Merge branch 'master' into head

This commit is contained in:
Luke Weiler
2020-10-20 13:18:38 -04:00
committed by GitHub
131 changed files with 1486 additions and 833 deletions

View File

@@ -11,6 +11,6 @@ assignees: ''
**Example Solution:** **Example Solution:**
**Further explanation:** **Further explanation (optional):**
**Would you like to be assigned to this:** **Would you like to be assigned to this:**

View File

@@ -35,6 +35,7 @@ We currently just underwent a large reconstruction of the repository. Here is ho
* Place `.__init__ import *` at the top of your file and then write your function in the lines beneath it * Place `.__init__ import *` at the top of your file and then write your function in the lines beneath it
* Add `from .<yourfunc> import *` at the bottom of the `__init__.py` file inside the funcs directory * Add `from .<yourfunc> import *` at the bottom of the `__init__.py` file inside the funcs directory
If you have issues with checks you can try using yapf to fix linter errors or just go through them line by line.
### Provide Ideas ### Provide Ideas
If you have an idea for a generator but don't have the time or know-how to create it, you can add it as an issue. If you have a lot of ideas, I would suggest adding them to the table in README.md so that they are easier for our team to manage. If you have an idea for a generator but don't have the time or know-how to create it, you can add it as an issue. If you have a lot of ideas, I would suggest adding them to the table in README.md so that they are easier for our team to manage.

View File

@@ -2,7 +2,7 @@ IGNORE_ERRORS = E501,F401,F403,F405
PKG = mathgenerator PKG = mathgenerator
format: format:
python -m autopep8 --ignore=$(IGNORE_ERRORS) -i $(PKG)/* python -m autopep8 --ignore=$(IGNORE_ERRORS) -ir $(PKG)/*
lint: lint:
python -m flake8 --ignore=$(IGNORE_ERRORS) $(PKG) python -m flake8 --ignore=$(IGNORE_ERRORS) $(PKG)

