yapf lint

This commit is contained in:
lukew3
2023-06-02 10:31:59 -04:00
parent c6ddbbade9
commit 966419d04c
13 changed files with 108 additions and 108 deletions

View File

@@ -45,10 +45,12 @@ def combine_like_terms(max_coef=10, max_exp=20, max_terms=10):
numTerms = random.randint(1, max_terms)
coefs = [random.randint(1, max_coef) for _ in range(numTerms)]
exponents = [random.randint(1, max(max_exp - 1, 2))
for _ in range(numTerms)]
exponents = [
random.randint(1, max(max_exp - 1, 2)) for _ in range(numTerms)
]
problem = " + ".join([f"{coefs[i]}x^{{{exponents[i]}}}" for i in range(numTerms)])
problem = " + ".join(
[f"{coefs[i]}x^{{{exponents[i]}}}" for i in range(numTerms)])
d = {}
for i in range(numTerms):
if exponents[i] in d:
@@ -133,9 +135,7 @@ def complex_quadratic(prob_type=0, max_range=10):
return problem, solution
def compound_interest(max_principle=10000,
max_rate=10,
max_time=10):
def compound_interest(max_principle=10000, max_rate=10, max_time=10):
r"""Compound Interest
| Ex. Problem | Ex. Solution |
@@ -172,10 +172,7 @@ def distance_two_points(max_val_xy=20, min_val_xy=-20):
return problem, solution
def expanding(range_x1=10,
range_x2=10,
range_a=10,
range_b=10):
def expanding(range_x1=10, range_x2=10, range_a=10, range_b=10):
r"""Expanding Factored Binomial
| Ex. Problem | Ex. Solution |
@@ -340,10 +337,10 @@ def intersection_of_two_lines(min_m=-10,
x = rf"\frac{{{x.numerator}}}{{{x.denominator}}}"
return x
m1 = (random.randint(min_m,
max_m), random.randint(min_denominator, max_denominator))
m2 = (random.randint(min_m,
max_m), random.randint(min_denominator, max_denominator))
m1 = (random.randint(min_m, max_m),
random.randint(min_denominator, max_denominator))
m2 = (random.randint(min_m, max_m),
random.randint(min_denominator, max_denominator))
b1 = random.randint(min_b, max_b)
b2 = random.randint(min_b, max_b)
@@ -409,7 +406,8 @@ def invert_matrix(square_matrix_dimension=3,
for i in range(1, square_matrix_dimension - 1):
Mat[i] = [
sum(i) for i in zip(Mat[square_matrix_dimension - 1], Mat[i])
sum(i)
for i in zip(Mat[square_matrix_dimension - 1], Mat[i])
]
isItOk = True
@@ -437,7 +435,8 @@ def invert_matrix(square_matrix_dimension=3,
square_matrix_dimension * square_matrix_dimension)
randomlist = list(set(randomlist) - set(plist))
n_list = random.sample(
randomlist, square_matrix_dimension * (square_matrix_dimension - 1))
randomlist,
square_matrix_dimension * (square_matrix_dimension - 1))
Mat = list()
for i in range(0, square_matrix_dimension):
z = list()
@@ -504,7 +503,9 @@ def line_equation_from_2_points(max_val=20):
y2 = random.randint(-max_val, max_val)
m1 = (y2 - y1) // math.gcd(y2 - y1, x2 - x1)
m2 = (x2 - x1) // math.gcd(y2 - y1, x2 - x1)
c1 = (y1 * (x2 - x1) - (y2 - y1) * x1) // math.gcd(y1 * (x2 - x1) - (y2 - y1) * x1, (x2 - x1))
c1 = (y1 * (x2 - x1) -
(y2 - y1) * x1) // math.gcd(y1 * (x2 - x1) - (y2 - y1) * x1,
(x2 - x1))
c2 = (x2 - x1) // math.gcd(y1 * (x2 - x1) - (y2 - y1) * x1, (x2 - x1))
c = rf"{'+' if c1 >= 0 else '-'}\frac{{{abs(c1)}}}{{{c2}}}" if c1 != 0 else ""
if c2 < 0:
@@ -605,9 +606,11 @@ def multiply_complex_numbers(min_real_imaginary_num=-20,
| --- | --- |
| $(14+18j) * (14+15j) = $ | $(-74+462j)$ |
"""
num1 = complex(random.randint(min_real_imaginary_num, max_real_imaginary_num),
num1 = complex(
random.randint(min_real_imaginary_num, max_real_imaginary_num),
random.randint(min_real_imaginary_num, max_real_imaginary_num))
num2 = complex(random.randint(min_real_imaginary_num, max_real_imaginary_num),
num2 = complex(
random.randint(min_real_imaginary_num, max_real_imaginary_num),
random.randint(min_real_imaginary_num, max_real_imaginary_num))
product = num1 * num2
@@ -652,7 +655,8 @@ def quadratic_equation(max_val=100):
a = random.randint(1, max_val)
c = random.randint(1, max_val)
b = random.randint(
round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * max_val * max_val)))
round(math.sqrt(4 * a * c)) + 1,
round(math.sqrt(4 * max_val * max_val)))
D = math.sqrt(b * b - 4 * a * c)
res = {round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)}
@@ -661,9 +665,7 @@ def quadratic_equation(max_val=100):
return problem, solution
def simple_interest(max_principle=10000,
max_rate=10,
max_time=10):
def simple_interest(max_principle=10000, max_rate=10, max_time=10):
r"""Simple Interest
| Ex. Problem | Ex. Solution |
@@ -680,9 +682,7 @@ def simple_interest(max_principle=10000,
return problem, solution
def system_of_equations(range_x=10,
range_y=10,
coeff_mult_range=10):
def system_of_equations(range_x=10, range_y=10, coeff_mult_range=10):
r"""Solve a System of Equations in R^2
| Ex. Problem | Ex. Solution |

