum = 20):
|
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20, maxRealImaginaryNum=20):
|
||||||
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||||
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||||
|
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||||
|
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||||
problem = f"{num1} * {num2} = "
|
problem = f"{num1} * {num2} = "
|
||||||
solution = num1 * num2
|
solution = num1 * num2
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -20,7 +20,7 @@ def multiplyFractionsFunc(maxVal=10):
|
|||||||
|
|
||||||
tmp_n = a * c
|
tmp_n = a * c
|
||||||
tmp_d = b * d
|
tmp_d = b * d
|
||||||
|
|
||||||
gcd = calculate_gcd(tmp_n, tmp_d)
|
gcd = calculate_gcd(tmp_n, tmp_d)
|
||||||
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
|
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
|
||||||
|
|
||||||
|
|||||||
@@ -6,7 +6,7 @@ def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100):
|
|||||||
b = random.randint(0, maxMatrixVal)
|
b = random.randint(0, maxMatrixVal)
|
||||||
c = random.randint(0, maxMatrixVal)
|
c = random.randint(0, maxMatrixVal)
|
||||||
d = random.randint(0, maxMatrixVal)
|
d = random.randint(0, maxMatrixVal)
|
||||||
|
|
||||||
constant = random.randint(0, int(maxRes / max(a, b, c, d)))
|
constant = random.randint(0, int(maxRes / max(a, b, c, d)))
|
||||||
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
|
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
|
||||||
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
|
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
|
||||||
|
|||||||
@@ -1,10 +1,11 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def nthFibonacciNumberFunc(maxN = 100):
|
def nthFibonacciNumberFunc(maxN=100):
|
||||||
golden_ratio = (1 + math.sqrt(5))/2
|
golden_ratio = (1 + math.sqrt(5))/2
|
||||||
n = random.randint(1,maxN)
|
n = random.randint(1, maxN)
|
||||||
problem = f"What is the {n}th Fibonacci number?"
|
problem = f"What is the {n}th Fibonacci number?"
|
||||||
ans = round((math.pow(golden_ratio,n) - math.pow(-golden_ratio,-n))/(math.sqrt(5)))
|
ans = round((math.pow(golden_ratio, n) -
|
||||||
|
math.pow(-golden_ratio, -n))/(math.sqrt(5)))
|
||||||
solution = f"{ans}"
|
solution = f"{ans}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
def percentageFunc(maxValue = 99, maxpercentage=99):
|
|
||||||
|
def percentageFunc(maxValue=99, maxpercentage=99):
|
||||||
a = random.randint(1, maxpercentage)
|
a = random.randint(1, maxpercentage)
|
||||||
b = random.randint(1, maxValue)
|
b = random.randint(1, maxValue)
|
||||||
problem = f"What is {a}% of {b}?"
|
problem = f"What is {a}% of {b}?"
|
||||||
|
|||||||
@@ -6,5 +6,6 @@ def permutationFunc(maxlength=20):
|
|||||||
b = random.randint(0, 9)
|
b = random.randint(0, 9)
|
||||||
|
|
||||||
solution = int(math.factorial(a) / (math.factorial(a - b)))
|
solution = int(math.factorial(a) / (math.factorial(a - b)))
|
||||||
problem = "Number of Permutations from {} objects picked {} at a time = ".format(a, b)
|
problem = "Number of Permutations from {} objects picked {} at a time = ".format(
|
||||||
|
a, b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -12,7 +12,7 @@ def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
|||||||
solution += " + "
|
solution += " + "
|
||||||
coefficient = random.randint(1, maxCoef)
|
coefficient = random.randint(1, maxCoef)
|
||||||
exponent = random.randint(1, maxExp)
|
exponent = random.randint(1, maxExp)
|
||||||
|
|
||||||
problem += str(coefficient) + "x^" + str(exponent)
|
problem += str(coefficient) + "x^" + str(exponent)
|
||||||
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
|
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -14,7 +14,8 @@ def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
|||||||
exponent = random.randint(1, maxExp)
|
exponent = random.randint(1, maxExp)
|
||||||
|
|
||||||
problem += str(coefficient) + "x^" + str(exponent)
|
problem += str(coefficient) + "x^" + str(exponent)
|
||||||
solution += "(" + str(coefficient) + "/" + str(exponent) + ")x^" + str(exponent + 1)
|
solution += "(" + str(coefficient) + "/" + \
|
||||||
|
str(exponent) + ")x^" + str(exponent + 1)
|
||||||
|
|
||||||
solution += " + c"
|
solution += " + c"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -16,7 +16,7 @@ def primeFactorsFunc(minVal=1, maxVal=200):
|
|||||||
|
|
||||||
if n > 1:
|
if n > 1:
|
||||||
factors.append(n)
|
factors.append(n)
|
||||||
|
|
||||||
problem = f"Find prime factors of {a}"
|
problem = f"Find prime factors of {a}"
|
||||||
solution = f"{factors}"
|
solution = f"{factors}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def profitLossPercentFunc(maxCP = 1000, maxSP = 1000):
|
def profitLossPercentFunc(maxCP=1000, maxSP=1000):
|
||||||
cP = random.randint(1, maxCP)
|
cP = random.randint(1, maxCP)
|
||||||