163
README.md
View File

@@ -31,76 +31,93 @@ problem, solution = mathgen.genById(0)
| Id | Skill | Example problem | Example Solution | Function Name | | Id | Skill | Example problem | Example Solution | Function Name |
|------|-----------------------------------|--------------------|-----------------------|--------------------------| |------|-----------------------------------|--------------------|-----------------------|--------------------------|
[//]: # list start [//]: # list start
| 0 | Addition | 33+23= | 56 | addition | | 0 | Addition | 29+29= | 58 | addition |
| 1 | Subtraction | 14-1= | 13 | subtraction | | 1 | Subtraction | 10-8= | 2 | subtraction |
| 2 | Multiplication | 52*1= | 52 | multiplication | | 2 | Multiplication | 96*0= | 0 | multiplication |
| 3 | Division | 14/26= | 0.5384615384615384 | division | | 3 | Division | 25/95= | 0.2631578947368421 | division |
| 4 | Binary Complement 1s | 0110111= | 1001000 | binaryComplement1s | | 4 | Binary Complement 1s | 100101100= | 011010011 | binary_complement_1s |
| 5 | Modulo Division | 23%70= | 23 | moduloDivision | | 5 | Modulo Division | 74%50= | 24 | modulo_division |
| 6 | Square Root | sqrt(121)= | 11 | squareRoot | | 6 | Square Root | sqrt(49)= | 7 | square_root |
| 7 | Power Rule Differentiation | 3x^2 + 3x^5 + 1x^2 + 6x^4 + 6x^3 | 6x^1 + 15x^4 + 2x^1 + 24x^3 + 18x^2 | powerRuleDifferentiation | | 7 | Power Rule Differentiation | 10x^7 + 7x^5 + 5x^8 | 70x^6 + 35x^4 + 40x^7 | power_rule_differentiation |
| 8 | Square | 18^2= | 324 | square | | 8 | Square | 9^2= | 81 | square |
| 9 | LCM (Least Common Multiple) | LCM of 17 and 11 = | 187 | lcm | | 9 | LCM (Least Common Multiple) | LCM of 19 and 7 = | 133 | lcm |
| 10 | GCD (Greatest Common Denominator) | GCD of 15 and 12 = | 3 | gcd | | 10 | GCD (Greatest Common Denominator) | GCD of 1 and 7 = | 1 | gcd |
| 11 | Basic Algebra | 2x + 3 = 10 | 7/2 | basicAlgebra | | 11 | Basic Algebra | 3x + 2 = 8 | 6 | basic_algebra |
| 12 | Logarithm | log2(32) | 5 | log | | 12 | Logarithm | log2(128) | 7 | log |
| 13 | Easy Division | 196/14 = | 14 | intDivision | | 13 | Easy Division | 228/12 = | 19 | int_division |
| 14 | Decimal to Binary | Binary of 61= | 111101 | decimalToBinary | | 14 | Decimal to Binary | Binary of 37= | 100101 | decimal_to_binary |
| 15 | Binary to Decimal | 1 | 1 | binaryToDecimal | | 15 | Binary to Decimal | 10100001 | 161 | binary_to_decimal |
| 16 | Fraction Division | (2/1)/(10/5) | 1 | fractionDivision | | 16 | Fraction Division | (8/2)/(8/2) | 1 | divide_fractions |
| 17 | Integer Multiplication with 2x2 Matrix | 16 * [[4, 1], [1, 2]] = | [[64,16],[16,32]] | intMatrix22Multiplication | | 17 | Integer Multiplication with 2x2 Matrix | 6 * [[3, 7], [10, 6]] = | [[18,42],[60,36]] | multiply_int_to_22_matrix |
| 18 | Area of Triangle | Area of triangle with side lengths: 15 13 11 = | 69.62892717829278 | areaOfTriangle | | 18 | Area of Triangle | Area of triangle with side lengths: 2 1 19 = | (5.449334243437888e-15+88.99438184514796j) | area_of_triangle |
| 19 | Triangle exists check | Does triangle with sides 35, 14 and 37 exist? | Yes | doesTriangleExist | | 19 | Triangle exists check | Does triangle with sides 48, 16 and 30 exist? | No | valid_triangle |
| 20 | Midpoint of the two point | (15,5),(9,10)= | (12.0,7.5) | midPointOfTwoPoint | | 20 | Midpoint of the two point | (2,-5),(12,-7)= | (7.0,-6.0) | midpoint_of_two_points |
| 21 | Factoring Quadratic | x^2-12x+35 | (x-7)(x-5) | factoring | | 21 | Factoring Quadratic | x^2-18x+81 | (x-9)(x-9) | factoring |
| 22 | Third Angle of Triangle | Third angle of triangle with angles 37 and 54 = | 89 | thirdAngleOfTriangle | | 22 | Third Angle of Triangle | Third angle of triangle with angles 45 and 1 = | 134 | third_angle_of_triangle |
| 23 | Solve a System of Equations in R^2 | -4x - 8y = 60, -9x + 10y = 51 | x = -9, y = -3 | systemOfEquations | | 23 | Solve a System of Equations in R^2 | -7x - 10y = -133, 7x - 2y = 49 | x = 9, y = 7 | system_of_equations |
| 24 | Distance between 2 points | Find the distance between (16, 7) and (19, 14) | sqrt(58) | distance2Point | | 24 | Distance between 2 points | Find the distance between (-10, 7) and (16, 6) | sqrt(677) | distance_two_points |
| 25 | Pythagorean Theorem | The hypotenuse of a right triangle given the other two lengths 18 and 8 = | 19.70 | pythagoreanTheorem | | 25 | Pythagorean Theorem | The hypotenuse of a right triangle given the other two lengths 10 and 8 = | 12.81 | pythagorean_theorem |
| 26 | Linear Equations | -8x + 15y = -109 | 26 | Linear Equations | 18x + -2y = -174, -13x + 6y = 194 | x = -8, y = 15 | linear_equations |
6x + -14y = 90 | x = 8, y = -3 | linearEquations | | 27 | Prime Factorisation | Find prime factors of 16 | [2, 2, 2, 2] | prime_factors |
| 27 | Prime Factorisation | Find prime factors of 130 | [2, 5, 13] | primeFactors | | 28 | Fraction Multiplication | (6/8)*(2/5) | 3/10 | fraction_multiplication |
| 28 | Fraction Multiplication | (8/9)*(3/2) | 4/3 | fractionMultiplication | | 29 | Angle of a Regular Polygon | Find the angle of a regular polygon with 17 sides | 158.82 | angle_regular_polygon |
| 29 | Angle of a Regular Polygon | Find the angle of a regular polygon with 8 sides | 135.0 | angleRegularPolygon | | 30 | Combinations of Objects | Number of combinations from 17 objects picked 3 at a time | 680 | combinations |
| 30 | Combinations of Objects | Number of combinations from 11 objects picked 9 at a time | 55 | combinations | | 31 | Factorial | 1! = | 1 | factorial |
| 31 | Factorial | 2! = | 2 | factorial | | 32 | Surface Area of Cube | Surface area of cube with side = 17m is | 1734 m^2 | surface_area_cube |
| 32 | Surface Area of Cube | Surface area of cube with side = 17m is | 1734 m^2 | surfaceAreaCubeGen | | 33 | Surface Area of Cuboid | Surface area of cuboid with sides = 12m, 11m, 1m is | 310 m^2 | surface_area_cuboid |
| 33 | Surface Area of Cuboid | Surface area of cuboid with sides = 8m, 4m, 17m is | 472 m^2 | surfaceAreaCuboidGen | | 34 | Surface Area of Cylinder | Surface area of cylinder with height = 38m and radius = 16m is | 5428 m^2 | surface_area_cylinder |
| 34 | Surface Area of Cylinder | Surface area of cylinder with height = 32m and radius = 18m is | 5654 m^2 | surfaceAreaCylinderGen | | 35 | Volum of Cube | Volume of cube with side = 11m is | 1331 m^3 | volume_cube |
| 35 | Volum of Cube | Volume of cube with side = 11m is | 1331 m^3 | volumeCubeGen | | 36 | Volume of Cuboid | Volume of cuboid with sides = 17m, 19m, 8m is | 2584 m^3 | volume_cuboid |
| 36 | Volume of Cuboid | Volume of cuboid with sides = 14m, 19m, 1m is | 266 m^3 | volumeCuboidGen | | 37 | Volume of cylinder | Volume of cylinder with height = 35m and radius = 19m is | 39694 m^3 | volume_cylinder |
| 37 | Volume of cylinder | Volume of cylinder with height = 16m and radius = 18m is | 16286 m^3 | volumeCylinderGen | | 38 | Surface Area of cone | Surface area of cone with height = 8m and radius = 19m is | 2364 m^2 | surface_area_cone |
| 38 | Surface Area of cone | Surface area of cone with height = 48m and radius = 20m is | 4523 m^2 | surfaceAreaConeGen | | 39 | Volume of cone | Volume of cone with height = 43m and radius = 13m is | 7609 m^3 | volume_cone |
| 39 | Volume of cone | Volume of cone with height = 29m and radius = 6m is | 1093 m^3 | volumeConeGen | | 40 | Common Factors | Common Factors of 21 and 65 = | [1] | common_factors |
| 40 | Common Factors | Common Factors of 59 and 57 = | [1] | commonFactors | | 41 | Intersection of Two Lines | Find the point of intersection of the two lines: y = 5/4x - 1 and y = 0/4x - 5 | (-16/5, -5) | intersection_of_two_lines |
| 41 | Intersection of Two Lines | Find the point of intersection of the two lines: y = -1/4x - 2 and y = 4/5x + 3 | (-100/21, -17/21) | intersectionOfTwoLines | | 42 | Permutations | Number of Permutations from 10 objects picked 5 at a time = | 30240 | permutation |
| 42 | Permutations | Number of Permutations from 13 objects picked 8 at a time = | 51891840 | permutations | | 43 | Cross Product of 2 Vectors | [12, -16, 4] X [-14, 10, -9] = | [104, 52, -104] | vector_cross |
| 43 | Cross Product of 2 Vectors | [4, -11, 9] X [-8, -19, -5] = | [226, -52, -164] | vectorCross | | 44 | Compare Fractions | Which symbol represents the comparison between 7/10 and 7/5? | < | compare_fractions |
| 44 | Compare Fractions | Which symbol represents the comparison between 3/7 and 2/4? | < | compareFractions | | 45 | Simple Interest | Simple interest for a principle amount of 6138 dollars, 9% rate of interest and for a time period of 8 years is = | 4419.36 | simple_interest |
| 45 | Simple Interest | Simple interest for a principle amount of 2398 dollars, 9% rate of interest and for a time period of 5 years is = | 1079.1 | simpleInterest | | 46 | Multiplication of two matrices | Multiply<table><tr><td>-8</td><td>-8</td></tr><tr><td>-2</td><td>-9</td></tr></table>and<table><tr><td>-10</td><td>-8</td></tr><tr><td>9</td><td>-9</td></tr></table> | <table><tr><td>8</td><td>136</td></tr><tr><td>-61</td><td>97</td></tr></table> | matrix_multiplication |
| 46 | Multiplication of two matrices | Multiply <table><tr><td>-50</td><td>36</td><td>7</td><td>-26</td><td>-2</td><td>63</td></tr><tr><td>88</td><td>-37</td><td>60</td><td>-19</td><td>61</td><td>-56</td></tr><tr><td>48</td><td>-5</td><td>69</td><td>-87</td><td>-64</td><td>-92</td></tr><tr><td>-84</td><td>-50</td><td>-79</td><td>-19</td><td>86</td><td>-13</td></tr><tr><td>0</td><td>28</td><td>12</td><td>-14</td><td>73</td><td>-49</td></tr><tr><td>94</td><td>-90</td><td>2</td><td>26</td><td>-38</td><td>19</td></tr><tr><td>2</td><td>-11</td><td>79</td><td>-77</td><td>98</td><td>-77</td></tr><tr><td>-87</td><td>70</td><td>72</td><td>-32</td><td>64</td><td>-99</td></tr></table> and <table><tr><td>34</td><td>32</td><td>-6</td><td>-32</td><td>46</td><td>-23</td><td>78</td><td>-81</td><td>-18</td></tr><tr><td>-17</td><td>24</td><td>49</td><td>-62</td><td>-50</td><td>77</td><td>38</td><td>-98</td><td>-64</td></tr><tr><td>-23</td><td>-78</td><td>43</td><td> 5</td><td>-83</td><td>-5</td><td> 4</td><td>-92</td><td>-16</td></tr><tr><td> 46</td><td>-47</td><td>-92</td><td>52</td><td>-25</td><td>-37</td><td>44</td><td>51</td><td>-7</td></tr><tr><td> 20</td><td>26</td><td>70</td><td>37</td><td>96</td><td>-73</td><td>49</td><td>84</td><td>42</td></tr><tr><td>-72</td><td>-15</td><td>-80</td><td>-24</td><td>58</td><td>-47</td><td>-41</td><td>45</td><td>-69</td></tr></table>| <table><tr><td>-8245</td><td>-1057</td><td>-423</td><td>-3535</td><td>-569</td><td>2034</td><td>-6329</td><td>1219</td><td>-5765</td></tr><tr><td>6619</td><td> 567</td><td>10737</td><td>2391</td><td>4001</td><td>-6291</td><td>10147</td><td>-7387</td><td>6383</td></tr><tr><td>1472</td><td>-161</td><td>13318</td><td>-5565<td>-12574</td><td>10381</td><td> 638<td>-23699</td><td>2621</td></tr><tr><td>1593</td><td>5598</td><td>3465</td><td>7899</td><td>13170</td><td>-6487</td><td>-4857</td><td>24642</td><td>10618</td></tr><tr><td>3592</td><td>3027</td><td>12206</td><td>1473</td><td>2120</td><td>-412</td><td>6082</td><td>-635</td><td>4561</td></tr><tr><td>3748</td><td>-1803<td>-11460</td><td>2072</td><td>5462</td><td>-8183</td><td>2423</td><td>11</td><td> 947</td></tr><tr><td>2400</td><td> 960</td><td>22950</td><td>2483</td><td> 952</td><td>-1974</td><td>4625</td><td>-5512</td><td>9372</td></tr><tr><td>1132</td><td>-2067</td><td>22392</td><td>1884<td>-12276</td><td>8196</td><td>1949</td><td>-7148</td><td>5677</td></tr></table> | matrixMultiplication | | 47 | Cube Root | cuberoot of 633 upto 2 decimal places is: | 8.59 | cube_root |
[ 10584, 13902, 11916, -7446, 4430, 554] | 48 | Power Rule Integration | 2x^5 + 3x^3 + 4x^7 + 9x^1 + 6x^9 | (2/5)x^6 + (3/3)x^4 + (4/7)x^8 + (9/1)x^2 + (6/9)x^10 + c | power_rule_integration |
[ -1800, 6587, 14343, 6224, 4525, 4853] | 49 | Fourth Angle of Quadrilateral | Fourth angle of quadrilateral with angles 79 , 44, 37 = | 200 | fourth_angle_of_quadrilateral |
[-12452, -10675, -8693, 427, 2955, 17691]] | matrixMultiplication | | 50 | Quadratic Equation | Zeros of the Quadratic Equation 79x^2+182x+98=0 | [-0.86, -1.45] | quadratic_equation |
| 47 | Cube Root | cuberoot of 221 upto 2 decimal places is: | 6.05 | CubeRoot | | 51 | HCF (Highest Common Factor) | HCF of 1 and 20 = | 1 | hcf |
| 48 | Power Rule Integration | 4x^5 + 2x^5 + 9x^8 + 9x^5 | (4/5)x^6 + (2/5)x^6 + (9/8)x^9 + (9/5)x^6 + c | powerRuleIntegration | | 52 | Probability of a certain sum appearing on faces of dice | If 1 dice are rolled at the same time, the probability of getting a sum of 2 = | 1/6 | dice_sum_probability |
| 49 | Fourth Angle of Quadrilateral | Fourth angle of quadrilateral with angles 27 , 155, 116 = | 62 | fourthAngleOfQuadrilateral | | 53 | Exponentiation | 6^9 = | 10077696 | exponentiation |
| 50 | Quadratic Equation | Zeros of the Quadratic Equation 53x^2+200x+78=0 | [-0.44, -3.33] | quadraticEquationSolve | | 54 | Confidence interval For sample S | The confidence interval for sample [260, 249, 281, 261, 236, 237, 275, 229, 256, 242, 277, 240, 278, 293, 271, 255, 216, 292, 200, 298, 282, 223] with 99% confidence is | (271.2437114485249, 242.48356127874783) | confidence_interval |
| 51 | HCF (Highest Common Factor) | HCF of 7 and 4 = | 1 | hcf | | 55 | Comparing surds | Fill in the blanks 71^(1/5) _ 31^(1/8) | > | surds_comparison |
| 52 | Probability of a certain sum appearing on faces of dice | If 2 dice are rolled at the same time, the probability of getting a sum of 11 = | 2/36 | diceSumProbability | | 56 | Fibonacci Series | The Fibonacci Series of the first 19 numbers is ? | [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584] | fibonacci_series |
| 53 | Exponentiation | 9^10 = | 3486784401 | exponentiation | | 57 | Trigonometric Values | What is cos(45)? | 1/√2 | basic_trigonometry |
| 54 | Confidence interval For sample S | The confidence interval for sample [266, 201, 278, 209, 229, 275, 216, 234, 219, 276, 282, 281, 208, 247, 265, 273, 286, 202, 231, 207, 251, 203, 259, 288, 291, 260, 210, 263, 222] with 99% confidence is | (260.5668079141175, 231.29526105139982) | confidenceInterval | | 58 | Sum of Angles of Polygon | Sum of angles of polygon with 10 sides = | 1440 | sum_of_polygon_angles |
| 55 | Comparing surds | Fill in the blanks 15^(1/9) _ 55^(1/1) | < | surdsComparison | | 59 | Mean,Standard Deviation,Variance | Find the mean,standard deviation and variance for the data[13, 22, 36, 17, 9, 39, 50, 14, 32, 40, 37, 48, 47, 28, 47] | The Mean is 31.933333333333334 , Standard Deviation is 182.59555555555553, Variance is 13.51279229306643 | data_summary |
| 56 | Fibonacci Series | The Fibonacci Series of the first 10 numbers is ? | [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] | fibonacciSeries | | 60 | Surface Area of Sphere | Surface area of Sphere with radius = 18m is | 4071.5040790523717 m^2 | surface_area_sphere |
| 57 | Trigonometric Values | What is tan(30)? | 1/√3 | basicTrigonometry | | 61 | Volume of Sphere | Volume of sphere with radius 61 m = | 950775.7894726198 m^3 | volume_sphere |
| 58 | Sum of Angles of Polygon | Sum of angles of polygon with 3 sides = | 180 | sumOfAnglesOfPolygon | | 62 | nth Fibonacci number | What is the 85th Fibonacci number? | 259695496911123328 | nth_fibonacci_number |
| 59 | Mean,Standard Deviation,Variance | Find the mean,standard deviation and variance for the data[36, 13, 31, 23, 38, 34, 24, 20, 41, 14, 19, 31, 11, 49, 49] | The Mean is 28.866666666666667 , Standard Deviation is 143.5822222222222, Variance is 11.982579948501167 | dataSummary | | 63 | Profit or Loss Percent | Profit percent when CP = 353 and SP = 752 is: | 113.03116147308782 | profit_loss_percent |
| 59 | Surface Area of Sphere | Surface area of Sphere with radius = 11m is | 1520.5308443374597 m^2 | surfaceAreaSphereGen | | 64 | Binary to Hexidecimal | 111101011 | 0x1eb | binary_to_hex |
| 60 | Volume of Sphere | Volume of sphere with radius 73 m = | 1629510.5990953872 m^3 | volumeSphere | | 65 | Multiplication of 2 complex numbers | (-19-9j) * (-17-2j) = | (305+191j) | multiply_complex_numbers |
| 61 | nth Fibonacci number | What is the 68th Fibonacci number? | 72723460248141 | nthFibonacciNumberGen | | 66 | Geometric Progression | For the given GP [7, 77, 847, 9317, 102487, 1127357] ,Find the value of a,common ratio,6th term value, sum upto 7th term | The value of a is 7, common ratio is 11 , 6th term is 1127357 , sum upto 7th term is 13641019.0 | geometric_progression |
| 62 | Profit or Loss Percent | Profit percent when CP = 825 and SP = 972 is: | 17.81818181818182 | profitLossPercent | | 67 | Geometric Mean of N Numbers | Geometric mean of 3 numbers 32 , 5 and 18 = | (32*5*18)^(1/3) = 14.227573217960249 | geometric_mean |
| 63 | Binary to Hexidecimal | 100000 | 0x20 | binaryToHex | | 68 | Harmonic Mean of N Numbers | Harmonic mean of 3 numbers 48 , 85 and 79 = | 3/((1/48) + (1/85) + (1/79)) = 66.28916158223076 | harmonic_mean |
| 64 | Multiplication of 2 complex numbers | (3+14j) * (-3+16j) = | (-233+6j) | complexNumMultiply | | 69 | Euclidian norm or L2 norm of a vector | Euclidian norm or L2 norm of the vector[743.1109024649227, 951.2861991520674, 821.2679183199273, 831.5922742303677, 972.3005129207023, 775.1712986008336, 869.5254070360901, 34.05779748860371, 495.5299489221041, 516.2458991121815, 620.0871728488738, 12.438787805084894, 967.8138977993306, 627.6791615554401, 129.81896901435886, 566.4442009627315, 521.5300881726977, 741.5947979192599] is: | 2917.827115551868 | euclidian_norm |
| 65 | Geometric Progression | For the given GP [4, 16, 64, 256, 1024, 4096] ,Find the value of a,common ratio,8th term value, sum upto 7th term | The value of a is 4, common ratio is 4 , 8th term is 65536 , sum upto 7th term is 21844.0 | geometricprogression | | 70 | Angle between 2 vectors | angle between the vectors [341.1766244080324, 386.90517658729595, 306.3074773969527, 542.1138441520038, 149.80203485453225, 85.6719016065689, 875.0827941729921, 292.0422074695527, 312.8929536855103, 408.95388654647445, 119.81564007869672, 177.5529661884936, 360.30983184002406, 111.71502530193955, 29.528755078141455, 478.2846569662712, 855.8978282979257] and [230.45166329807688, 922.2895458023412, 219.89492715268733, 375.8793126730714, 731.2614314505195, 277.5554009411926, 329.1490487358273, 477.7600322879586, 168.93745868538923, 423.6897582803929, 724.5555882496458, 519.6421532094823, 158.0479000313908, 679.3674240323584, 496.6795371750926, 853.4421897526636, 715.2567898992207] is: | NaN | angle_btw_vectors |
| 66 | Geometric Mean of N Numbers | Geometric mean of 3 numbers 81 , 35 and 99 = | (81*35*99)^(1/3) = 65.47307713912309 | geometricMean | | 71 | Absolute difference between two numbers | Absolute difference between numbers 53 and -70 = | 123 | absolute_difference |
| 67 | Harmonic Mean of N Numbers | Harmonic mean of 2 numbers 99 and 25 = | 2/((1/99) + (1/25)) = 39.91935483870967 | harmonicMean | | 72 | Dot Product of 2 Vectors | [-8, -4, -10] . [-9, -6, -9] = | 186 | vector_dot |
| 73 | Binary 2's Complement | 2's complement of = | | binary_2s_complement |
| 74 | Inverse of a Matrix | Inverse of Matrix Matrix([[43, 95, 41], [46, 80, 67], [57, 75, 71]]) is: | Matrix([[131/7038, -367/3519, 617/7038], [553/35190, 358/17595, -199/7038], [-37/1173, 73/1173, -31/1173]]) | invert_matrix |
| 75 | Area of a Sector | Given radius, 40 and angle, 199. Find the area of the sector. | Area of sector = 2778.56417 | sector_area |
| 76 | Mean and Median | Given the series of numbers [44, 64, 22, 37, 63, 56, 27, 62, 98, 72]. find the arithmatic mean and mdian of the series | Arithmetic mean of the series is 54.5 and Arithmetic median of this series is 59.0 | mean_median |
| 77 | Determinant to 2x2 Matrix | Det([[73, 52], [55, 80]]) = | 2980 | int_matrix_22_determinant |
| 78 | Compound Interest | Compound Interest for a principle amount of 8506 dollars, 8% rate of interest and for a time period of 10 compounded monthly is = | 8506.0 | compound_interest |
| 79 | Decimal to Hexadecimal | Binary of 293= | 0x125 | decimal_to_hexadeci |
| 80 | Percentage of a number | What is 57% of 4? | Required percentage = 2.28% | percentage |
| 81 | Celsius To Fahrenheit | Convert 57 degrees Celsius to degrees Fahrenheit = | 134.60000000000002 | celsius_to_fahrenheit |
| 82 | AP Term Calculation | Find the term number 89 of the AP series: 20, 115, 210 ... | 8380 | arithmetic_progression_term |
| 83 | AP Sum Calculation | Find the sum of first 98 terms of the AP series: -58, -106, -154 ... | -233828.0 | arithmetic_progression_sum |
| 84 | Converts decimal to octal | The decimal number 1716 in Octal is: | 0o3264 | decimal_to_octal |
| 85 | Converts decimal to Roman Numerals | The number 587 in Roman Numerals is: | DLXXXVII | decimal_to_roman_numerals |
| 86 | Degrees to Radians | Angle 245 in radians is = | 4.28 | degree_to_rad |
| 87 | Radians to Degrees | Angle 0 in degrees is = | 0.0 | radian_to_deg |
| 88 | Differentiation | differentiate w.r.t x : d(exp(x)+5*x^(-2))/dx | exp(x) - 10/x^3 | differentiation |
| 89 | Definite Integral of Quadratic Equation | The definite integral within limits 0 to 1 of the equation 39x^2 + 72x + 74 is = | 123.0 | definite_integral |

