Added electric field calculations and corrected a bug in the fringe

spacing function
This commit is contained in:
2025-12-06 20:10:21 +00:00
parent 3046f62ce0
commit aa31ce258d
9 changed files with 1096 additions and 667 deletions

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@@ -61,9 +61,15 @@
<li>
<a class="function" href="#resistivity">resistivity</a>
</li>
<li>
<a class="function" href="#electric_field_strength_two_points">electric_field_strength_two_points</a>
</li>
<li>
<a class="function" href="#fringe_spacing">fringe_spacing</a>
</li>
<li>
<a class="function" href="#diffraction_grating_wavelength">diffraction_grating_wavelength</a>
</li>
</ul>
@@ -85,88 +91,147 @@
<label class="view-source-button" for="mod-physics-view-source"><span>View Source</span></label>
<div class="pdoc-code codehilite"><pre><span></span><span id="L-1"><a href="#L-1"><span class="linenos"> 1</span></a><span class="kn">import</span><span class="w"> </span><span class="nn">random</span>
</span><span id="L-2"><a href="#L-2"><span class="linenos"> 2</span></a><span class="kn">import</span><span class="w"> </span><span class="nn">math</span>
</span><span id="L-3"><a href="#L-3"><span class="linenos"> 3</span></a>
</span><span id="L-4"><a href="#L-4"><span class="linenos"> 4</span></a><span class="c1"># Generic</span>
</span><span id="L-5"><a href="#L-5"><span class="linenos"> 5</span></a><span class="k">def</span><span class="w"> </span><span class="nf">kinetic_energy</span><span class="p">(</span><span class="n">max_mass</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">max_vel</span><span class="o">=</span><span class="mi">100</span><span class="p">):</span>
</span><span id="L-6"><a href="#L-6"><span class="linenos"> 6</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Kinetic Energy calculation using Ek = 0.5 * m * v^2</span>
</span><span id="L-7"><a href="#L-7"><span class="linenos"> 7</span></a>
</span><span id="L-8"><a href="#L-8"><span class="linenos"> 8</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="L-9"><a href="#L-9"><span class="linenos"> 9</span></a><span class="sd"> | --- | --- |</span>
</span><span id="L-10"><a href="#L-10"><span class="linenos">10</span></a><span class="sd"> | What is the kinetic energy of an object of mass $5 kg$ and velocity $10 m/s$ | $250 J$ |</span>
</span><span id="L-11"><a href="#L-11"><span class="linenos">11</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-12"><a href="#L-12"><span class="linenos">12</span></a> <span class="n">velocity</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">max_vel</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
</span><span id="L-13"><a href="#L-13"><span class="linenos">13</span></a> <span class="n">mass</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">max_mass</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
</span><span id="L-14"><a href="#L-14"><span class="linenos">14</span></a> <span class="n">kinetic_energy</span> <span class="o">=</span> <span class="nb">round</span><span class="p">((</span><span class="mf">0.5</span> <span class="o">*</span> <span class="n">mass</span> <span class="o">*</span> <span class="n">velocity</span><span class="o">**</span><span class="mi">2</span><span class="p">),</span> <span class="mi">2</span><span class="p">)</span>
</span><span id="L-15"><a href="#L-15"><span class="linenos">15</span></a>
</span><span id="L-16"><a href="#L-16"><span class="linenos">16</span></a>
</span><span id="L-17"><a href="#L-17"><span class="linenos">17</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;What is the kinetic energy of an object of mass $</span><span class="si">{</span><span class="n">mass</span><span class="si">}</span><span class="s2"> kg$ and velocity $</span><span class="si">{</span><span class="n">velocity</span><span class="si">}</span><span class="s2"> m/s$?&quot;</span>
</span><span id="L-18"><a href="#L-18"><span class="linenos">18</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s1">&#39;$</span><span class="si">{</span><span class="n">kinetic_energy</span><span class="si">}</span><span class="s1"> J$&#39;</span>
</span><span id="L-19"><a href="#L-19"><span class="linenos">19</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span><span id="L-20"><a href="#L-20"><span class="linenos">20</span></a>
</span><span id="L-21"><a href="#L-21"><span class="linenos">21</span></a>
</span><span id="L-22"><a href="#L-22"><span class="linenos">22</span></a><span class="c1"># Electricity</span>