sP = random.randint(1, maxSP)
|
sP = random.randint(1, maxSP)
|
||||||
diff = abs(sP-cP)
|
diff = abs(sP-cP)
|
||||||
@@ -12,5 +12,5 @@ def profitLossPercentFunc(maxCP = 1000, maxSP = 1000):
|
|||||||
percent = diff/cP * 100
|
percent = diff/cP * 100
|
||||||
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
|
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
|
||||||
solution = percent
|
solution = percent
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ def pythagoreanTheoremFunc(maxLength=20):
|
|||||||
a = random.randint(1, maxLength)
|
a = random.randint(1, maxLength)
|
||||||
b = random.randint(1, maxLength)
|
b = random.randint(1, maxLength)
|
||||||
c = (a**2 + b**2)**0.5
|
c = (a**2 + b**2)**0.5
|
||||||
|
|
||||||
problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = "
|
problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = "
|
||||||
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
|
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -4,9 +4,11 @@ from .__init__ import *
|
|||||||
def quadraticEquation(maxVal=100):
|
def quadraticEquation(maxVal=100):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
c = random.randint(1, maxVal)
|
c = random.randint(1, maxVal)
|
||||||
b = random.randint(round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
|
b = random.randint(round(math.sqrt(4 * a * c)) + 1,
|
||||||
|
round(math.sqrt(4 * maxVal * maxVal)))
|
||||||
|
|
||||||
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
||||||
D = math.sqrt(b * b - 4 * a * c)
|
D = math.sqrt(b * b - 4 * a * c)
|
||||||
solution = str([round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)])
|
solution = str([round((-b + D) / (2 * a), 2),
|
||||||
|
round((-b - D) / (2 * a), 2)])
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
|||||||
def regularPolygonAngleFunc(minVal=3, maxVal=20):
|
def regularPolygonAngleFunc(minVal=3, maxVal=20):
|
||||||
sideNum = random.randint(minVal, maxVal)
|
sideNum = random.randint(minVal, maxVal)
|
||||||
problem = f"Find the angle of a regular polygon with {sideNum} sides"
|
problem = f"Find the angle of a regular polygon with {sideNum} sides"
|
||||||
|
|
||||||
exteriorAngle = round((360 / sideNum), 2)
|
exteriorAngle = round((360 / sideNum), 2)
|
||||||
solution = 180 - exteriorAngle
|
solution = 180 - exteriorAngle
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,10 +1,11 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
def sectorAreaFunc(maxRadius = 49,maxAngle = 359):
|
|
||||||
|
def sectorAreaFunc(maxRadius=49, maxAngle=359):
|
||||||
Radius = random.randint(1, maxRadius)
|
Radius = random.randint(1, maxRadius)
|
||||||
Angle = random.randint(1, maxAngle)
|
Angle = random.randint(1, maxAngle)
|
||||||
problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector."
|
problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector."
|
||||||
secArea = float((Angle / 360) * math.pi*Radius*Radius)
|
secArea = float((Angle / 360) * math.pi*Radius*Radius)
|
||||||
formatted_float = "{:.5f}".format(secArea)
|
formatted_float = "{:.5f}".format(secArea)
|
||||||
solution = f"Area of sector = {formatted_float}"
|
solution = f"Area of sector = {formatted_float}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -6,7 +6,8 @@ def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
|
|||||||
b = random.randint(1, maxRate)
|
b = random.randint(1, maxRate)
|
||||||
c = random.randint(1, maxTime)
|
c = random.randint(1, maxTime)
|
||||||
d = (a * b * c) / 100
|
d = (a * b * c) / 100
|
||||||
|
|
||||||
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(b) + "% rate of interest and for a time period of " + str(c) + " years is = "
|
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(
|
||||||
|
b) + "% rate of interest and for a time period of " + str(c) + " years is = "
|
||||||
solution = round(d, 2)
|
solution = round(d, 2)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
|||||||
def squareFunc(maxSquareNum=20):
|
def squareFunc(maxSquareNum=20):
|
||||||
a = random.randint(1, maxSquareNum)
|
a = random.randint(1, maxSquareNum)
|
||||||
b = a * a
|
b = a * a
|
||||||
|
|
||||||
problem = str(a) + "^2" + "="
|
problem = str(a) + "^2" + "="
|
||||||
solution = str(b)
|
solution = str(b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
|||||||
def squareRootFunc(minNo=1, maxNo=12):
|
def squareRootFunc(minNo=1, maxNo=12):
|
||||||
b = random.randint(minNo, maxNo)
|
b = random.randint(minNo, maxNo)
|
||||||
a = b * b
|
a = b * b
|
||||||
|
|
||||||
problem = "sqrt(" + str(a) + ")="
|
problem = "sqrt(" + str(a) + ")="
|
||||||
solution = str(b)
|
solution = str(b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ def subtractionFunc(maxMinuend=99, maxDiff=99):
|
|||||||
a = random.randint(0, maxMinuend)
|
a = random.randint(0, maxMinuend)
|
||||||
b = random.randint(max(0, (a - maxDiff)), a)
|