View File

@@ -3,3 +3,4 @@ hypothesis
flake8 flake8
autopep8 autopep8
sympy sympy
numpy

View File

@@ -1,14 +1,23 @@
# To use, paste at bottom of mathgen.py code, change line variable and remove all table rows in README.md except for the top 2 and run mathgen.py
# NOTE: not anymore. but still leaving this comment in.
from mathgenerator.mathgen import * from mathgenerator.mathgen import *
def array2markdown_table(string):
string = string.replace("[[", "<table><tr><td>")
string = string.replace("[", "<tr><td>")
string = string.replace(", ", "</td><td>")
string = string.replace("]]", "</td></tr></table>")
string = string.replace("]", "</td></tr>")
string = string.replace(" ", "")
string = string.replace("\n", "")
return string
wList = getGenList() wList = getGenList()
lines = [] lines = []
with open('mathgenerator/mathgen.py', 'r') as f: with open('mathgenerator/mathgen.py', 'r') as f:
lines=f.readlines() lines = f.readlines()
allRows = [] allRows = []
line = lines.index('# Funcs_start - DO NOT REMOVE!\n')+1 # get the first line of the functions in mathgen.py
for item in wList: for item in wList:
myGen = item[2] myGen = item[2]
# NOTE: renamed 'sol' to 'solu' to make it look nicer # NOTE: renamed 'sol' to 'solu' to make it look nicer
@@ -17,32 +26,27 @@ for item in wList:
solu = str(solu).rstrip("\n") solu = str(solu).rstrip("\n")
# edge case for matrixMultiplication # edge case for matrixMultiplication
if item[0] == 46: if item[0] == 46:
print(prob) prob, solu = myGen(maxVal=10, max_dim=4)
prob = str(prob).rstrip("\n")
solu = str(solu).rstrip("\n")
prob = array2markdown_table(prob)
solu = array2markdown_table(solu)
prob = prob.replace("[[", "<table><tr><td>") # NOTE: renamed 'def_name' to 'func_name' because it suits it more
prob = prob.replace("[", "<tr><td>") func_name = item[3]
prob = prob.replace(", ", "</td><td>")
prob = prob.replace("]]\n", "</td></tr></table>")
prob = prob.replace("]\n", "</td></tr>")
print(prob)
instName = lines[line]
func_name = instName[:instName.find('=')].strip() # NOTE: renamed 'def_name' to 'func_name' because it suits it more
row = [myGen.id, myGen.title, prob, solu, func_name] row = [myGen.id, myGen.title, prob, solu, func_name]
# print(item[1], func_name) print('added', item[1], '-', func_name, 'to the README.md')
line += 1
if line > len(lines):
break
allRows.append(row) allRows.append(row)
with open('README.md', "r") as g: with open('README.md', "r") as g:
lines = g.readlines() lines = g.readlines()
line = lines.index('[//]: # list start\n') line = lines.index('[//]: # list start\n')
lines = lines[:line+1] lines = lines[:line + 1]
for row in allRows: for row in allRows:
tableLine = "| " + str(row[0]) + " | " + str(row[1]) + " | " + str(row[2]) + " | " + str(row[3]) + " | " + str(row[4]) + " |\n" tableLine = "| " + str(row[0]) + " | " + str(row[1]) + " | " + str(
row[2]) + " | " + str(row[3]) + " | " + str(row[4]) + " |\n"
lines.append(tableLine) lines.append(tableLine)
with open('README.md', "w") as g: with open('README.md', "w") as g:

View File

@@ -0,0 +1,31 @@
import sys
import traceback
genList = []
class Generator:
def __init__(self, title, id, generalProb, generalSol, func):
self.title = title
self.id = id
self.generalProb = generalProb
self.generalSol = generalSol
self.func = func
(filename, line_number, function_name, text) = traceback.extract_stack()[-2]
funcname = filename[filename.rfind('/'):].strip()
funcname = funcname[1:-3]
# print(funcname)
genList.append([id, title, self, funcname])
def __str__(self):
return str(
self.id
) + " " + self.title + " " + self.generalProb + " " + self.generalSol
def __call__(self, *args, **kwargs):
return self.func(*args, **kwargs)
def getGenList():
correctedList = genList[-1:] + genList[:-1]
return correctedList

View File

@@ -1,12 +0,0 @@
from .__init__ import *
def BinaryToDecimalFunc(max_dig=10):
problem = ''
for i in range(random.randint(1, max_dig)):
temp = str(random.randint(0, 1))
problem += temp
solution = int(problem, 2)
return problem, solution

View File

@@ -1,25 +0,0 @@
from .__init__ import *
def DiceSumProbFunc(maxDice=3):
a = random.randint(1,maxDice)
b = random.randint(a,6*a)
count=0
for i in [1,2,3,4,5,6]:
if a==1:
if i==b:
count=count+1
elif a==2:
for j in [1,2,3,4,5,6]:
if i+j==b:
count=count+1
elif a==3:
for j in [1,2,3,4,5,6]:
for k in [1,2,3,4,5,6]:
if i+j+k==b:
count=count+1
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(a,b)
solution="{}/{}".format(count, 6**a)
return problem, solution