</span><span id="L-23"><a href="#L-23"><span class="linenos">23</span></a><span class="k">def</span><span class="w"> </span><span class="nf">potential_dividers</span><span class="p">(</span><span class="n">max_vin</span><span class="o">=</span><span class="mi">50</span><span class="p">,</span> <span class="n">max_resistance</span><span class="o">=</span><span class="mi">500</span><span class="p">):</span>
</span><span id="L-24"><a href="#L-24"><span class="linenos">24</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Potential Divider question using Vout = (Vin * R2) / (R2 + R1)</span>
</span><span id="L-25"><a href="#L-25"><span class="linenos">25</span></a>
</span><span id="L-26"><a href="#L-26"><span class="linenos">26</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="L-27"><a href="#L-27"><span class="linenos">27</span></a><span class="sd"> | --- | --- |</span>
</span><span id="L-28"><a href="#L-28"><span class="linenos">28</span></a><span class="sd"> | In a Potential Divider, if resistors R1 and R2 have resistances of $100 \Omega$ and $50 \Omega$ respectively, and the cell has $12 V$ What is the output potential difference across R2? | $4 V$ |</span>
</span><span id="L-29"><a href="#L-29"><span class="linenos">29</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-30"><a href="#L-30"><span class="linenos">30</span></a><span class="w"> </span><span class="sd">&#39;&#39;&#39;</span>
</span><span id="L-31"><a href="#L-31"><span class="linenos">31</span></a><span class="sd"> This is what a potential divider circuit looks like:</span>
</span><span id="L-32"><a href="#L-32"><span class="linenos">32</span></a><span class="sd"> ------</span>
</span><span id="L-33"><a href="#L-33"><span class="linenos">33</span></a><span class="sd"> | R1</span>
</span><span id="L-34"><a href="#L-34"><span class="linenos">34</span></a><span class="sd"> Vi = |----o</span>
</span><span id="L-35"><a href="#L-35"><span class="linenos">35</span></a><span class="sd"> | R2 Vout</span>
</span><span id="L-36"><a href="#L-36"><span class="linenos">36</span></a><span class="sd"> |____|____o</span>
</span><span id="L-37"><a href="#L-37"><span class="linenos">37</span></a><span class="sd"> &#39;&#39;&#39;</span>
</span><span id="L-38"><a href="#L-38"><span class="linenos">38</span></a> <span class="n">vin</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_vin</span><span class="p">)</span> <span class="c1"># Voltage input of cell</span>
</span><span id="L-39"><a href="#L-39"><span class="linenos">39</span></a> <span class="n">r1</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_resistance</span><span class="p">)</span> <span class="c1"># Resistance of R1</span>
</span><span id="L-40"><a href="#L-40"><span class="linenos">40</span></a> <span class="n">r2</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_resistance</span><span class="p">)</span> <span class="c1"># Resistance of R2</span>
</span><span id="L-41"><a href="#L-41"><span class="linenos">41</span></a> <span class="n">vout</span> <span class="o">=</span> <span class="nb">round</span><span class="p">((</span><span class="n">vin</span> <span class="o">*</span> <span class="n">r2</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">r1</span> <span class="o">+</span> <span class="n">r2</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># Voltage output across R2</span>
</span><span id="L-42"><a href="#L-42"><span class="linenos">42</span></a>
</span><span id="L-43"><a href="#L-43"><span class="linenos">43</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;In a Potential Divider, if resistors R1 and R2 have resistances of $</span><span class="si">{</span><span class="n">r1</span><span class="si">}</span><span class="s2"> </span><span class="se">\\</span><span class="s2">Omega$ and $</span><span class="si">{</span><span class="n">r2</span><span class="si">}</span><span class="s2"> </span><span class="se">\\</span><span class="s2">Omega$ respectively, and the cell has $</span><span class="si">{</span><span class="n">vin</span><span class="si">}</span><span class="s2"> V$ What is the output potential difference across R2?&quot;</span>
</span><span id="L-44"><a href="#L-44"><span class="linenos">44</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="si">{</span><span class="n">vout</span><span class="si">}</span><span class="s2"> V$&quot;</span>
</span><span id="L-45"><a href="#L-45"><span class="linenos">45</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span><span id="L-46"><a href="#L-46"><span class="linenos">46</span></a>