b = random.randint(max(0, (a - maxDiff)), a)
|
||||||
c = a - b
|
c = a - b
|
||||||
|
|
||||||
problem = str(a) + "-" + str(b) + "="
|
problem = str(a) + "-" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,10 +1,10 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def sumOfAnglesOfPolygonFunc(maxSides = 12):
|
def sumOfAnglesOfPolygonFunc(maxSides=12):
|
||||||
side = random.randint(3, maxSides)
|
side = random.randint(3, maxSides)
|
||||||
sum = (side - 2) * 180
|
sum = (side - 2) * 180
|
||||||
|
|
||||||
problem = f"Sum of angles of polygon with {side} sides = "
|
problem = f"Sum of angles of polygon with {side} sides = "
|
||||||
solution = sum
|
solution = sum
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -1,10 +1,10 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def surdsComparisonFunc(maxValue = 100, maxRoot = 10):
|
def surdsComparisonFunc(maxValue=100, maxRoot=10):
|
||||||
radicand1,radicand2 = tuple(random.sample(range(1,maxValue),2))
|
radicand1, radicand2 = tuple(random.sample(range(1, maxValue), 2))
|
||||||
degree1, degree2 = tuple(random.sample(range(1,maxRoot),2))
|
degree1, degree2 = tuple(random.sample(range(1, maxRoot), 2))
|
||||||
|
|
||||||
problem = f"Fill in the blanks {radicand1}^(1/{degree1}) _ {radicand2}^(1/{degree2})"
|
problem = f"Fill in the blanks {radicand1}^(1/{degree1}) _ {radicand2}^(1/{degree2})"
|
||||||
first = math.pow(radicand1, 1/degree1)
|
first = math.pow(radicand1, 1/degree1)
|
||||||
second = math.pow(radicand2, 1/degree2)
|
second = math.pow(radicand2, 1/degree2)
|
||||||
|
|||||||
@@ -8,6 +8,6 @@ def surfaceAreaCone(maxRadius=20, maxHeight=50, unit='m'):
|
|||||||
slopingHeight = math.sqrt(a**2 + b**2)
|
slopingHeight = math.sqrt(a**2 + b**2)
|
||||||
problem = f"Surface area of cone with height = {a}{unit} and radius = {b}{unit} is"
|
problem = f"Surface area of cone with height = {a}{unit} and radius = {b}{unit} is"
|
||||||
ans = int(math.pi * b * slopingHeight + math.pi * b * b)
|
ans = int(math.pi * b * slopingHeight + math.pi * b * b)
|
||||||
|
|
||||||
solution = f"{ans} {unit}^2"
|
solution = f"{ans} {unit}^2"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ def surfaceAreaCuboid(maxSide=20, unit='m'):
|
|||||||
a = random.randint(1, maxSide)
|
a = random.randint(1, maxSide)
|
||||||
b = random.randint(1, maxSide)
|
b = random.randint(1, maxSide)
|
||||||
c = random.randint(1, maxSide)
|
c = random.randint(1, maxSide)
|
||||||
|
|
||||||
problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
||||||
ans = 2 * (a * b + b * c + c * a)
|
ans = 2 * (a * b + b * c + c * a)
|
||||||
solution = f"{ans} {unit}^2"
|
solution = f"{ans} {unit}^2"
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
|||||||
def surfaceAreaCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
def surfaceAreaCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
||||||
a = random.randint(1, maxHeight)
|
a = random.randint(1, maxHeight)
|
||||||
b = random.randint(1, maxRadius)
|
b = random.randint(1, maxRadius)
|
||||||
|
|
||||||
problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
||||||
ans = int(2 * math.pi * a * b + 2 * math.pi * b * b)
|
ans = int(2 * math.pi * a * b + 2 * math.pi * b * b)
|
||||||
solution = f"{ans} {unit}^2"
|
solution = f"{ans} {unit}^2"
|
||||||
|
|||||||
@@ -1,9 +1,9 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def surfaceAreaSphere(maxSide = 20, unit = 'm'):
|
def surfaceAreaSphere(maxSide=20, unit='m'):
|
||||||
r = random.randint(1, maxSide)
|
r = random.randint(1, maxSide)
|
||||||
|
|
||||||
problem = f"Surface area of Sphere with radius = {r}{unit} is"
|
problem = f"Surface area of Sphere with radius = {r}{unit} is"
|
||||||
ans = 4 * math.pi * r * r
|
ans = 4 * math.pi * r * r
|
||||||
solution = f"{ans} {unit}^2"
|
solution = f"{ans} {unit}^2"
|
||||||
|
|||||||
@@ -36,9 +36,10 @@ def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
|
|||||||
# No redundant 1s
|
# No redundant 1s
|
||||||
y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else ''
|
y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else ''
|
||||||
# Don't include if 0, unless x is also 0 (probably never happens)
|
# Don't include if 0, unless x is also 0 (probably never happens)
|
||||||
y_str = f'{y_coeff}y' if coeffs[1] != 0 else ('' if x_str != '' else '0')
|
y_str = f'{y_coeff}y' if coeffs[1] != 0 else (
|
||||||
|
'' if x_str != '' else '0')
|
||||||
return f'{x_str}{op}{y_str} = {coeffs[2]}'
|
return f'{x_str}{op}{y_str} = {coeffs[2]}'
|
||||||
|
|
||||||
problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}"
|
problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}"
|
||||||
solution = f"x = {x}, y = {y}"
|
solution = f"x = {x}, y = {y}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ def thirdAngleOfTriangleFunc(maxAngle=89):
|
|||||||
angle1 = random.randint(1, maxAngle)
|