View File

@@ -2,83 +2,96 @@ import random
import math import math
import fractions import fractions
from .additionFunc import * from ..__init__ import *
from .subtractionFunc import *
from .multiplicationFunc import * from .addition import *
from .divisionFunc import * from .subtraction import *
from .binaryComplement1sFunc import * from .multiplication import *
from .moduloFunc import * from .division import *
from .squareRootFunc import * from .binary_complement_1s import *
from .powerRuleDifferentiationFunc import * from .modulo_division import *
from .squareFunc import * from .square_root import *
from .gcdFunc import * from .power_rule_differentiation import *
from .lcmFunc import * from .square import *
from .basicAlgebraFunc import * from .lcm import *
from .logFunc import * from .gcd import *
from .divisionToIntFunc import * from .basic_algebra import *
from .DecimalToBinaryFunc import * from .log import *
from .BinaryToDecimalFunc import * from .int_division import *
from .divideFractionsFunc import * from .decimal_to_binary import *
from .multiplyIntToMatrix22 import * from .binary_to_decimal import *
from .areaOfTriangleFunc import * from .divide_fractions import *
from .isTriangleValidFunc import * from .multiply_int_to_22_matrix import *
from .MidPointOfTwoPointFunc import * from .area_of_triangle import *
from .factoringFunc import * from .valid_triangle import *
from .thirdAngleOfTriangleFunc import * from .midpoint_of_two_points import *
from .systemOfEquationsFunc import * from .factoring import *
from .distanceTwoPointsFunc import * from .third_angle_of_triangle import *
from .pythagoreanTheoremFunc import * from .system_of_equations import *
from .linearEquationsFunc import * from .distance_two_points import *
from .primeFactorsFunc import * from .pythagorean_theorem import *
from .multiplyFractionsFunc import * from .linear_equations import *
from .regularPolygonAngleFunc import * from .prime_factors import *
from .combinationsFunc import * from .fraction_multiplication import *
from .factorialFunc import * from .angle_regular_polygon import *
from .surfaceAreaCube import * from .combinations import *
from .volumeCube import * from .factorial import *
from .surfaceAreaCuboid import * from .surface_area_cube import *
from .volumeCuboid import * from .surface_area_cuboid import *
from .surfaceAreaCylinder import * from .surface_area_cylinder import *
from .volumeCylinder import * from .volume_cube import *
from .surfaceAreaCone import * from .volume_cuboid import *
from .volumeCone import * from .volume_cylinder import *
from .commonFactorsFunc import * from .surface_area_cone import *
from .intersectionOfTwoLinesFunc import * from .volume_cone import *
from .permutationFunc import * from .common_factors import *
from .vectorCrossFunc import * from .intersection_of_two_lines import *
from .compareFractionsFunc import * from .permutation import *
from .simpleInterestFunc import * from .vector_cross import *
from .matrixMultiplicationFunc import * from .compare_fractions import *
from .cubeRootFunc import * from .simple_interest import *
from .powerRuleIntegrationFunc import * from .matrix_multiplication import *
from .fourthAngleOfQuadriFunc import * from .cube_root import *
from .quadraticEquation import * from .power_rule_integration import *
from .hcfFunc import * from .fourth_angle_of_quadrilateral import *
from .DiceSumProbFunc import * from .quadratic_equation import *
from .exponentiationFunc import * from .hcf import *
from .confidenceIntervalFunc import * from .dice_sum_probability import *
from .surdsComparisonFunc import * from .exponentiation import *
from .fibonacciSeriesFunc import * from .confidence_interval import *
from .basicTrigonometryFunc import * from .surds_comparison import *
from .sumOfAnglesOfPolygonFunc import * from .fibonacci_series import *
from .dataSummaryFunc import * from .basic_trigonometry import *
from .surfaceAreaSphere import * from .sum_of_polygon_angles import *
from .volumeSphereFunc import * from .data_summary import *
from .nthFibonacciNumberFunc import * from .surface_area_sphere import *
from .profitLossPercentFunc import * from .volume_sphere import *
from .binaryToHexFunc import * from .nth_fibonacci_number import *
from .multiplyComplexNumbersFunc import * from .profit_loss_percent import *
from .geomProgrFunc import * from .binary_to_hex import *
from .geometricMeanFunc import * from .multiply_complex_numbers import *
from .harmonicMeanFunc import * from .geometric_progression import *
from .geometric_mean import *
from .harmonic_mean import *
from .euclidian_norm import *
from .angle_btw_vectors import *
from .absolute_difference import *
from .vector_dot import *
from .binary_2s_complement import *
from .invert_matrix import *
from .sector_area import *
from .mean_median import *
from .int_matrix_22_determinant import *
from .compound_interest import *
from .decimal_to_hexadeci import *
from .percentage import *
from .celsius_to_fahrenheit import *
from .arithmetic_progression_term import *
from .arithmetic_progression_sum import *
from .decimal_to_octal import *
from .decimal_to_roman_numerals import *
from .degree_to_rad import *
from .radian_to_deg import *
from .differentiation import *
from .definite_integral import *
from .isprime import * from .isprime import *
from .euclidianNormFunc import *
from .angleBtwVectorsFunc import *
from .absoluteDifferenceFunc import *
from .vectorDotFunc import *
from .binary2sComplement import *
from .matrixInversion import *
from .sectorAreaFunc import*
from .meanMedianFunc import*
from .determinantToMatrix22 import *
from .deciToHexaFunc import *

View File

@@ -1,10 +0,0 @@
from .__init__ import *
def absoluteDifferenceFunc (maxA = 100, maxB = 100):
a = random.randint(-1*maxA, maxA)
b = random.randint(-1*maxB, maxB)
absDiff = abs(a-b)
problem = "Absolute difference between numbers " + str(a) + " and " + str(b) + " = "
solution = absDiff
return problem, solution

View File

@@ -0,0 +1,18 @@
from .__init__ import *
def absoluteDifferenceFunc(maxA=100, maxB=100):
a = random.randint(-1 * maxA, maxA)
b = random.randint(-1 * maxB, maxB)
absDiff = abs(a - b)
problem = "Absolute difference between numbers " + \
str(a) + " and " + str(b) + " = "
solution = absDiff
return problem, solution
absolute_difference = Generator(
"Absolute difference between two numbers", 71,
"Absolute difference betweeen two numbers a and b =", "|a-b|",
absoluteDifferenceFunc)

View File

@@ -0,0 +1,14 @@
from .__init__ import *
def additionFunc(maxSum=99, maxAddend=50):
a = random.randint(0, maxAddend)
# The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
b = random.randint(0, min((maxSum - a), maxAddend))
c = a + b
problem = str(a) + "+" + str(b) + "="
solution = str(c)
return problem, solution
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)

View File

@@ -1,10 +0,0 @@
from .__init__ import *
def additionFunc(maxSum=99, maxAddend=50):
a = random.randint(0, maxAddend)
b = random.randint(0, min((maxSum - a), maxAddend)) # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
c = a + b
problem = str(a) + "+" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -1,16 +0,0 @@
from .euclidianNormFunc import euclidianNormFunc
import math
from .__init__ import *
def angleBtwVectorsFunc(v1: list, v2: list):
sum = 0
for i in v1:
for j in v2:
sum += i * j
mags = euclidianNormFunc(v1) * euclidianNormFunc(v2)
problem = f"angle between the vectors {v1} and {v2} is:"
solution = math.acos(sum / mags)
# would return the answer in radians
return problem, solution

View File

@@ -0,0 +1,28 @@
from .__init__ import *
import math
def angleBtwVectorsFunc(maxEltAmt=20):
s = 0
v1 = [random.uniform(0, 1000) for i in range(random.randint(2, maxEltAmt))]
v2 = [random.uniform(0, 1000) for i in v1]
for i in v1:
for j in v2:
s += i * j
mags = math.sqrt(sum([i**2 for i in v1])) * math.sqrt(sum([i**2 for i in v2]))
problem = f"angle between the vectors {v1} and {v2} is:"
solution = ''
try:
solution = str(math.acos(s / mags))
except ValueError:
print('angleBtwVectorsFunc has some issues with math module, line 16')
solution = 'NaN'
# would return the answer in radians
return problem, solution
angle_btw_vectors = Generator(
"Angle between 2 vectors", 70,
"Angle Between 2 vectors V1=[v11, v12, ..., v1n] and V2=[v21, v22, ....., v2n]",
"V1.V2 / (euclidNorm(V1)*euclidNorm(V2))", angleBtwVectorsFunc)

View File

@@ -8,3 +8,9 @@ def regularPolygonAngleFunc(minVal=3, maxVal=20):
exteriorAngle = round((360 / sideNum), 2) exteriorAngle = round((360 / sideNum), 2)
solution = 180 - exteriorAngle solution = 180 - exteriorAngle
return problem, solution return problem, solution
angle_regular_polygon = Generator(
"Angle of a Regular Polygon", 29,
"Find the angle of a regular polygon with 6 sides", "120",
regularPolygonAngleFunc)

View File

@@ -1,14 +0,0 @@
from .__init__ import *
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
a = random.randint(1, maxA)
b = random.randint(1, maxB)
c = random.randint(1, maxC)
s = (a + b + c) / 2
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
problem = "Area of triangle with side lengths: " + str(a) + " " + str(b) + " " + str(c) + " = "
solution = area
return problem, solution

View File

@@ -0,0 +1,20 @@
from .__init__ import *
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
a = random.randint(1, maxA)
b = random.randint(1, maxB)
c = random.randint(1, maxC)
s = (a + b + c) / 2
area = (s * (s - a) * (s - b) * (s - c))**0.5
problem = "Area of triangle with side lengths: " + \
str(a) + " " + str(b) + " " + str(c) + " = "
solution = area
return problem, solution
area_of_triangle = Generator("Area of Triangle", 18,
"Area of Triangle with side lengths a, b, c = ",
"area", areaOfTriangleFunc)

View File

@@ -0,0 +1,18 @@
from .__init__ import *
def arithmeticProgressionSumFunc(maxd=100, maxa=100, maxn=100):
d = random.randint(-1 * maxd, maxd)
a1 = random.randint(-1 * maxa, maxa)
a2 = a1 + d
a3 = a2 + d
n = random.randint(4, maxn)
apString = str(a1) + ', ' + str(a2) + ', ' + str(a3) + ' ... '
problem = 'Find the sum of first ' + str(n) + ' terms of the AP series: ' + apString
solution = n * ((2 * a1) + ((n - 1) * d)) / 2
return problem, solution
arithmetic_progression_sum = Generator("AP Sum Calculation", 83,
"Find the sum of first n terms of the AP series: a1, a2, a3 ...",
"Sum", arithmeticProgressionSumFunc)

View File

@@ -0,0 +1,18 @@
from .__init__ import *
def arithmeticProgressionTermFunc(maxd=100, maxa=100, maxn=100):
d = random.randint(-1 * maxd, maxd)
a1 = random.randint(-1 * maxa, maxa)
a2 = a1 + d
a3 = a2 + d
n = random.randint(4, maxn)
apString = str(a1) + ', ' + str(a2) + ', ' + str(a3) + ' ... '
problem = 'Find the term number ' + str(n) + ' of the AP series: ' + apString
solution = a1 + ((n - 1) * d)
return problem, solution
arithmetic_progression_term = Generator("AP Term Calculation", 82,
"Find the term number n of the AP series: a1, a2, a3 ...",
"a-n", arithmeticProgressionTermFunc)

View File

@@ -1,14 +0,0 @@
from .__init__ import *
def basicTrigonometryFunc(angles=[0,30,45,60,90],functions=["sin","cos","tan"]): #Handles degrees in quadrant one
angle=random.choice(angles)
function=random.choice(functions)
problem=f"What is {function}({angle})?"
expression='math.'+function+'(math.radians(angle))'
result_fraction_map={0.0:"0",0.5:"1/2",0.71:"1/√2",0.87:"√3/2",1.0:"1",0.58:"1/√3",1.73:"√3"}
solution=result_fraction_map[round(eval(expression),2)] if round(eval(expression),2)<=99999 else "" #for handling the ∞ condition
return problem,solution

View File

@@ -8,7 +8,7 @@ def basicAlgebraFunc(maxVariable=10):
# calculate gcd # calculate gcd
def calculate_gcd(x, y): def calculate_gcd(x, y):
while(y): while (y):
x, y = y, x % y x, y = y, x % y
return x return x
@@ -23,3 +23,7 @@ def basicAlgebraFunc(maxVariable=10):
problem = f"{a}x + {b} = {c}" problem = f"{a}x + {b} = {c}"
solution = x solution = x
return problem, solution return problem, solution
basic_algebra = Generator("Basic Algebra", 11, "ax + b = c", "d",
basicAlgebraFunc)

View File

@@ -0,0 +1,29 @@
from .__init__ import *
# Handles degrees in quadrant one
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90],
functions=["sin", "cos", "tan"]):
angle = random.choice(angles)
function = random.choice(functions)
problem = f"What is {function}({angle})?"
expression = 'math.' + function + '(math.radians(angle))'
result_fraction_map = {
0.0: "0",
0.5: "1/2",
0.71: "1/√2",
0.87: "√3/2",
1.0: "1",
0.58: "1/√3",
1.73: "√3"
}
solution = result_fraction_map[round(eval(expression), 2)] if round(
eval(expression), 2) <= 99999 else "" # for handling the ∞ condition
return problem, solution
basic_trigonometry = Generator("Trigonometric Values", 57, "What is sin(X)?",
"ans", basicTrigonometryFunc)