</span><span id="L-47"><a href="#L-47"><span class="linenos">47</span></a><span class="k">def</span><span class="w"> </span><span class="nf">resistivity</span><span class="p">(</span><span class="n">max_diameter_mm</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">max_length_cm</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">max_resistance</span><span class="o">=</span><span class="mf">0.1</span><span class="p">):</span>
</span><span id="L-48"><a href="#L-48"><span class="linenos">48</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Calculate the Resistivity using the equation R = (pL)/A, where R = Resistance, L = length of wire, p = resistivity and A = cross sectional area of wire</span>
</span><span id="L-49"><a href="#L-49"><span class="linenos">49</span></a>
</span><span id="L-50"><a href="#L-50"><span class="linenos">50</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="L-51"><a href="#L-51"><span class="linenos">51</span></a><span class="sd"> | --- | --- |</span>
</span><span id="L-52"><a href="#L-52"><span class="linenos">52</span></a><span class="sd"> | A wire has resistance $30 m\Omega$ when it is $83.64 cm$ long with a diameter of $4.67 mm$. Calculate the resistivity of the wire | $6.14e-07 \Omega m$ |</span>
</span><span id="L-53"><a href="#L-53"><span class="linenos">53</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-54"><a href="#L-54"><span class="linenos">54</span></a> <span class="c1"># This question requires a lot of unit conversions and calculating the area of a circle from diameter</span>
</span><span id="L-55"><a href="#L-55"><span class="linenos">55</span></a> <span class="n">diameter_mm</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_diameter_mm</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># Random diameter in mm</span>
</span><span id="L-56"><a href="#L-56"><span class="linenos">56</span></a> <span class="n">cross_sectional_area</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">pi</span> <span class="o">*</span> <span class="p">(</span><span class="n">diameter_mm</span> <span class="o">/</span> <span class="mi">2000</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span> <span class="c1"># Calculate the cross sectional area using pi r²</span>
</span><span id="L-57"><a href="#L-57"><span class="linenos">57</span></a> <span class="n">length_cm</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_length_cm</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># Random wire length in cm</span>
</span><span id="L-58"><a href="#L-58"><span class="linenos">58</span></a> <span class="n">resistance</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_resistance</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># Random reistance in ohms</span>
</span><span id="L-59"><a href="#L-59"><span class="linenos">59</span></a>
</span><span id="L-60"><a href="#L-60"><span class="linenos">60</span></a> <span class="n">resistivity</span> <span class="o">=</span> <span class="p">(</span><span class="n">resistance</span> <span class="o">*</span> <span class="n">cross_sectional_area</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">length_cm</span> <span class="o">/</span> <span class="mi">100</span><span class="p">)</span>
</span><span id="L-61"><a href="#L-61"><span class="linenos">61</span></a>
</span><span id="L-62"><a href="#L-62"><span class="linenos">62</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;A wire has resistance $</span><span class="si">{</span><span class="n">resistance</span><span class="o">*</span><span class="mi">1000</span><span class="si">}</span><span class="s2"> m</span><span class="se">\\</span><span class="s2">Omega$ when it is $</span><span class="si">{</span><span class="n">length_cm</span><span class="si">}</span><span class="s2"> cm$ long with a diameter of $</span><span class="si">{</span><span class="n">diameter_mm</span><span class="si">}</span><span class="s2"> mm$. Calculate the resistivity of the wire&quot;</span>
</span><span id="L-63"><a href="#L-63"><span class="linenos">63</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="si">{</span><span class="n">resistivity</span><span class="si">:</span><span class="s2">.2e</span><span class="si">}</span><span class="s2"> </span><span class="se">\\</span><span class="s2">Omega m$&quot;</span>
</span><span id="L-64"><a href="#L-64"><span class="linenos">64</span></a>
</span><span id="L-65"><a href="#L-65"><span class="linenos">65</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span><span id="L-66"><a href="#L-66"><span class="linenos">66</span></a>
</span><span id="L-67"><a href="#L-67"><span class="linenos">67</span></a><span class="c1"># Waves</span>