angle1 = random.randint(1, maxAngle)
|
||||||
angle2 = random.randint(1, maxAngle)
|
angle2 = random.randint(1, maxAngle)
|
||||||
angle3 = 180 - (angle1 + angle2)
|
angle3 = 180 - (angle1 + angle2)
|
||||||
|
|
||||||
problem = f"Third angle of triangle with angles {angle1} and {angle2} = "
|
problem = f"Third angle of triangle with angles {angle1} and {angle2} = "
|
||||||
solution = angle3
|
solution = angle3
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -2,12 +2,12 @@ from .__init__ import *
|
|||||||
|
|
||||||
|
|
||||||
def vectorCrossFunc(minVal=-20, maxVal=20):
|
def vectorCrossFunc(minVal=-20, maxVal=20):
|
||||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||||
c = [a[1] * b[2] - a[2] * b[1],
|
c = [a[1] * b[2] - a[2] * b[1],
|
||||||
a[2] * b[0] - a[0] * b[2],
|
a[2] * b[0] - a[0] * b[2],
|
||||||
a[0] * b[1] - a[1] * b[0]]
|
a[0] * b[1] - a[1] * b[0]]
|
||||||
|
|
||||||
problem = str(a) + " X " + str(b) + " = "
|
problem = str(a) + " X " + str(b) + " = "
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -2,10 +2,10 @@ from .__init__ import *
|
|||||||
|
|
||||||
|
|
||||||
def vectorDotFunc(minVal=-20, maxVal=20):
|
def vectorDotFunc(minVal=-20, maxVal=20):
|
||||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||||
c = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
|
c = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
|
||||||
|
|
||||||
problem = str(a) + " . " + str(b) + " = "
|
problem = str(a) + " . " + str(b) + " = "
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
|||||||
def volumeCone(maxRadius=20, maxHeight=50, unit='m'):
|
def volumeCone(maxRadius=20, maxHeight=50, unit='m'):
|
||||||
a = random.randint(1, maxHeight)
|
a = random.randint(1, maxHeight)
|
||||||
b = random.randint(1, maxRadius)
|
b = random.randint(1, maxRadius)
|
||||||
|
|
||||||
problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is"
|
problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is"
|
||||||
ans = int(math.pi * b * b * a * (1 / 3))
|
ans = int(math.pi * b * b * a * (1 / 3))
|
||||||
solution = f"{ans} {unit}^3"
|
solution = f"{ans} {unit}^3"
|
||||||
|
|||||||
@@ -3,7 +3,7 @@ from .__init__ import *
|
|||||||
|
|
||||||
def volumeCube(maxSide=20, unit='m'):
|
def volumeCube(maxSide=20, unit='m'):
|
||||||
a = random.randint(1, maxSide)
|
a = random.randint(1, maxSide)
|
||||||
|
|
||||||
problem = f"Volume of cube with side = {a}{unit} is"
|
problem = f"Volume of cube with side = {a}{unit} is"
|
||||||
ans = a * a * a
|
ans = a * a * a
|
||||||
solution = f"{ans} {unit}^3"
|
solution = f"{ans} {unit}^3"
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ def volumeCuboid(maxSide=20, unit='m'):
|
|||||||
a = random.randint(1, maxSide)
|
a = random.randint(1, maxSide)
|
||||||
b = random.randint(1, maxSide)
|
b = random.randint(1, maxSide)
|
||||||
c = random.randint(1, maxSide)
|
c = random.randint(1, maxSide)
|
||||||
|
|
||||||
problem = f"Volume of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
problem = f"Volume of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
||||||
ans = a * b * c
|
ans = a * b * c
|
||||||
solution = f"{ans} {unit}^3"
|
solution = f"{ans} {unit}^3"
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
|||||||
def volumeCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
def volumeCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
||||||
a = random.randint(1, maxHeight)
|
a = random.randint(1, maxHeight)
|
||||||
b = random.randint(1, maxRadius)
|
b = random.randint(1, maxRadius)
|
||||||
|
|
||||||
problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
||||||
ans = int(math.pi * b * b * a)
|
ans = int(math.pi * b * b * a)
|
||||||
solution = f"{ans} {unit}^3"
|
solution = f"{ans} {unit}^3"
|
||||||
|
|||||||
@@ -1,10 +1,10 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def volumeSphereFunc(maxRadius = 100):
|
def volumeSphereFunc(maxRadius=100):
|
||||||
r=random.randint(1,maxRadius)
|
r = random.randint(1, maxRadius)
|
||||||
|
|
||||||
problem=f"Volume of sphere with radius {r} m = "
|
problem = f"Volume of sphere with radius {r} m = "
|
||||||
ans=(4*math.pi/3)*r*r*r
|
ans = (4*math.pi/3)*r*r*r
|
||||||
solution = f"{ans} m^3"
|
solution = f"{ans} m^3"
|
||||||
return problem,solution
|
return problem, solution
|
||||||
|
|||||||
@@ -7,6 +7,8 @@ from .__init__ import getGenList
|
|||||||
genList = getGenList()
|
genList = getGenList()
|
||||||
|
|
||||||
# || Generator class
|
# || Generator class
|
||||||
|
|
||||||
|
|
||||||
class Generator:
|
class Generator:
|
||||||
def __init__(self, title, id, generalProb, generalSol, func):
|
def __init__(self, title, id, generalProb, generalSol, func):
|
||||||
self.title = title
|
self.title = title
|
||||||
@@ -29,90 +31,164 @@ def genById(id):
|
|||||||
return(generator())
|
return(generator())
|
||||||
|
|
||||||
#
|
#
|
||||||
#def getGenList():