View File

@@ -75,7 +75,9 @@ def cube_root(min_no=1, max_no=1000):
b = random.randint(min_no, max_no)
a = b**(1 / 3)
return (rf"What is the cube root of: $\sqrt[3]{{{b}}}=$ to 2 decimal places?", f"${round(a, 2)}$")
return (
rf"What is the cube root of: $\sqrt[3]{{{b}}}=$ to 2 decimal places?",
f"${round(a, 2)}$")
def divide_fractions(max_val=10):
@@ -215,7 +217,6 @@ def greatest_common_divisor(numbers_count=2, max_num=10**3):
| --- | --- |
| $GCD(488075608, 75348096)=$ | $8$ |
"""
def greatestCommonDivisorOfTwoNumbers(number1, number2):
number1 = abs(number1)
number2 = abs(number2)
@@ -224,8 +225,7 @@ def greatest_common_divisor(numbers_count=2, max_num=10**3):
return number1
numbers_count = max(numbers_count, 2)
numbers = [random.randint(0, max_num)
for _ in range(numbers_count)]
numbers = [random.randint(0, max_num) for _ in range(numbers_count)]
greatestCommonDivisor = greatestCommonDivisorOfTwoNumbers(
numbers[0], numbers[1])

View File

@@ -24,9 +24,7 @@ def definite_integral(max_coef=100):
return problem, f'${solution}$'
def power_rule_differentiation(max_coef=10,
max_exp=10,
max_terms=5):
def power_rule_differentiation(max_coef=10, max_exp=10, max_terms=5):
r"""Power Rule Differentiation
| Ex. Problem | Ex. Solution |
@@ -50,9 +48,7 @@ def power_rule_differentiation(max_coef=10,
return problem + '$', solution + '$'
def power_rule_integration(max_coef=10,
max_exp=10,
max_terms=5):
def power_rule_integration(max_coef=10, max_exp=10, max_terms=5):
r"""Power Rule Integration
| Ex. Problem | Ex. Solution |