</span><span id="L-68"><a href="#L-68"><span class="linenos">68</span></a><span class="k">def</span><span class="w"> </span><span class="nf">fringe_spacing</span><span class="p">(</span><span class="n">max_screen_distance</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">max_slit_spacing_mm</span><span class="o">=</span><span class="mi">100</span><span class="p">):</span>
</span><span id="L-69"><a href="#L-69"><span class="linenos">69</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Calculate the fringe spacing in a double slit experiment with w=(λD)/s</span>
</span><span id="L-70"><a href="#L-70"><span class="linenos">70</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="L-71"><a href="#L-71"><span class="linenos">71</span></a><span class="sd"> | --- | --- |</span>
</span><span id="L-72"><a href="#L-72"><span class="linenos">72</span></a><span class="sd"> | A laser with a wavelength of $450nm$ is shone through a double slit system to produce an interference pattern on a screen. The screen is $12m$ from the slits and the slits are $0.30mm$ apart. Calculate the spacing between the bright fringes. | Using the equation $\\frac{{\\lambda D}}{{s}}$, we get a fringe spacing of $0.018m$ |</span>
</span><span id="L-73"><a href="#L-73"><span class="linenos">73</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-74"><a href="#L-74"><span class="linenos">74</span></a> <span class="n">wavelength_nm</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">380</span><span class="p">,</span><span class="mi">750</span><span class="p">)</span> <span class="c1"># Random wavelength between violet and red (nm)</span>
</span><span id="L-75"><a href="#L-75"><span class="linenos">75</span></a> <span class="n">screen_distance</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_screen_distance</span><span class="p">)</span> <span class="c1"># Random distance between screen and slits (m)</span>
</span><span id="L-76"><a href="#L-76"><span class="linenos">76</span></a> <span class="n">slit_spacing_mm</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_slit_spacing_mm</span><span class="p">)</span> <span class="c1"># Random slit spacing (mm)</span>
</span><span id="L-77"><a href="#L-77"><span class="linenos">77</span></a>
</span><span id="L-78"><a href="#L-78"><span class="linenos">78</span></a> <span class="n">fringe_spacing</span> <span class="o">=</span> <span class="nb">round</span><span class="p">((((</span><span class="n">wavelength_nm</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**-</span><span class="mi">9</span><span class="p">)</span> <span class="o">*</span> <span class="n">screen_distance</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">slit_spacing_mm</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**-</span><span class="mi">3</span><span class="p">)),</span><span class="mi">5</span><span class="p">)</span>
</span><span id="L-79"><a href="#L-79"><span class="linenos">79</span></a>
</span><span id="L-80"><a href="#L-80"><span class="linenos">80</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;A laser with a wavelength of $</span><span class="si">{</span><span class="n">wavelength_nm</span><span class="si">}</span><span class="s2">nm$ is shone through a double slit system to produce an interference pattern on a screen. The screen is $</span><span class="si">{</span><span class="n">screen_distance</span><span class="si">}</span><span class="s2">m$ from the slits and the slits are $</span><span class="si">{</span><span class="n">slit_spacing_mm</span><span class="si">}</span><span class="s2">mm$ apart. Calculate the spacing between the bright fringes.&quot;</span>
</span><span id="L-81"><a href="#L-81"><span class="linenos">81</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Using the equation $</span><span class="se">\\</span><span class="s2">frac</span><span class="se">{{\\</span><span class="s2">lambda D</span><span class="se">}}{{</span><span class="s2">s</span><span class="se">}}</span><span class="s2">$, we get a fringe spacing of $</span><span class="si">{</span><span class="n">fringe_spacing</span><span class="si">}</span><span class="s2">m$&quot;</span>
</span><span id="L-82"><a href="#L-82"><span class="linenos">82</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
<div class="pdoc-code codehilite"><pre><span></span><span id="L-1"><a href="#L-1"><span class="linenos"> 1</span></a><span class="kn">import</span><span class="w"> </span><span class="nn">random</span>
</span><span id="L-2"><a href="#L-2"><span class="linenos"> 2</span></a><span class="kn">import</span><span class="w"> </span><span class="nn">math</span>