View File

@@ -1,8 +1,10 @@
from .__init__ import * from .__init__ import *
def binary2sComplementFunc(maxDigits=10): def binary2sComplementFunc(maxDigits=10):
digits = random.randint(1, maxDigits) digits = random.randint(1, maxDigits)
question = ''.join([str(random.randint(0, 1)) for i in range(digits)]).lstrip('0') question = ''.join([str(random.randint(0, 1))
for i in range(digits)]).lstrip('0')
answer = [] answer = []
for i in question: for i in question:
@@ -18,9 +20,14 @@ def binary2sComplementFunc(maxDigits=10):
answer[j] = '0' answer[j] = '0'
j -= 1 j -= 1
if j == 0 and carry == True: if j == 0 and carry is True:
answer.insert(0, '1') answer.insert(0, '1')
problem = "2's complement of " + question + " =" problem = "2's complement of " + question + " ="
solution = ''.join(answer).lstrip('0') solution = ''.join(answer).lstrip('0')
return problem, solution return problem, solution
binary_2s_complement = Generator("Binary 2's Complement", 73,
"2's complement of 11010110 =", "101010",
binary2sComplementFunc)

View File

@@ -10,6 +10,10 @@ def binaryComplement1sFunc(maxDigits=10):
question += temp question += temp
answer += "0" if temp == "1" else "1" answer += "0" if temp == "1" else "1"
problem = question+"=" problem = question + "="
solution = answer solution = answer
return problem, solution return problem, solution
binary_complement_1s = Generator("Binary Complement 1s", 4, "1010=", "0101",
binaryComplement1sFunc)

View File

@@ -0,0 +1,16 @@
from .__init__ import *
def binaryToDecimalFunc(max_dig=10):
problem = ''
for i in range(random.randint(1, max_dig)):
temp = str(random.randint(0, 1))
problem += temp
solution = int(problem, 2)
return problem, solution
binary_to_decimal = Generator("Binary to Decimal", 15, "Decimal of a=", "b",
binaryToDecimalFunc)

View File

@@ -9,3 +9,7 @@ def binaryToHexFunc(max_dig=10):
solution = hex(int(problem, 2)) solution = hex(int(problem, 2))
return problem, solution return problem, solution
binary_to_hex = Generator("Binary to Hexidecimal", 64, "Hexidecimal of a=", "b",
binaryToHexFunc)

View File

@@ -0,0 +1,13 @@
from .__init__ import *
def celsiustofahrenheitFunc(maxTemp=100):
celsius = random.randint(-50, maxTemp)
fahrenheit = (celsius * (9 / 5)) + 32
problem = "Convert " + str(celsius) + " degrees Celsius to degrees Fahrenheit ="
solution = str(fahrenheit)
return problem, solution
celsius_to_fahrenheit = Generator("Celsius To Fahrenheit", 81,
"(C +(9/5))+32=", "F", celsiustofahrenheitFunc)

View File

@@ -2,7 +2,6 @@ from .__init__ import *
def combinationsFunc(maxlength=20): def combinationsFunc(maxlength=20):
def factorial(a): def factorial(a):
d = 1 d = 1
for i in range(a): for i in range(a):
@@ -14,6 +13,13 @@ def combinationsFunc(maxlength=20):
b = random.randint(0, 9) b = random.randint(0, 9)
solution = int(factorial(a) / (factorial(b) * factorial(a - b))) solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
problem = "Number of combinations from {} objects picked {} at a time ".format(a, b) problem = "Number of combinations from {} objects picked {} at a time ".format(
a, b)
return problem, solution return problem, solution
combinations = Generator(
"Combinations of Objects", 30,
"Combinations available for picking 4 objects at a time from 6 distinct objects =",
" 15", combinationsFunc)

View File

@@ -22,3 +22,8 @@ def commonFactorsFunc(maxVal=100):
problem = f"Common Factors of {a} and {b} = " problem = f"Common Factors of {a} and {b} = "
solution = arr solution = arr
return problem, solution return problem, solution
common_factors = Generator("Common Factors", 40,
"Common Factors of {a} and {b} = ", "[c, d, ...]",
commonFactorsFunc)

View File

@@ -15,12 +15,18 @@ def compareFractionsFunc(maxVal=10):
first = a / b first = a / b
second = c / d second = c / d
if(first > second): if (first > second):
solution = ">" solution = ">"
elif(first < second): elif (first < second):
solution = "<" solution = "<"
else: else:
solution = "=" solution = "="
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?" problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
return problem, solution return problem, solution
compare_fractions = Generator(
"Compare Fractions", 44,
"Which symbol represents the comparison between a/b and c/d?", ">/</=",
compareFractionsFunc)

View File

@@ -1,11 +0,0 @@
from .__init__ import *
def compoundInterestFunc(maxPrinciple = 10000, maxRate = 10, maxTime = 10, maxPeriod = ):
p = random.randint(100, maxPrinciple)
r = random.randint(1, maxRate)
t = random.randint(1, maxTime)
n = random.randint(1, maxPeriod)
A = p * ((1 + (r/(100*n))**(n*t)))
problem = "Compound Interest for a principle amount of " + str(p) + " dollars, " + str(r) + "% rate of interest and for a time period of " + str(t) + " compounded monthly is = "
solution = round(A, 2)
return problem, solution

View File

@@ -0,0 +1,24 @@
from .__init__ import *
def compoundInterestFunc(maxPrinciple=10000,
maxRate=10,
maxTime=10,
maxPeriod=10):
p = random.randint(100, maxPrinciple)
r = random.randint(1, maxRate)
t = random.randint(1, maxTime)
n = random.randint(1, maxPeriod)
A = p * ((1 + (r / (100 * n))**(n * t)))
problem = "Compound Interest for a principle amount of " + str(
p) + " dollars, " + str(
r) + "% rate of interest and for a time period of " + str(
t) + " compounded monthly is = "
solution = round(A, 2)
return problem, solution
compound_interest = Generator(
"Compound Interest", 78,
"Compound interest for a principle amount of p dollars, r% rate of interest and for a time period of t years with n times compounded annually is = ",
"A dollars", compoundInterestFunc)

View File

@@ -1,30 +0,0 @@
from .__init__ import *
def confidenceIntervalFunc():
n=random.randint(20,40)
j=random.randint(0,3)
lst=random.sample(range(200,300),n)
lst_per=[80 ,90, 95, 99]
lst_t = [1.282, 1.645, 1.960, 2.576]
mean=0
sd=0
for i in lst:
count= i + mean
mean=count
mean = mean/n
for i in lst:
x=(i-mean)**2+sd
sd=x
sd=sd/n
standard_error = lst_t[j]*math.sqrt(sd/n)
problem= 'The confidence interval for sample {} with {}% confidence is'.format([x for x in lst], lst_per[j])
solution= '({}, {})'.format(mean+standard_error, mean-standard_error)
return problem, solution

View File

@@ -0,0 +1,36 @@
from .__init__ import *
def confidenceIntervalFunc():
n = random.randint(20, 40)
j = random.randint(0, 3)
lst = random.sample(range(200, 300), n)
lst_per = [80, 90, 95, 99]
lst_t = [1.282, 1.645, 1.960, 2.576]
mean = 0
sd = 0
for i in lst:
count = i + mean
mean = count
mean = mean / n
for i in lst:
x = (i - mean)**2 + sd
sd = x
sd = sd / n
standard_error = lst_t[j] * math.sqrt(sd / n)
problem = 'The confidence interval for sample {} with {}% confidence is'.format(
[x for x in lst], lst_per[j])
solution = '({}, {})'.format(mean + standard_error, mean - standard_error)
return problem, solution
confidence_interval = Generator("Confidence interval For sample S", 54,
"With X% confidence", "is (A,B)",
confidenceIntervalFunc)

View File

@@ -8,3 +8,7 @@ def cubeRootFunc(minNo=1, maxNo=1000):
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:" problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
solution = str(round(a, 2)) solution = str(round(a, 2))
return problem, solution return problem, solution
cube_root = Generator("Cube Root", 47, "Cuberoot of a upto 2 decimal places is",
"b", cubeRootFunc)

View File

@@ -1,26 +0,0 @@
from .__init__ import *
def dataSummaryFunc(number_values=15,minval=5,maxval=50):
random_list=[]
for i in range(number_values):
n=random.randint(minval,maxval)
random_list.append(n)
a=sum(random_list)
mean=a/number_values
var=0
for i in range(number_values):
var+=(random_list[i]-mean)**2
# we're printing stuff here?
print(random_list)
print(mean)
print(var/number_values)
print((var/number_values)**0.5)
problem="Find the mean,standard deviation and variance for the data"+str(random_list)
solution="The Mean is {} , Standard Deviation is {}, Variance is {}".format(mean,var/number_values,(var/number_values)**0.5)
return problem,solution

View File

@@ -0,0 +1,29 @@
from .__init__ import *
def dataSummaryFunc(number_values=15, minval=5, maxval=50):
random_list = []
for i in range(number_values):
n = random.randint(minval, maxval)
random_list.append(n)
a = sum(random_list)
mean = a / number_values
var = 0
for i in range(number_values):
var += (random_list[i] - mean)**2
standardDeviation = var / number_values
variance = (var / number_values) ** 0.5
problem = "Find the mean,standard deviation and variance for the data" + \
str(random_list)
solution = "The Mean is {} , Standard Deviation is {}, Variance is {}".format(
mean, standardDeviation, variance)
return problem, solution
data_summary = Generator("Mean,Standard Deviation,Variance", 59, "a,b,c",
"Mean:a+b+c/3,Std,Var", dataSummaryFunc)

View File

@@ -9,3 +9,7 @@ def DecimalToBinaryFunc(max_dec=99):
solution = str(b) solution = str(b)
return problem, solution return problem, solution
decimal_to_binary = Generator("Decimal to Binary", 14, "Binary of a=", "b",
DecimalToBinaryFunc)

View File

@@ -8,3 +8,7 @@ def deciToHexaFunc(max_dec=1000):
solution = str(b) solution = str(b)
return problem, solution return problem, solution
decimal_to_hexadeci = Generator("Decimal to Hexadecimal", 79, "Binary of a=",
"b", deciToHexaFunc)

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def decimalToOctalFunc(maxDecimal=4096):
x = random.randint(0, maxDecimal)
problem = "The decimal number " + str(x) + " in Octal is: "
solution = oct(x)
return problem, solution
decimal_to_octal = Generator("Converts decimal to octal", 84,
"What's the octal representation of 98?", "0o142", decimalToOctalFunc)

View File

@@ -0,0 +1,29 @@
from .__init__ import *
def decimalToRomanNumeralsFunc(maxDecimal=4000):
x = random.randint(0, maxDecimal)
problem = "The number " + str(x) + " in Roman Numerals is: "
roman_dict = {1: "I", 5: "V", 10: "X", 50: "L", 100: "C", 500: "D", 1000: "M"}
divisor = 1
while x >= divisor:
divisor *= 10
divisor /= 10
solution = ""
while x:
last_value = int(x / divisor)
if last_value <= 3:
solution += (roman_dict[divisor] * last_value)
elif last_value == 4:
solution += (roman_dict[divisor] * roman_dict[divisor * 5])
elif 5 <= last_value <= 8:
solution += (roman_dict[divisor * 5] + (roman_dict[divisor] * (last_value - 5)))
elif last_value == 9:
solution += (roman_dict[divisor] + roman_dict[divisor * 10])
x = math.floor(x % divisor)
divisor /= 10
return problem, solution
decimal_to_roman_numerals = Generator("Converts decimal to Roman Numerals",
85, "Convert 20 into Roman Numerals", "XX", decimalToRomanNumeralsFunc)

View File

@@ -0,0 +1,26 @@
from .__init__ import *
from scipy.integrate import quad
def definiteIntegralFunc(max_coeff=100):
def integrand(x, a, b, c):
return a * x ** 2 + b * x + c
a = random.randint(0, max_coeff)
b = random.randint(0, max_coeff)
c = random.randint(0, max_coeff)
result = quad(integrand, 0, 1, args=(a, b, c))[0]
S = round(result, 4)
problem = "The definite integral within limits 0 to 1 of the equation " + \
str(a) + "x^2 + " + str(b) + "x + " + str(c) + " is = "
solution = str(S)
return problem, solution
definite_integral = Generator("Definite Integral of Quadratic Equation", 89,
"The definite integral within limits 0 to 1 of quadratic equation ax^2+bx+c is = ", "S", definiteIntegralFunc)