View File

@@ -67,8 +67,9 @@ def binary_complement_1s(maxDigits=10):
| --- | --- |
| $1111001 = $ | $0000110$ |
"""
question = ''.join([str(random.randint(0, 1))
for _ in range(random.randint(1, maxDigits))])
question = ''.join([
str(random.randint(0, 1)) for _ in range(random.randint(1, maxDigits))
])
answer = ''.join(["0" if digit == "1" else "1" for digit in question])
problem = f'${question} = $'
@@ -82,8 +83,8 @@ def binary_to_decimal(max_dig=10):
| --- | --- |
| $000110$ | $6$ |
"""
problem = ''.join([str(random.randint(0, 1))
for _ in range(random.randint(1, max_dig))])
problem = ''.join(
[str(random.randint(0, 1)) for _ in range(random.randint(1, max_dig))])
solution = f'${int(problem, 2)}$'
return f'${problem}$', solution
@@ -95,8 +96,8 @@ def binary_to_hex(max_dig=10):
| --- | --- |
| $010101$ | $0x15$ |
"""
problem = ''.join([str(random.randint(0, 1))
for _ in range(random.randint(1, max_dig))])
problem = ''.join(
[str(random.randint(0, 1)) for _ in range(random.randint(1, max_dig))])
solution = f'${hex(int(problem, 2))}$'
return f'${problem}$', solution
@@ -234,6 +235,7 @@ def nth_tribonacci_number(min_length=1, max_length=80):
"""
tribDict = {0: 0, 1: 0, 2: 1}
def recTrib(i):
if i not in tribDict:
tribDict[i] = recTrib(i - 1) + recTrib(i - 2) + recTrib(i - 3)
@@ -254,11 +256,14 @@ def tribonacci_series(min_length=1, max_length=80):
"""
tribDict = {0: 0, 1: 0, 2: 1}
def createTribSeries(i):
tribSeries = []
for idx in range(i):
if idx not in tribDict:
tribDict[idx] = tribDict[idx-1] + tribDict[idx-2] + tribDict[idx-3]
tribDict[idx] = tribDict[idx -
1] + tribDict[idx -
2] + tribDict[idx - 3]
tribSeries.append(tribDict[idx])
return tribSeries

View File

@@ -166,8 +166,10 @@ def basic_trigonometry(angles=[0, 30, 45, 60, 90],
1.73: r"\sqrt{3}",
}
solution = result_fraction_map[round(eval(expression), 2)] if round(
eval(expression), 2) <= 99999 else r"\infty" # for handling the ∞ condition
solution = result_fraction_map[round(
eval(expression),
2)] if round(eval(expression),
2) <= 99999 else r"\infty" # for handling the ∞ condition
return problem, f'${solution}$'
@@ -468,14 +470,8 @@ def surface_area_pyramid(unit='m'):
| Surface area of pyramid with base length $= 30m$, base width $= 40m$, and height $= 25m$ is | $2400 m^2$ |
"""
# List of Pythagorean triplets
_PYTHAGOREAN = [(3, 4, 5),
(6, 8, 10),
(9, 12, 15),
(12, 16, 20),
(15, 20, 25),
(5, 12, 13),
(10, 24, 26),
(7, 24, 25)]
_PYTHAGOREAN = [(3, 4, 5), (6, 8, 10), (9, 12, 15), (12, 16, 20),
(15, 20, 25), (5, 12, 13), (10, 24, 26), (7, 24, 25)]
# Generate first triplet
height, half_width, triangle_height_1 = random.sample(