</span><span id="L-3"><a href="#L-3"><span class="linenos"> 3</span></a>
</span><span id="L-4"><a href="#L-4"><span class="linenos"> 4</span></a><span class="c1"># Mechanics</span>
</span><span id="L-5"><a href="#L-5"><span class="linenos"> 5</span></a><span class="k">def</span><span class="w"> </span><span class="nf">kinetic_energy</span><span class="p">(</span><span class="n">max_mass</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">max_vel</span><span class="o">=</span><span class="mi">100</span><span class="p">):</span>
</span><span id="L-6"><a href="#L-6"><span class="linenos"> 6</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Kinetic Energy calculation using Ek = 0.5 * m * v^2</span>
</span><span id="L-7"><a href="#L-7"><span class="linenos"> 7</span></a>
</span><span id="L-8"><a href="#L-8"><span class="linenos"> 8</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="L-9"><a href="#L-9"><span class="linenos"> 9</span></a><span class="sd"> | --- | --- |</span>
</span><span id="L-10"><a href="#L-10"><span class="linenos"> 10</span></a><span class="sd"> | What is the kinetic energy of an object of mass $5 kg$ and velocity $10 m/s$ | $250 J$ |</span>
</span><span id="L-11"><a href="#L-11"><span class="linenos"> 11</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-12"><a href="#L-12"><span class="linenos"> 12</span></a> <span class="n">velocity</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">max_vel</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
</span><span id="L-13"><a href="#L-13"><span class="linenos"> 13</span></a> <span class="n">mass</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">max_mass</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
</span><span id="L-14"><a href="#L-14"><span class="linenos"> 14</span></a> <span class="n">kinetic_energy</span> <span class="o">=</span> <span class="nb">round</span><span class="p">((</span><span class="mf">0.5</span> <span class="o">*</span> <span class="n">mass</span> <span class="o">*</span> <span class="n">velocity</span><span class="o">**</span><span class="mi">2</span><span class="p">),</span> <span class="mi">2</span><span class="p">)</span>
</span><span id="L-15"><a href="#L-15"><span class="linenos"> 15</span></a>
</span><span id="L-16"><a href="#L-16"><span class="linenos"> 16</span></a>
</span><span id="L-17"><a href="#L-17"><span class="linenos"> 17</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;What is the kinetic energy of an object of mass $</span><span class="si">{</span><span class="n">mass</span><span class="si">}</span><span class="s2"> kg$ and velocity $</span><span class="si">{</span><span class="n">velocity</span><span class="si">}</span><span class="s2"> m/s$?&quot;</span>
</span><span id="L-18"><a href="#L-18"><span class="linenos"> 18</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s1">&#39;$</span><span class="si">{</span><span class="n">kinetic_energy</span><span class="si">}</span><span class="s1"> J$&#39;</span>
</span><span id="L-19"><a href="#L-19"><span class="linenos"> 19</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span><span id="L-20"><a href="#L-20"><span class="linenos"> 20</span></a>
</span><span id="L-21"><a href="#L-21"><span class="linenos"> 21</span></a>
</span><span id="L-22"><a href="#L-22"><span class="linenos"> 22</span></a><span class="c1"># Electricity &amp; Electric Fields</span>
</span><span id="L-23"><a href="#L-23"><span class="linenos"> 23</span></a><span class="k">def</span><span class="w"> </span><span class="nf">potential_dividers</span><span class="p">(</span><span class="n">max_vin</span><span class="o">=</span><span class="mi">50</span><span class="p">,</span> <span class="n">max_resistance</span><span class="o">=</span><span class="mi">500</span><span class="p">):</span>
</span><span id="L-24"><a href="#L-24"><span class="linenos"> 24</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Potential Divider question using Vout = (Vin * R2) / (R2 + R1)</span>
</span><span id="L-25"><a href="#L-25"><span class="linenos"> 25</span></a>
</span><span id="L-26"><a href="#L-26"><span class="linenos"> 26</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="L-27"><a href="#L-27"><span class="linenos"> 27</span></a><span class="sd"> | --- | --- |</span>
</span><span id="L-28"><a href="#L-28"><span class="linenos"> 28</span></a><span class="sd"> | In a Potential Divider, if resistors R1 and R2 have resistances of $100 \Omega$ and $50 \Omega$ respectively, and the cell has $12 V$ What is the output potential difference across R2? | $4 V$ |</span>