View File

@@ -0,0 +1,17 @@
from .__init__ import *
from numpy import pi
def degreeToRadFunc(max_deg=360):
a = random.randint(0, max_deg)
b = (pi * a) / 180
b = round(b, 2)
problem = "Angle " + str(a) + " in radians is = "
solution = str(b)
return problem, solution
degree_to_rad = Generator("Degrees to Radians", 86,
"Angle a in radians is = ", "b", degreeToRadFunc)

View File

@@ -1,12 +0,0 @@
from .__init__ import *
def determinantToMatrix22(maxMatrixVal = 100):
a = random.randint(0, maxMatrixVal)
b = random.randint(0, maxMatrixVal)
c = random.randint(0, maxMatrixVal)
d = random.randint(0, maxMatrixVal)
determinant = a*d - b*c
problem = f"Det([[{a}, {b}], [{c}, {d}]]) = "
solution = f" {determinant}"
return problem, solution

View File

@@ -0,0 +1,32 @@
from .__init__ import *
def DiceSumProbFunc(maxDice=3):
a = random.randint(1, maxDice)
b = random.randint(a, 6 * a)
count = 0
for i in [1, 2, 3, 4, 5, 6]:
if a == 1:
if i == b:
count = count + 1
elif a == 2:
for j in [1, 2, 3, 4, 5, 6]:
if i + j == b:
count = count + 1
elif a == 3:
for j in [1, 2, 3, 4, 5, 6]:
for k in [1, 2, 3, 4, 5, 6]:
if i + j + k == b:
count = count + 1
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(
a, b)
solution = "{}/{}".format(count, 6**a)
return problem, solution
dice_sum_probability = Generator(
"Probability of a certain sum appearing on faces of dice", 52,
"If n dices are rolled then probabilty of getting sum of x is =", "z",
DiceSumProbFunc)

View File

@@ -0,0 +1,53 @@
from .__init__ import *
def genDifferentiationProblem(diff_lvl):
problem = ''
types = {
'Logrithmic': ['ln'],
'Trigonometric': ['sin', 'cos', 'tan', 'cot', 'sec'],
'Exponentional': ['exp']
}
if diff_lvl == 1:
coeff = random.randrange(2, 10)
power = random.randint(2, 4)
flag = random.random()
if flag > 0.5:
power *= -1
problem += str(coeff) + '*x^' + '(' + str(power) + ')'
else:
problem += str(coeff) + '*x^' + str(power)
if diff_lvl == 2:
func_type = random.choices(list(types.keys()), weights=(1, 4, 1))[0]
func = random.choice(types[func_type])
problem += func + '(x)' + '+' + genDifferentiationProblem(1)
if diff_lvl == 3:
func_type = random.choices(list(types.keys()), weights=(1, 4, 1))[0]
func = random.choice(types[func_type])
problem += func + '(' + genDifferentiationProblem(1) + ')'
if diff_lvl == 4:
operator = random.choice(('/', '*'))
problem = '(' + genDifferentiationProblem(2) + ')' + \
operator + '(' + genDifferentiationProblem(3) + ')'
return problem
def differentiationFunc(diff_lvl=2):
if diff_lvl < 1 or diff_lvl > 4:
print("diff_lvl not supported")
return None
problem = genDifferentiationProblem(diff_lvl)
x = sympy.symbols('x')
solution = str(sympy.diff(problem.replace('^', '**'), x))
solution = solution.replace('**', '^')
problem = f"differentiate w.r.t x : d({problem})/dx"
return problem, solution
differentiation = Generator(
"Differentiation", 88, "differentiate w.r.t x : d(f(x))/dx", "g(x)", differentiationFunc)

View File

@@ -7,8 +7,13 @@ def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
point2X = random.randint(minValXY, maxValXY + 1) point2X = random.randint(minValXY, maxValXY + 1)
point2Y = random.randint(minValXY, maxValXY + 1) point2Y = random.randint(minValXY, maxValXY + 1)
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2 distanceSq = (point1X - point2X)**2 + (point1Y - point2Y)**2
solution = f"sqrt({distanceSq})" solution = f"sqrt({distanceSq})"
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})" problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
return problem, solution return problem, solution
distance_two_points = Generator("Distance between 2 points", 24,
"Find the distance between (x1,y1) and (x2,y2)",
"sqrt(distanceSquared)", distanceTwoPointsFunc)

View File

@@ -14,7 +14,7 @@ def divideFractionsFunc(maxVal=10):
d = random.randint(1, maxVal) d = random.randint(1, maxVal)
def calculate_gcd(x, y): def calculate_gcd(x, y):
while(y): while (y):
x, y = y, x % y x, y = y, x % y
return x return x
@@ -30,3 +30,7 @@ def divideFractionsFunc(maxVal=10):
problem = f"({a}/{b})/({c}/{d})" problem = f"({a}/{b})/({c}/{d})"
solution = x solution = x
return problem, solution return problem, solution
divide_fractions = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y",
divideFractionsFunc)

View File

@@ -9,3 +9,6 @@ def divisionFunc(maxRes=99, maxDivid=99):
problem = str(a) + "/" + str(b) + "=" problem = str(a) + "/" + str(b) + "="
solution = str(c) solution = str(c)
return problem, solution return problem, solution
division = Generator("Division", 3, "a/b=", "c", divisionFunc)

View File

@@ -1,7 +0,0 @@
from .__init__ import *
def euclidianNormFunc(v1: list):
problem = f"Euclidian norm or L2 norm of the vector{v1} is:"
solution = sqrt(sum([i**2 for i in v1]))
return problem, solution

View File

@@ -0,0 +1,13 @@
from .__init__ import *
def euclidianNormFunc(maxEltAmt=20):
vec = [random.uniform(0, 1000) for i in range(random.randint(2, maxEltAmt))]
problem = f"Euclidian norm or L2 norm of the vector{vec} is:"
solution = math.sqrt(sum([i**2 for i in vec]))
return problem, solution
eucldian_norm = Generator("Euclidian norm or L2 norm of a vector", 69,
"Euclidian Norm of a vector V:[v1, v2, ......., vn]",
"sqrt(v1^2 + v2^2 ........ +vn^2)", euclidianNormFunc)

View File

@@ -0,0 +1,14 @@
from .__init__ import *
def exponentiationFunc(maxBase=20, maxExpo=10):
base = random.randint(1, maxBase)
expo = random.randint(1, maxExpo)
problem = f"{base}^{expo} ="
solution = str(base**expo)
return problem, solution
exponentiation = Generator("Exponentiation", 53, "a^b = ", "c",
exponentiationFunc)

View File

@@ -1,10 +0,0 @@
from .__init__ import *
def exponentiationFunc(maxBase = 20,maxExpo = 10):
base = random.randint(1, maxBase)
expo = random.randint(1, maxExpo)
problem = f"{base}^{expo} ="
solution = str(base ** expo)
return problem, solution

View File

@@ -13,3 +13,6 @@ def factorialFunc(maxInput=6):
n -= 1 n -= 1
solution = str(b) solution = str(b)
return problem, solution return problem, solution
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)

View File

@@ -27,3 +27,7 @@ def factoringFunc(range_x1=10, range_x2=10):
x2 = intParser(x2) x2 = intParser(x2)
solution = f"(x{x1})(x{x2})" solution = f"(x{x1})(x{x2})"
return problem, solution return problem, solution
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2",
"(x-x1)(x-x2)", factoringFunc)

View File

@@ -1,21 +0,0 @@
from .__init__ import *
def fibonacciSeriesFunc(minNo=1):
n = random.randint(minNo,20)
def createFibList(n):
l=[]
for i in range(n):
if i<2:
l.append(i)
else:
val = l[i-1]+l[i-2]
l.append(val)
return l
fibList=createFibList(n)
problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?"
solution = fibList
return problem,solution

View File

@@ -0,0 +1,26 @@
from .__init__ import *
def fibonacciSeriesFunc(minNo=1):
n = random.randint(minNo, 20)
def createFibList(n):
list = []
for i in range(n):
if i < 2:
list.append(i)
else:
val = list[i - 1] + list[i - 2]
list.append(val)
return list
fibList = createFibList(n)
problem = "The Fibonacci Series of the first " + str(n) + " numbers is ?"
solution = fibList
return problem, solution
fibonacci_series = Generator(
"Fibonacci Series", 56, "fibonacci series of first a numbers",
"prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc)

View File

@@ -12,3 +12,9 @@ def fourthAngleOfQuadriFunc(maxAngle=180):
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} =" problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
solution = angle4 solution = angle4
return problem, solution return problem, solution
fourth_angle_of_quadrilateral = Generator(
"Fourth Angle of Quadrilateral", 49,
"Fourth angle of Quadrilateral with angles a,b,c =", "angle4",
fourthAngleOfQuadriFunc)

View File

@@ -14,7 +14,7 @@ def multiplyFractionsFunc(maxVal=10):
d = random.randint(1, maxVal) d = random.randint(1, maxVal)
def calculate_gcd(x, y): def calculate_gcd(x, y):
while(y): while (y):
x, y = y, x % y x, y = y, x % y
return x return x
@@ -30,3 +30,8 @@ def multiplyFractionsFunc(maxVal=10):
problem = f"({a}/{b})*({c}/{d})" problem = f"({a}/{b})*({c}/{d})"
solution = x solution = x
return problem, solution return problem, solution
fraction_multiplication = Generator("Fraction Multiplication", 28,
"(a/b)*(c/d)=", "x/y",
multiplyFractionsFunc)

View File

@@ -10,3 +10,7 @@ def gcdFunc(maxVal=20):
problem = f"GCD of {a} and {b} = " problem = f"GCD of {a} and {b} = "
solution = str(x) solution = str(x)
return problem, solution return problem, solution
gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ",
"c", gcdFunc)

View File

@@ -1,15 +0,0 @@
from .__init__ import *
def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term=5):
r=random.randint(min_value,max_value)
a=random.randint(min_value,max_value)
n_term=random.randint(number_values,number_values+5)
sum_term=random.randint(number_values,number_values+5)
GP=[]
for i in range(number_values):
GP.append(a*(r**i))
problem="For the given GP "+str(GP)+" ,Find the value of a,common ratio,"+str(n_term)+"th term value, sum upto "+str(sum_term)+"th term"
value_nth_term=a*(r**(n_term-1))
sum_till_nth_term=a*((r**sum_term-1)/(r-1))
solution="The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(a,r,n_term,value_nth_term,sum_term,sum_till_nth_term)
return problem,solution

View File

@@ -1,27 +0,0 @@
from .__init__ import *
def geometricMeanFunc(maxValue=100, maxNum=4):
a=random.randint(1,maxValue)
b=random.randint(1,maxValue)
c=random.randint(1,maxValue)
d=random.randint(1,maxValue)
num=random.randint(2,4)
if num==2:
product=a*b
elif num==3:
product=a*b*c
elif num==4:
product=a*b*c*d
ans=product**(1/num)
if num==2:
problem=f"Geometric mean of {num} numbers {a} and {b} = "
solution = f"({a}*{b})^(1/{num}) = {ans}"
elif num==3:
problem=f"Geometric mean of {num} numbers {a} , {b} and {c} = "
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
elif num==4:
problem=f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
return problem,solution