|
# def getGenList():
|
||||||
# return(genList)
|
# return(genList)
|
||||||
|
|
||||||
|
|
||||||
# Format is:
|
# Format is:
|
||||||
# <title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>)
|
# <title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>)
|
||||||
# Funcs_start - DO NOT REMOVE!
|
# Funcs_start - DO NOT REMOVE!
|
||||||
#addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
#addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
||||||
subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc)
|
subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc)
|
||||||
multiplication = Generator("Multiplication", 2, "a*b=", "c", multiplicationFunc)
|
multiplication = Generator(
|
||||||
|
"Multiplication", 2, "a*b=", "c", multiplicationFunc)
|
||||||
division = Generator("Division", 3, "a/b=", "c", divisionFunc)
|
division = Generator("Division", 3, "a/b=", "c", divisionFunc)
|
||||||
binaryComplement1s = Generator("Binary Complement 1s", 4, "1010=", "0101", binaryComplement1sFunc)
|
binaryComplement1s = Generator(
|
||||||
|
"Binary Complement 1s", 4, "1010=", "0101", binaryComplement1sFunc)
|
||||||
moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
|
moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
|
||||||
squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc)
|
squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc)
|
||||||
powerRuleDifferentiation = Generator("Power Rule Differentiation", 7, "nx^m=", "(n*m)x^(m-1)", powerRuleDifferentiationFunc)
|
powerRuleDifferentiation = Generator(
|
||||||
|
"Power Rule Differentiation", 7, "nx^m=", "(n*m)x^(m-1)", powerRuleDifferentiationFunc)
|
||||||
square = Generator("Square", 8, "a^2", "b", squareFunc)
|
square = Generator("Square", 8, "a^2", "b", squareFunc)
|
||||||
lcm = Generator("LCM (Least Common Multiple)", 9,"LCM of a and b = ", "c", lcmFunc)
|
lcm = Generator("LCM (Least Common Multiple)", 9,
|
||||||
gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ", "c", gcdFunc)
|
"LCM of a and b = ", "c", lcmFunc)
|
||||||
basicAlgebra = Generator("Basic Algebra", 11, "ax + b = c", "d", basicAlgebraFunc)
|
gcd = Generator("GCD (Greatest Common Denominator)",
|
||||||
|
10, "GCD of a and b = ", "c", gcdFunc)
|
||||||
|
basicAlgebra = Generator(
|
||||||
|
"Basic Algebra", 11, "ax + b = c", "d", basicAlgebraFunc)
|
||||||
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
|
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
|
||||||
intDivision = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)
|
intDivision = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)
|
||||||
decimalToBinary = Generator("Decimal to Binary", 14,"Binary of a=", "b", DecimalToBinaryFunc)
|
decimalToBinary = Generator("Decimal to Binary", 14,
|
||||||
binaryToDecimal = Generator("Binary to Decimal", 15,"Decimal of a=", "b", BinaryToDecimalFunc)
|
"Binary of a=", "b", DecimalToBinaryFunc)
|
||||||
fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc)
|
binaryToDecimal = Generator("Binary to Decimal", 15,
|
||||||
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix",17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22)
|
"Decimal of a=", "b", BinaryToDecimalFunc)
|
||||||
areaOfTriangle = Generator("Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc)
|
fractionDivision = Generator(
|
||||||
doesTriangleExist = Generator("Triangle exists check", 19,"Does triangle with sides a, b and c exist?", "Yes/No", isTriangleValidFunc)
|
"Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc)
|
||||||
midPointOfTwoPoint = Generator("Midpoint of the two point", 20,"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)", MidPointOfTwoPointFunc)
|
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix",
|
||||||
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc)
|
17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22)
|
||||||
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22, "Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc)
|
areaOfTriangle = Generator(
|
||||||
systemOfEquations = Generator("Solve a System of Equations in R^2", 23, "2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3", systemOfEquationsFunc)
|
"Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc)
|
||||||
distance2Point = Generator("Distance between 2 points", 24, "Find the distance between (x1,y1) and (x2,y2)", "sqrt(distanceSquared)", distanceTwoPointsFunc)
|
doesTriangleExist = Generator("Triangle exists check", 19,
|
||||||
pythagoreanTheorem = Generator("Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc)
|
"Does triangle with sides a, b and c exist?", "Yes/No", isTriangleValidFunc)
|
||||||
linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc)# This has multiple variables whereas #23 has only x and y
|
midPointOfTwoPoint = Generator("Midpoint of the two point", 20,
|
||||||
primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc)
|
"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)", MidPointOfTwoPointFunc)
|
||||||
fractionMultiplication = Generator("Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc)
|
factoring = Generator("Factoring Quadratic", 21,
|
||||||
angleRegularPolygon = Generator("Angle of a Regular Polygon", 29,"Find the angle of a regular polygon with 6 sides", "120", regularPolygonAngleFunc)
|