View File

@@ -3,9 +3,7 @@ import math
import numpy as np
def arithmetic_progression_sum(max_d=100,
max_a=100,
max_n=100):
def arithmetic_progression_sum(max_d=100, max_a=100, max_n=100):
"""Arithmetic Progression Sum
| Ex. Problem | Ex. Solution |
@@ -25,9 +23,7 @@ def arithmetic_progression_sum(max_d=100,
return problem, f'${solution}$'
def arithmetic_progression_term(max_d=100,
max_a=100,
max_n=100):
def arithmetic_progression_term(max_d=100, max_a=100, max_n=100):
"""Arithmetic Progression Term
| Ex. Problem | Ex. Solution |
@@ -175,15 +171,15 @@ def common_factors(max_val=100):
return problem, solution
def complex_to_polar(min_real_imaginary_num=-20,
max_real_imaginary_num=20):
def complex_to_polar(min_real_imaginary_num=-20, max_real_imaginary_num=20):
r"""Complex to polar form
| Ex. Problem | Ex. Solution |
| --- | --- |
| $19.42(-19.0\theta + i-4.0\theta)$ | $-2.93$ |
"""
num = complex(random.randint(min_real_imaginary_num, max_real_imaginary_num),
num = complex(
random.randint(min_real_imaginary_num, max_real_imaginary_num),
random.randint(min_real_imaginary_num, max_real_imaginary_num))
a = num.real
b = num.imag
@@ -224,7 +220,8 @@ def decimal_to_roman_numerals(max_decimal=4000):
elif last_value == 4:
solution += (roman_dict[div] + roman_dict[div * 5])
elif 5 <= last_value <= 8:
solution += (roman_dict[div * 5] + (roman_dict[div] * (last_value - 5)))
solution += (roman_dict[div * 5] + (roman_dict[div] *
(last_value - 5)))
elif last_value == 9:
solution += (roman_dict[div] + roman_dict[div * 10])
x = math.floor(x % div)
@@ -436,10 +433,14 @@ def product_of_scientific_notations(min_exp_val=-100, max_exp_val=100):
| --- | --- |
| Product of scientific notations $5.11 \times 10^{67}$ and $3.64 \times 10^{-59} = $ | $1.86 \times 10^{9}$ |
"""
a = [round(random.uniform(1, 10), 2),
random.randint(min_exp_val, max_exp_val)]
b = [round(random.uniform(1, 10), 2),
random.randint(min_exp_val, max_exp_val)]
a = [
round(random.uniform(1, 10), 2),
random.randint(min_exp_val, max_exp_val)
]
b = [
round(random.uniform(1, 10), 2),
random.randint(min_exp_val, max_exp_val)
]
c = [a[0] * b[0], a[1] + b[1]]
if c[0] >= 10:
@@ -575,7 +576,6 @@ def surds_comparison(max_value=100, max_root=10):
def velocity_of_object(max_displacement=1000, max_time=100):
"""Velocity of object
| Ex. Problem | Ex. Solution |
@@ -583,7 +583,6 @@ def velocity_of_object(max_displacement=1000,max_time=100):
| An object travels at uniform velocity a distance of $100 m$ in $4$ seconds. What is the velocity of the car? | $25 m/s$ |
"""
displacement = random.randint(1, max_displacement)
time_taken = random.randint(1, max_time)
velocity = "${} m/s$".format(round(displacement / time_taken, 2))

View File

@@ -12,8 +12,8 @@ def combinations(max_lengthgth=20):
a = random.randint(10, max_lengthgth)
b = random.randint(0, 9)
solution = int(math.factorial(
a) / (math.factorial(b) * math.factorial(a - b)))
solution = int(
math.factorial(a) / (math.factorial(b) * math.factorial(a - b)))
problem = f"Find the number of combinations from ${a}$ objects picked ${b}$ at a time."
return problem, f'${solution}$'

View File

@@ -1,6 +1,7 @@
import os
print("You are about to add a new generator to the table in futureGenerators.md")
print(
"You are about to add a new generator to the table in futureGenerators.md")
print("Please fill out the following:")
title = input("> Title: ")
example_problem = input("> Example Problem: ")
@@ -14,4 +15,5 @@ else:
with open(file, 'a') as f:
f.writelines(
f'| {title} | {example_problem} | {example_solution} | {further_explanation} |\n')
f'| {title} | {example_problem} | {example_solution} | {further_explanation} |\n'
)

View File

@@ -25,8 +25,10 @@ def get_filepaths(subject_name):
return file_paths
subjects = ['algebra', 'basic_math', 'calculus',
'computer_science', 'geometry', 'misc', 'statistics']
subjects = [
'algebra', 'basic_math', 'calculus', 'computer_science', 'geometry',
'misc', 'statistics'
]
for subject in subjects:
full_file_paths = get_filepaths(subject)
full_file_paths.sort()