View File

@@ -0,0 +1,32 @@
from .__init__ import *
def geometricMeanFunc(maxValue=100, maxNum=4):
a = random.randint(1, maxValue)
b = random.randint(1, maxValue)
c = random.randint(1, maxValue)
d = random.randint(1, maxValue)
num = random.randint(2, 4)
if num == 2:
product = a * b
elif num == 3:
product = a * b * c
elif num == 4:
product = a * b * c * d
ans = product**(1 / num)
if num == 2:
problem = f"Geometric mean of {num} numbers {a} and {b} = "
solution = f"({a}*{b})^(1/{num}) = {ans}"
elif num == 3:
problem = f"Geometric mean of {num} numbers {a} , {b} and {c} = "
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
elif num == 4:
problem = f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
return problem, solution
geometric_mean = Generator("Geometric Mean of N Numbers", 67,
"Geometric mean of n numbers A1 , A2 , ... , An = ",
"(A1*A2*...An)^(1/n) = ans", geometricMeanFunc)

View File

@@ -0,0 +1,29 @@
from .__init__ import *
def geomProgrFunc(number_values=6,
min_value=2,
max_value=12,
n_term=7,
sum_term=5):
r = random.randint(min_value, max_value)
a = random.randint(min_value, max_value)
n_term = random.randint(number_values, number_values + 5)
sum_term = random.randint(number_values, number_values + 5)
GP = []
for i in range(number_values):
GP.append(a * (r**i))
problem = "For the given GP " + str(
GP) + " ,Find the value of a,common ratio," + str(
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
value_nth_term = a * (r**(n_term - 1))
sum_till_nth_term = a * ((r**sum_term - 1) / (r - 1))
solution = "The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(
a, r, n_term, value_nth_term, sum_term, sum_till_nth_term)
return problem, solution
geometric_progression = Generator(
"Geometric Progression", 66,
"Initial value,Common Ratio,nth Term,Sum till nth term =",
"a,r,ar^n-1,sum(ar^n-1", geomProgrFunc)

View File

@@ -1,28 +0,0 @@
from .__init__ import *
def harmonicMeanFunc(maxValue=100, maxNum=4):
a=random.randint(1,maxValue)
b=random.randint(1,maxValue)
c=random.randint(1,maxValue)
d=random.randint(1,maxValue)
num=random.randint(2,4)
if num==2:
sum=(1/a)+(1/b)
elif num==3:
sum=(1/a)+(1/b)+(1/c)
elif num==4:
sum=(1/a)+(1/b)+(1/c)+(1/d)
ans=num/sum
if num==2:
problem=f"Harmonic mean of {num} numbers {a} and {b} = "
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
elif num==3:
problem=f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
elif num==4:
problem=f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
return problem,solution

View File

@@ -0,0 +1,34 @@
from .__init__ import *
def harmonicMeanFunc(maxValue=100, maxNum=4):
a = random.randint(1, maxValue)
b = random.randint(1, maxValue)
c = random.randint(1, maxValue)
d = random.randint(1, maxValue)
num = random.randint(2, 4)
if num == 2:
sum = (1 / a) + (1 / b)
elif num == 3:
sum = (1 / a) + (1 / b) + (1 / c)
elif num == 4:
sum = (1 / a) + (1 / b) + (1 / c) + (1 / d)
ans = num / sum
if num == 2:
problem = f"Harmonic mean of {num} numbers {a} and {b} = "
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
elif num == 3:
problem = f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
elif num == 4:
problem = f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
return problem, solution
harmonic_mean = Generator("Harmonic Mean of N Numbers", 68,
"Harmonic mean of n numbers A1 , A2 , ... , An = ",
" n/((1/A1) + (1/A2) + ... + (1/An)) = ans",
harmonicMeanFunc)

View File

@@ -1,11 +1,16 @@
from .__init__ import * from .__init__ import *
def hcfFunc(maxVal=20): def hcfFunc(maxVal=20):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
b = random.randint(1, maxVal) b = random.randint(1, maxVal)
x, y = a, b x, y = a, b
while(y): while (y):
x, y = y, x % y x, y = y, x % y
problem = f"HCF of {a} and {b} = " problem = f"HCF of {a} and {b} = "
solution = str(x) solution = str(x)
return problem, solution return problem, solution
hcf = Generator("HCF (Highest Common Factor)", 51, "HCF of a and b = ", "c",
hcfFunc)

View File

@@ -11,3 +11,6 @@ def divisionToIntFunc(maxA=25, maxB=25):
problem = f"{divisor}/{dividend} = " problem = f"{divisor}/{dividend} = "
solution = int(divisor / dividend) solution = int(divisor / dividend)
return problem, solution return problem, solution
int_division = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)

View File

@@ -0,0 +1,18 @@
from .__init__ import *
def determinantToMatrix22(maxMatrixVal=100):
a = random.randint(0, maxMatrixVal)
b = random.randint(0, maxMatrixVal)
c = random.randint(0, maxMatrixVal)
d = random.randint(0, maxMatrixVal)
determinant = a * d - b * c
problem = f"Det([[{a}, {b}], [{c}, {d}]]) = "
solution = f" {determinant}"
return problem, solution
int_matrix_22_determinant = Generator("Determinant to 2x2 Matrix", 77,
"Det([[a,b],[c,d]]) =", " a * d - b * c",
determinantToMatrix22)

View File

@@ -1,10 +1,12 @@
from .__init__ import * from .__init__ import *
def intersectionOfTwoLinesFunc( def intersectionOfTwoLinesFunc(minM=-10,
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6 maxM=10,
): minB=-10,
maxB=10,
minDenominator=1,
maxDenominator=6):
def generateEquationString(m, b): def generateEquationString(m, b):
""" """
Generates an equation given the slope and intercept. Generates an equation given the slope and intercept.
@@ -33,8 +35,10 @@ def intersectionOfTwoLinesFunc(
x = f"{x.numerator}/{x.denominator}" x = f"{x.numerator}/{x.denominator}"
return x return x
m1 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator)) m1 = (random.randint(minM,
m2 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator)) maxM), random.randint(minDenominator, maxDenominator))
m2 = (random.randint(minM,
maxM), random.randint(minDenominator, maxDenominator))
b1 = random.randint(minB, maxB) b1 = random.randint(minB, maxB)
b2 = random.randint(minB, maxB) b2 = random.randint(minB, maxB)
@@ -60,3 +64,9 @@ def intersectionOfTwoLinesFunc(
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})" solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
return problem, solution return problem, solution
intersection_of_two_lines = Generator(
"Intersection of Two Lines", 41,
"Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2",
"(x, y)", intersectionOfTwoLinesFunc)

View File

@@ -1,7 +1,10 @@
from .__init__ import * from .__init__ import *
import sympy import sympy
def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerElementsInInvertedMatrix=False):
def matrixInversion(SquareMatrixDimension=3,
MaxMatrixElement=99,
OnlyIntegerElementsInInvertedMatrix=False):
if OnlyIntegerElementsInInvertedMatrix is True: if OnlyIntegerElementsInInvertedMatrix is True:
isItOk = False isItOk = False
Mat = list() Mat = list()
@@ -15,20 +18,25 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
Mat.append(z) Mat.append(z)
MaxAllowedMatrixElement = math.ceil( MaxAllowedMatrixElement = math.ceil(
pow(MaxMatrixElement, 1 / (SquareMatrixDimension))) pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
randomlist = random.sample( randomlist = random.sample(range(0, MaxAllowedMatrixElement + 1),
range(0, MaxAllowedMatrixElement + 1), SquareMatrixDimension) SquareMatrixDimension)
for i in range(0, SquareMatrixDimension): for i in range(0, SquareMatrixDimension):
if i == SquareMatrixDimension - 1: if i == SquareMatrixDimension - 1:
Mat[0] = [j + (k * randomlist[i]) Mat[0] = [
for j, k in zip(Mat[0], Mat[i])] j + (k * randomlist[i])
for j, k in zip(Mat[0], Mat[i])
]
else: else:
Mat[i + 1] = [j + (k * randomlist[i]) Mat[i + 1] = [
for j, k in zip(Mat[i + 1], Mat[i])] j + (k * randomlist[i])
for j, k in zip(Mat[i + 1], Mat[i])
]
for i in range(1, SquareMatrixDimension - 1): for i in range(1, SquareMatrixDimension - 1):
Mat[i] = [sum(i) Mat[i] = [
for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])] sum(i) for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])
]
isItOk = True isItOk = True
for i in Mat: for i in Mat:
@@ -51,7 +59,8 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1)) randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
plist = random.sample(randomlist, SquareMatrixDimension) plist = random.sample(randomlist, SquareMatrixDimension)
randomlist = random.sample( randomlist = random.sample(
range(0, MaxMatrixElement + 1), SquareMatrixDimension * SquareMatrixDimension) range(0, MaxMatrixElement + 1),
SquareMatrixDimension * SquareMatrixDimension)
randomlist = list(set(randomlist) - set(plist)) randomlist = list(set(randomlist) - set(plist))
n_list = random.sample( n_list = random.sample(
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1)) randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))
@@ -67,3 +76,7 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
problem = 'Inverse of Matrix ' + str(Mat) + ' is:' problem = 'Inverse of Matrix ' + str(Mat) + ' is:'
solution = str(sympy.Matrix.inv(Mat)) solution = str(sympy.Matrix.inv(Mat))
return problem, solution return problem, solution
invert_matrix = Generator("Inverse of a Matrix", 74, "Inverse of a matrix A is",
"A^(-1)", matrixInversion)

View File

@@ -15,3 +15,7 @@ def lcmFunc(maxVal=20):
solution = str(d) solution = str(d)
return problem, solution return problem, solution
lcm = Generator("LCM (Least Common Multiple)", 9, "LCM of a and b = ", "c",
lcmFunc)

View File

@@ -9,17 +9,26 @@ def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n] vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
soln = [random.randint(-varRange, varRange) for i in range(n)] soln = [random.randint(-varRange, varRange) for i in range(n)]
problem = list() problem = list()
solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)]) solution = ", ".join(
["{} = {}".format(vars[i], soln[i]) for i in range(n)])
for _ in range(n): for _ in range(n):
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)] coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
res = sum([coeff[i] * soln[i] for i in range(n)]) res = sum([coeff[i] * soln[i] for i in range(n)])
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)] prob = [
"{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else ""
for i in range(n)
]
while "" in prob: while "" in prob:
prob.remove("") prob.remove("")
prob = " + ".join(prob) + " = " + str(res) prob = " + ".join(prob) + " = " + str(res)
problem.append(prob) problem.append(prob)
problem = "\n".join(problem) # problem = "\n".join(problem)
problem = ", ".join(problem)
return problem, solution return problem, solution
linear_equations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12",
"x=-20 & y=12", linearEquationsFunc)

View File

@@ -10,3 +10,6 @@ def logFunc(maxBase=3, maxVal=8):
solution = str(a) solution = str(a)
return problem, solution return problem, solution
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)

View File

@@ -1,10 +1,10 @@
from .__init__ import * from .__init__ import *
def matrixMultiplicationFunc(maxVal=100): def matrixMultiplicationFunc(maxVal=100, max_dim=10):
m = random.randint(2, 10) m = random.randint(2, max_dim)
n = random.randint(2, 10) n = random.randint(2, max_dim)
k = random.randint(2, 10) k = random.randint(2, max_dim)
# generate matrices a and b # generate matrices a and b
a = [] a = []
@@ -32,10 +32,12 @@ def matrixMultiplicationFunc(maxVal=100):
temp += a[r][t] * b[t][c] temp += a[r][t] * b[t][c]
res[r].append(temp) res[r].append(temp)
problem = f"Multiply \n{a_string}\n and \n\n{b_string}" # consider using a, b instead of a_string, b_string if the problem doesn't look right # consider using a, b instead of a_string, b_string if the problem doesn't look right
problem = f"Multiply \n{a_string}\n and \n\n{b_string}"
solution = matrixMultiplicationFuncHelper(res) solution = matrixMultiplicationFuncHelper(res)
return problem, solution return problem, solution
def matrixMultiplicationFuncHelper(inp): def matrixMultiplicationFuncHelper(inp):
m = len(inp) m = len(inp)
n = len(inp[0]) n = len(inp[0])
@@ -44,8 +46,13 @@ def matrixMultiplicationFuncHelper(inp):
for i in range(m): for i in range(m):
for j in range(n): for j in range(n):
string += f"{inp[i][j]: 6d}" string += f"{inp[i][j]: 6d}"
string += ", "if j < n-1 else "" string += ", " if j < n - 1 else ""
string += "]\n [" if i < m-1 else "" string += "]\n [" if i < m - 1 else ""
string += "]]" string += "]]"
return string return string
matrix_multiplication = Generator("Multiplication of two matrices", 46,
"Multiply two matrices A and B", "C",
matrixMultiplicationFunc)