"x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc)
|
||||||
combinations = Generator("Combinations of Objects", 30, "Combinations available for picking 4 objects at a time from 6 distinct objects =", " 15", combinationsFunc)
|
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22,
|
||||||
|
"Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc)
|
||||||
|
systemOfEquations = Generator("Solve a System of Equations in R^2", 23,
|
||||||
|
"2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3", systemOfEquationsFunc)
|
||||||
|
distance2Point = Generator("Distance between 2 points", 24,
|
||||||
|
"Find the distance between (x1,y1) and (x2,y2)", "sqrt(distanceSquared)", distanceTwoPointsFunc)
|
||||||
|
pythagoreanTheorem = Generator(
|
||||||
|
"Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc)
|
||||||
|
# This has multiple variables whereas #23 has only x and y
|
||||||
|
linearEquations = Generator(
|
||||||
|
"Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc)
|
||||||
|
primeFactors = Generator("Prime Factorisation", 27,
|
||||||
|
"Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc)
|
||||||
|
fractionMultiplication = Generator(
|
||||||
|
"Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc)
|
||||||
|
angleRegularPolygon = Generator("Angle of a Regular Polygon", 29,
|
||||||
|
"Find the angle of a regular polygon with 6 sides", "120", regularPolygonAngleFunc)
|
||||||
|
combinations = Generator("Combinations of Objects", 30,
|
||||||
|
"Combinations available for picking 4 objects at a time from 6 distinct objects =", " 15", combinationsFunc)
|
||||||
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
|
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
|
||||||
surfaceAreaCubeGen = Generator("Surface Area of Cube", 32, "Surface area of cube with side a units is", "b units^2", surfaceAreaCube)
|
surfaceAreaCubeGen = Generator(
|
||||||
surfaceAreaCuboidGen = Generator("Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is", "d units^2", surfaceAreaCuboid)
|
"Surface Area of Cube", 32, "Surface area of cube with side a units is", "b units^2", surfaceAreaCube)
|
||||||
surfaceAreaCylinderGen = Generator("Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is", "c units^2", surfaceAreaCylinder)
|
surfaceAreaCuboidGen = Generator(
|
||||||
volumeCubeGen = Generator("Volum of Cube", 35, "Volume of cube with side a units is", "b units^3", volumeCube)
|
"Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is", "d units^2", surfaceAreaCuboid)
|
||||||
volumeCuboidGen = Generator("Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is", "d units^3", volumeCuboid)
|
surfaceAreaCylinderGen = Generator(
|
||||||
volumeCylinderGen = Generator( "Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is", "c units^3", volumeCylinder)
|
"Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is", "c units^2", surfaceAreaCylinder)
|
||||||
surfaceAreaConeGen = Generator( "Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is", "c units^2", surfaceAreaCone)
|
volumeCubeGen = Generator(
|
||||||
volumeConeGen = Generator( "Volume of cone", 39, "Volume of cone with height = a units and radius = b units is", "c units^3", volumeCone)
|
"Volum of Cube", 35, "Volume of cube with side a units is", "b units^3", volumeCube)
|
||||||
commonFactors = Generator("Common Factors", 40, "Common Factors of {a} and {b} = ", "[c, d, ...]", commonFactorsFunc)
|
volumeCuboidGen = Generator(
|
||||||
intersectionOfTwoLines = Generator("Intersection of Two Lines", 41,"Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc)
|
"Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is", "d units^3", volumeCuboid)
|
||||||
permutations = Generator("Permutations", 42, "Total permutations of 4 objects at a time from 10 objects is", "5040", permutationFunc)
|
volumeCylinderGen = Generator(
|
||||||
vectorCross = Generator("Cross Product of 2 Vectors",43, "a X b = ", "c", vectorCrossFunc)
|
"Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is", "c units^3", volumeCylinder)
|
||||||
compareFractions = Generator("Compare Fractions", 44, "Which symbol represents the comparison between a/b and c/d?", ">/</=", compareFractionsFunc)
|
surfaceAreaConeGen = Generator(
|
||||||
simpleInterest = Generator("Simple Interest", 45, "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", simpleInterestFunc)
|
"Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is", "c units^2", surfaceAreaCone)
|
||||||
matrixMultiplication = Generator("Multiplication of two matrices",46, "Multiply two matrices A and B", "C", matrixMultiplicationFunc)
|
volumeConeGen = Generator(
|
||||||
CubeRoot = Generator("Cube Root", 47, "Cuberoot of a upto 2 decimal places is", "b", cubeRootFunc)
|
"Volume of cone", 39, "Volume of cone with height = a units and radius = b units is", "c units^3", volumeCone)
|
||||||
powerRuleIntegration = Generator("Power Rule Integration", 48, "nx^m=", "(n/m)x^(m+1)", powerRuleIntegrationFunc)
|
commonFactors = Generator(
|
||||||
fourthAngleOfQuadrilateral = Generator("Fourth Angle of Quadrilateral", 49,"Fourth angle of Quadrilateral with angles a,b,c =", "angle4", fourthAngleOfQuadriFunc)
|
"Common Factors", 40, "Common Factors of {a} and {b} = ", "[c, d, ...]", commonFactorsFunc)
|
||||||
quadraticEquationSolve = Generator("Quadratic Equation", 50, "Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2", quadraticEquation)
|
intersectionOfTwoLines = Generator("Intersection of Two Lines", 41,
|
||||||
hcf = Generator("HCF (Highest Common Factor)", 51,"HCF of a and b = ", "c", hcfFunc)
|
"Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc)
|
||||||
diceSumProbability = Generator("Probability of a certain sum appearing on faces of dice",52, "If n dices are rolled then probabilty of getting sum of x is =", "z", DiceSumProbFunc)
|
permutations = Generator(
|
||||||
exponentiation = Generator("Exponentiation", 53, "a^b = ", "c", exponentiationFunc)
|
"Permutations", 42, "Total permutations of 4 objects at a time from 10 objects is", "5040", permutationFunc)
|
||||||
confidenceInterval = Generator("Confidence interval For sample S",54, "With X% confidence", "is (A,B)", confidenceIntervalFunc)
|
vectorCross = Generator("Cross Product of 2 Vectors",
|
||||||
surdsComparison = Generator("Comparing surds", 55, "Fill in the blanks a^(1/b) _ c^(1/d)", "</>/=", surdsComparisonFunc)
|
43, "a X b = ", "c", vectorCrossFunc)
|
||||||
fibonacciSeries = Generator("Fibonacci Series", 56, "fibonacci series of first a numbers","prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc)
|
compareFractions = Generator(
|
||||||
basicTrigonometry = Generator("Trigonometric Values", 57, "What is sin(X)?", "ans", basicTrigonometryFunc)
|
"Compare Fractions", 44, "Which symbol represents the comparison between a/b and c/d?", ">/</=", compareFractionsFunc)
|
||||||
sumOfAnglesOfPolygon = Generator("Sum of Angles of Polygon", 58,"Sum of angles of polygon with n sides = ", "sum", sumOfAnglesOfPolygonFunc)
|
simpleInterest = Generator(
|
||||||
dataSummary = Generator("Mean,Standard Deviation,Variance",59, "a,b,c", "Mean:a+b+c/3,Std,Var", dataSummaryFunc)
|
"Simple Interest", 45, "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", simpleInterestFunc)
|
||||||
surfaceAreaSphereGen = Generator("Surface Area of Sphere", 60, "Surface area of sphere with radius = a units is", "d units^2", surfaceAreaSphere)
|
matrixMultiplication = Generator("Multiplication of two matrices",
|
||||||
volumeSphere = Generator("Volume of Sphere", 61, "Volume of sphere with radius r m = ", "(4*pi/3)*r*r*r", volumeSphereFunc)
|
46, "Multiply two matrices A and B", "C", matrixMultiplicationFunc)
|
||||||
nthFibonacciNumberGen = Generator("nth Fibonacci number", 62, "What is the nth Fibonacci number", "Fn", nthFibonacciNumberFunc)
|
CubeRoot = Generator(
|
||||||
profitLossPercent = Generator("Profit or Loss Percent", 63, "Profit/ Loss percent when CP = cp and SP = sp is: ", "percent", profitLossPercentFunc)
|
"Cube Root", 47, "Cuberoot of a upto 2 decimal places is", "b", cubeRootFunc)
|
||||||
binaryToHex = Generator("Binary to Hexidecimal", 64, "Hexidecimal of a=", "b", binaryToHexFunc)
|
powerRuleIntegration = Generator(
|
||||||
complexNumMultiply = Generator("Multiplication of 2 complex numbers", 65, "(x + j) (y + j) = ", "xy + xj + yj -1", multiplyComplexNumbersFunc)
|
"Power Rule Integration", 48, "nx^m=", "(n/m)x^(m+1)", powerRuleIntegrationFunc)
|
||||||
geometricprogression=Generator("Geometric Progression", 66, "Initial value,Common Ratio,nth Term,Sum till nth term =", "a,r,ar^n-1,sum(ar^n-1", geomProgrFunc)
|
fourthAngleOfQuadrilateral = Generator("Fourth Angle of Quadrilateral", 49,
|
||||||
geometricMean=Generator("Geometric Mean of N Numbers",67,"Geometric mean of n numbers A1 , A2 , ... , An = ","(A1*A2*...An)^(1/n) = ans",geometricMeanFunc)
|
"Fourth angle of Quadrilateral with angles a,b,c =", "angle4", fourthAngleOfQuadriFunc)
|
||||||
harmonicMean=Generator("Harmonic Mean of N Numbers",68,"Harmonic mean of n numbers A1 , A2 , ... , An = "," n/((1/A1) + (1/A2) + ... + (1/An)) = ans",harmonicMeanFunc)
|
quadraticEquationSolve = Generator(
|
||||||
eucldianNorm=Generator("Euclidian norm or L2 norm of a vector", 69, "Euclidian Norm of a vector V:[v1, v2, ......., vn]", "sqrt(v1^2 + v2^2 ........ +vn^2)", euclidianNormFunc)
|
"Quadratic Equation", 50, "Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2", quadraticEquation)
|
||||||
angleBtwVectors=Generator("Angle between 2 vectors", 70, "Angle Between 2 vectors V1=[v11, v12, ..., v1n] and V2=[v21, v22, ....., v2n]", "V1.V2 / (euclidNorm(V1)*euclidNorm(V2))", angleBtwVectorsFunc)
|
hcf = Generator("HCF (Highest Common Factor)", 51,
|
||||||
absoluteDifference=Generator("Absolute difference between two numbers", 71, "Absolute difference betweeen two numbers a and b =", "|a-b|", absoluteDifferenceFunc)
|
"HCF of a and b = ", "c", hcfFunc)
|
||||||
vectorDot = Generator("Dot Product of 2 Vectors", 72, "a . b = ", "c", vectorDotFunc)
|
diceSumProbability = Generator("Probability of a certain sum appearing on faces of dice",
|
||||||
binary2sComplement = Generator("Binary 2's Complement", 73, "2's complement of 11010110 =", "101010", binary2sComplementFunc)
|
52, "If n dices are rolled then probabilty of getting sum of x is =", "z", DiceSumProbFunc)
|
||||||
invertmatrix = Generator("Inverse of a Matrix", 74, "Inverse of a matrix A is", "A^(-1)", matrixInversion)
|
exponentiation = Generator(
|
||||||
sectorArea=Generator("Area of a Sector", 75,"Area of a sector with radius, r and angle, a ","Area",sectorAreaFunc)
|
"Exponentiation", 53, "a^b = ", "c", exponentiationFunc)
|
||||||