View File

@@ -1,13 +1,19 @@
from .__init__ import * from .__init__ import *
def meanMedianFunc(maxlen = 10):
def meanMedianFunc(maxlen=10):
randomlist = random.sample(range(1, 99), maxlen) randomlist = random.sample(range(1, 99), maxlen)
total = 0 total = 0
for n in randomlist: for n in randomlist:
total = total + n total = total + n
mean = total/10 mean = total / 10
problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series" problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series"
randomlist.sort() randomlist.sort()
median = (randomlist[4]+randomlist[5])/2 median = (randomlist[4] + randomlist[5]) / 2
solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}" solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}"
return problem, solution return problem, solution
mean_median = Generator("Mean and Median", 76,
"Mean and median of given set of numbers",
"Mean, Median", meanMedianFunc)

View File

@@ -10,3 +10,8 @@ def MidPointOfTwoPointFunc(maxValue=20):
problem = f"({x1},{y1}),({x2},{y2})=" problem = f"({x1},{y1}),({x2},{y2})="
solution = f"({(x1+x2)/2},{(y1+y2)/2})" solution = f"({(x1+x2)/2},{(y1+y2)/2})"
return problem, solution return problem, solution
midPoint_of_two_points = Generator("Midpoint of the two point", 20,
"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)",
MidPointOfTwoPointFunc)

View File

@@ -9,3 +9,6 @@ def moduloFunc(maxRes=99, maxModulo=99):
problem = str(a) + "%" + str(b) + "=" problem = str(a) + "%" + str(b) + "="
solution = str(c) solution = str(c)
return problem, solution return problem, solution
modulo_division = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)

View File

@@ -0,0 +1,18 @@
from .__init__ import *
def multiplicationFunc(maxRes=99, maxMulti=99):
a = random.randint(0, maxMulti)
if a == 0:
b = random.randint(0, maxRes)
else:
b = random.randint(0, min(int(maxMulti / a), maxRes))
c = a * b
problem = str(a) + "*" + str(b) + "="
solution = str(c)
return problem, solution
multiplication = Generator("Multiplication", 2, "a*b=", "c",
multiplicationFunc)

View File

@@ -1,11 +0,0 @@
from .__init__ import *
def multiplicationFunc(maxRes=99, maxMulti=99):
a = random.randint(0, maxMulti)
b = random.randint(0, min(int(maxMulti / a), maxRes))
c = a * b
problem = str(a) + "*" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -1,9 +0,0 @@
from .__init__ import *
def multiplyComplexNumbersFunc(minRealImaginaryNum = -20, maxRealImaginaryNum = 20):
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum))
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum))
problem = f"{num1} * {num2} = "
solution = num1 * num2
return problem, solution

View File

@@ -0,0 +1,17 @@
from .__init__ import *
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20,
maxRealImaginaryNum=20):
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
problem = f"{num1} * {num2} = "
solution = num1 * num2
return problem, solution
multiply_complex_numbers = Generator("Multiplication of 2 complex numbers", 65,
"(x + j) (y + j) = ", "xy + xj + yj -1",
multiplyComplexNumbersFunc)

View File

@@ -11,3 +11,9 @@ def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100):
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = " problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]" solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
return problem, solution return problem, solution
multiply_int_to_22_matrix = Generator("Integer Multiplication with 2x2 Matrix",
17, "k * [[a,b],[c,d]]=",
"[[k*a,k*b],[k*c,k*d]]",
multiplyIntToMatrix22)

View File

@@ -1,10 +0,0 @@
from .__init__ import *
def nthFibonacciNumberFunc(maxN = 100):
golden_ratio = (1 + math.sqrt(5))/2
n = random.randint(1,maxN)
problem = f"What is the {n}th Fibonacci number?"
ans = round((math.pow(golden_ratio,n) - math.pow(-golden_ratio,-n))/(math.sqrt(5)))
solution = f"{ans}"
return problem, solution

View File

@@ -0,0 +1,15 @@
from .__init__ import *
def nthFibonacciNumberFunc(maxN=100):
golden_ratio = (1 + math.sqrt(5)) / 2
n = random.randint(1, maxN)
problem = f"What is the {n}th Fibonacci number?"
ans = round((math.pow(golden_ratio, n) - math.pow(-golden_ratio, -n)) / (math.sqrt(5)))
solution = f"{ans}"
return problem, solution
nth_fibonacci_number = Generator("nth Fibonacci number", 62,
"What is the nth Fibonacci number", "Fn",
nthFibonacciNumberFunc)

View File

@@ -0,0 +1,15 @@
from .__init__ import *
def percentageFunc(maxValue=99, maxpercentage=99):
a = random.randint(1, maxpercentage)
b = random.randint(1, maxValue)
problem = f"What is {a}% of {b}?"
percentage = a / 100 * b
formatted_float = "{:.2f}".format(percentage)
solution = f"Required percentage = {formatted_float}%"
return problem, solution
percentage = Generator("Percentage of a number", 80, "What is a% of b?",
"percentage", percentageFunc)

View File

@@ -6,5 +6,12 @@ def permutationFunc(maxlength=20):
b = random.randint(0, 9) b = random.randint(0, 9)
solution = int(math.factorial(a) / (math.factorial(a - b))) solution = int(math.factorial(a) / (math.factorial(a - b)))
problem = "Number of Permutations from {} objects picked {} at a time = ".format(a, b) problem = "Number of Permutations from {} objects picked {} at a time = ".format(
a, b)
return problem, solution return problem, solution
permutation = Generator(
"Permutations", 42,
"Total permutations of 4 objects at a time from 10 objects is", "5040",
permutationFunc)

View File

@@ -16,3 +16,8 @@ def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5):
problem += str(coefficient) + "x^" + str(exponent) problem += str(coefficient) + "x^" + str(exponent)
solution += str(coefficient * exponent) + "x^" + str(exponent - 1) solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
return problem, solution return problem, solution
power_rule_differentiation = Generator("Power Rule Differentiation", 7, "nx^m=",
"(n*m)x^(m-1)",
powerRuleDifferentiationFunc)

View File

@@ -14,7 +14,12 @@ def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
exponent = random.randint(1, maxExp) exponent = random.randint(1, maxExp)
problem += str(coefficient) + "x^" + str(exponent) problem += str(coefficient) + "x^" + str(exponent)
solution += "(" + str(coefficient) + "/" + str(exponent) + ")x^" + str(exponent + 1) solution += "(" + str(coefficient) + "/" + \
str(exponent) + ")x^" + str(exponent + 1)
solution += " + c" solution += " + c"
return problem, solution return problem, solution
power_rule_integration = Generator("Power Rule Integration", 48, "nx^m=",
"(n/m)x^(m+1)", powerRuleIntegrationFunc)

View File

@@ -20,3 +20,7 @@ def primeFactorsFunc(minVal=1, maxVal=200):
problem = f"Find prime factors of {a}" problem = f"Find prime factors of {a}"
solution = f"{factors}" solution = f"{factors}"
return problem, solution return problem, solution
prime_factors = Generator("Prime Factorisation", 27, "Prime Factors of a =",
"[b, c, d, ...]", primeFactorsFunc)

View File

@@ -1,16 +0,0 @@
from .__init__ import *
def profitLossPercentFunc(maxCP = 1000, maxSP = 1000):
cP = random.randint(1, maxCP)
sP = random.randint(1, maxSP)
diff = abs(sP-cP)
if (sP-cP >= 0):
profitOrLoss = "Profit"
else:
profitOrLoss = "Loss"
percent = diff/cP * 100
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
solution = percent
return problem, solution

View File

@@ -0,0 +1,22 @@
from .__init__ import *
def profitLossPercentFunc(maxCP=1000, maxSP=1000):
cP = random.randint(1, maxCP)
sP = random.randint(1, maxSP)
diff = abs(sP - cP)
if (sP - cP >= 0):
profitOrLoss = "Profit"
else:
profitOrLoss = "Loss"
percent = diff / cP * 100
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
solution = percent
return problem, solution
profit_loss_percent = Generator(
"Profit or Loss Percent", 63,
"Profit/ Loss percent when CP = cp and SP = sp is: ", "percent",
profitLossPercentFunc)

View File

@@ -9,3 +9,9 @@ def pythagoreanTheoremFunc(maxLength=20):
problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = " problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = "
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}" solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
return problem, solution return problem, solution
pythagorean_theorem = Generator(
"Pythagorean Theorem", 25,
"The hypotenuse of a right triangle given the other two lengths a and b = ",
"hypotenuse", pythagoreanTheoremFunc)

View File

@@ -1,12 +0,0 @@
from .__init__ import *
def quadraticEquation(maxVal=100):
a = random.randint(1, maxVal)
c = random.randint(1, maxVal)
b = random.randint(round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
D = math.sqrt(b * b - 4 * a * c)
solution = str([round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)])
return problem, solution

View File

@@ -0,0 +1,21 @@
from .__init__ import *
def quadraticEquation(maxVal=100):
a = random.randint(1, maxVal)
c = random.randint(1, maxVal)
b = random.randint(
round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
D = math.sqrt(b * b - 4 * a * c)
solution = str(
[round((-b + D) / (2 * a), 2),
round((-b - D) / (2 * a), 2)])
return problem, solution
quadratic_equation = Generator(
"Quadratic Equation", 50,
"Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2",
quadraticEquation)

View File

@@ -0,0 +1,18 @@
from .__init__ import *
from numpy import pi
def radianToDegFunc(max_rad=3):
# max_rad is supposed to be pi but random can't handle non-integer
a = random.randint(0, max_rad)
b = (180 * a) / pi
b = round(b, 2)
problem = "Angle " + str(a) + " in degrees is = "
solution = str(b)
return problem, solution
radian_to_deg = Generator("Radians to Degrees", 87,
"Angle a in degrees is = ", "b", radianToDegFunc)

View File

@@ -1,10 +0,0 @@
from .__init__ import *
def sectorAreaFunc(maxRadius = 49,maxAngle = 359):
Radius = random.randint(1, maxRadius)
Angle = random.randint(1, maxAngle)
problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector."
secArea = float((Angle / 360) * math.pi*Radius*Radius)
formatted_float = "{:.5f}".format(secArea)
solution = f"Area of sector = {formatted_float}"
return problem, solution

View File

@@ -0,0 +1,16 @@
from .__init__ import *
def sectorAreaFunc(maxRadius=49, maxAngle=359):
Radius = random.randint(1, maxRadius)
Angle = random.randint(1, maxAngle)
problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector."
secArea = float((Angle / 360) * math.pi * Radius * Radius)
formatted_float = "{:.5f}".format(secArea)
solution = f"Area of sector = {formatted_float}"
return problem, solution
sector_area = Generator("Area of a Sector", 75,
"Area of a sector with radius, r and angle, a ", "Area",
sectorAreaFunc)

Some files were not shown because too many files have changed in this diff Show More