meanMedian=Generator("Mean and Median", 76,"Mean and median of given set of numbers","Mean, Median",meanMedianFunc)
|
confidenceInterval = Generator("Confidence interval For sample S",
|
||||||
intMatrix22determinant = Generator("Determinant to 2x2 Matrix", 77, "Det([[a,b],[c,d]]) =", " a * d - b * c", determinantToMatrix22)
|
54, "With X% confidence", "is (A,B)", confidenceIntervalFunc)
|
||||||
compoundInterest = Generator("Compound Interest", 78, "Compound interest for a principle amount of p dollars, r% rate of interest and for a time period of t years with n times compounded annually is = ", "A dollars", compoundInterestFunc)
|
surdsComparison = Generator(
|
||||||
decimalToHexadeci = Generator("Decimal to Hexadecimal", 79,"Binary of a=", "b", deciToHexaFunc)
|
"Comparing surds", 55, "Fill in the blanks a^(1/b) _ c^(1/d)", "</>/=", surdsComparisonFunc)
|
||||||
percentage = Generator("Percentage of a number",80,"What is a% of b?","percentage",percentageFunc)
|
fibonacciSeries = Generator("Fibonacci Series", 56, "fibonacci series of first a numbers",
|
||||||
|
"prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc)
|
||||||
|
basicTrigonometry = Generator(
|
||||||
|
"Trigonometric Values", 57, "What is sin(X)?", "ans", basicTrigonometryFunc)
|
||||||
|
sumOfAnglesOfPolygon = Generator("Sum of Angles of Polygon", 58,
|
||||||
|
"Sum of angles of polygon with n sides = ", "sum", sumOfAnglesOfPolygonFunc)
|
||||||
|
dataSummary = Generator("Mean,Standard Deviation,Variance",
|
||||||
|
59, "a,b,c", "Mean:a+b+c/3,Std,Var", dataSummaryFunc)
|
||||||
|
surfaceAreaSphereGen = Generator(
|
||||||
|
"Surface Area of Sphere", 60, "Surface area of sphere with radius = a units is", "d units^2", surfaceAreaSphere)
|
||||||
|
volumeSphere = Generator("Volume of Sphere", 61,
|
||||||
|
"Volume of sphere with radius r m = ", "(4*pi/3)*r*r*r", volumeSphereFunc)
|
||||||
|
nthFibonacciNumberGen = Generator(
|
||||||
|
"nth Fibonacci number", 62, "What is the nth Fibonacci number", "Fn", nthFibonacciNumberFunc)
|
||||||
|
profitLossPercent = Generator("Profit or Loss Percent", 63,
|
||||||
|
"Profit/ Loss percent when CP = cp and SP = sp is: ", "percent", profitLossPercentFunc)
|
||||||
|
binaryToHex = Generator("Binary to Hexidecimal", 64,
|
||||||
|
"Hexidecimal of a=", "b", binaryToHexFunc)
|
||||||
|
complexNumMultiply = Generator("Multiplication of 2 complex numbers", 65,
|
||||||
|
"(x + j) (y + j) = ", "xy + xj + yj -1", multiplyComplexNumbersFunc)
|
||||||
|
geometricprogression = Generator(
|
||||||
|
"Geometric Progression", 66, "Initial value,Common Ratio,nth Term,Sum till nth term =", "a,r,ar^n-1,sum(ar^n-1", geomProgrFunc)
|
||||||
|
geometricMean = Generator("Geometric Mean of N Numbers", 67,
|
||||||
|
"Geometric mean of n numbers A1 , A2 , ... , An = ", "(A1*A2*...An)^(1/n) = ans", geometricMeanFunc)
|
||||||
|
harmonicMean = Generator("Harmonic Mean of N Numbers", 68, "Harmonic mean of n numbers A1 , A2 , ... , An = ",
|
||||||
|
" n/((1/A1) + (1/A2) + ... + (1/An)) = ans", harmonicMeanFunc)
|
||||||
|
eucldianNorm = Generator("Euclidian norm or L2 norm of a vector", 69,
|
||||||
|
"Euclidian Norm of a vector V:[v1, v2, ......., vn]", "sqrt(v1^2 + v2^2 ........ +vn^2)", euclidianNormFunc)
|
||||||
|
angleBtwVectors = Generator("Angle between 2 vectors", 70,
|
||||||
|
"Angle Between 2 vectors V1=[v11, v12, ..., v1n] and V2=[v21, v22, ....., v2n]", "V1.V2 / (euclidNorm(V1)*euclidNorm(V2))", angleBtwVectorsFunc)
|
||||||
|
absoluteDifference = Generator("Absolute difference between two numbers", 71,
|
||||||
|
"Absolute difference betweeen two numbers a and b =", "|a-b|", absoluteDifferenceFunc)
|
||||||
|
vectorDot = Generator("Dot Product of 2 Vectors", 72,
|
||||||
|
"a . b = ", "c", vectorDotFunc)
|
||||||
|
binary2sComplement = Generator("Binary 2's Complement", 73,
|
||||||
|
"2's complement of 11010110 =", "101010", binary2sComplementFunc)
|
||||||
|
invertmatrix = Generator("Inverse of a Matrix", 74,
|
||||||
|
"Inverse of a matrix A is", "A^(-1)", matrixInversion)
|
||||||
|
sectorArea = Generator("Area of a Sector", 75,
|
||||||
|
"Area of a sector with radius, r and angle, a ", "Area", sectorAreaFunc)
|
||||||
|
meanMedian = Generator("Mean and Median", 76,
|
||||||
|
"Mean and median of given set of numbers", "Mean, Median", meanMedianFunc)
|
||||||
|
intMatrix22determinant = Generator(
|
||||||
|
"Determinant to 2x2 Matrix", 77, "Det([[a,b],[c,d]]) =", " a * d - b * c", determinantToMatrix22)
|
||||||
|
compoundInterest = Generator(
|
||||||
|
"Compound Interest", 78, "Compound interest for a principle amount of p dollars, r% rate of interest and for a time period of t years with n times compounded annually is = ", "A dollars", compoundInterestFunc)
|
||||||
|
decimalToHexadeci = Generator(
|
||||||
|
"Decimal to Hexadecimal", 79, "Binary of a=", "b", deciToHexaFunc)
|
||||||
|
percentage = Generator("Percentage of a number", 80,
|
||||||
|
"What is a% of b?", "percentage", percentageFunc)
|
||||||
|
|||||||
2
setup.py
2
setup.py
@@ -10,7 +10,7 @@ setup(
|
|||||||
license='MIT',
|
license='MIT',
|
||||||
packages=find_packages(),
|
packages=find_packages(),
|
||||||
install_requires=[
|
install_requires=[
|
||||||
|
|
||||||
],
|
],
|
||||||
entry_points={
|
entry_points={
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user