</span><span id="L-29"><a href="#L-29"><span class="linenos"> 29</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-30"><a href="#L-30"><span class="linenos"> 30</span></a><span class="w"> </span><span class="sd">&#39;&#39;&#39;</span>
</span><span id="L-31"><a href="#L-31"><span class="linenos"> 31</span></a><span class="sd"> This is what a potential divider circuit looks like:</span>
</span><span id="L-32"><a href="#L-32"><span class="linenos"> 32</span></a><span class="sd"> ------</span>
</span><span id="L-33"><a href="#L-33"><span class="linenos"> 33</span></a><span class="sd"> | R1</span>
</span><span id="L-34"><a href="#L-34"><span class="linenos"> 34</span></a><span class="sd"> Vi = |----o</span>
</span><span id="L-35"><a href="#L-35"><span class="linenos"> 35</span></a><span class="sd"> | R2 Vout</span>
</span><span id="L-36"><a href="#L-36"><span class="linenos"> 36</span></a><span class="sd"> |____|____o</span>
</span><span id="L-37"><a href="#L-37"><span class="linenos"> 37</span></a><span class="sd"> &#39;&#39;&#39;</span>
</span><span id="L-38"><a href="#L-38"><span class="linenos"> 38</span></a> <span class="n">vin</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_vin</span><span class="p">)</span> <span class="c1"># Voltage input of cell</span>
</span><span id="L-39"><a href="#L-39"><span class="linenos"> 39</span></a> <span class="n">r1</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_resistance</span><span class="p">)</span> <span class="c1"># Resistance of R1</span>
</span><span id="L-40"><a href="#L-40"><span class="linenos"> 40</span></a> <span class="n">r2</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_resistance</span><span class="p">)</span> <span class="c1"># Resistance of R2</span>
</span><span id="L-41"><a href="#L-41"><span class="linenos"> 41</span></a> <span class="n">vout</span> <span class="o">=</span> <span class="nb">round</span><span class="p">((</span><span class="n">vin</span> <span class="o">*</span> <span class="n">r2</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">r1</span> <span class="o">+</span> <span class="n">r2</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># Voltage output across R2</span>
</span><span id="L-42"><a href="#L-42"><span class="linenos"> 42</span></a>
</span><span id="L-43"><a href="#L-43"><span class="linenos"> 43</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;In a Potential Divider, if resistors R1 and R2 have resistances of $</span><span class="si">{</span><span class="n">r1</span><span class="si">}</span><span class="s2"> </span><span class="se">\\</span><span class="s2">Omega$ and $</span><span class="si">{</span><span class="n">r2</span><span class="si">}</span><span class="s2"> </span><span class="se">\\</span><span class="s2">Omega$ respectively, and the cell has $</span><span class="si">{</span><span class="n">vin</span><span class="si">}</span><span class="s2"> V$ What is the output potential difference across R2?&quot;</span>
</span><span id="L-44"><a href="#L-44"><span class="linenos"> 44</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="si">{</span><span class="n">vout</span><span class="si">}</span><span class="s2"> V$&quot;</span>
</span><span id="L-45"><a href="#L-45"><span class="linenos"> 45</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span><span id="L-46"><a href="#L-46"><span class="linenos"> 46</span></a>
</span><span id="L-47"><a href="#L-47"><span class="linenos"> 47</span></a><span class="k">def</span><span class="w"> </span><span class="nf">resistivity</span><span class="p">(</span><span class="n">max_diameter_mm</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">max_length_cm</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">max_resistance</span><span class="o">=</span><span class="mf">0.1</span><span class="p">):</span>
</span><span id="L-48"><a href="#L-48"><span class="linenos"> 48</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Calculate the Resistivity using the equation R = (pL)/A, where R = Resistance, L = length of wire, p = resistivity and A = cross sectional area of wire</span>
</span><span id="L-49"><a href="#L-49"><span class="linenos"> 49</span></a>
</span><span id="L-50"><a href="#L-50"><span class="linenos"> 50</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="L-51"><a href="#L-51"><span class="linenos"> 51</span></a><span class="sd"> | --- | --- |</span>
</span><span id="L-52"><a href="#L-52"><span class="linenos"> 52</span></a><span class="sd"> | A wire has resistance $30 m\Omega$ when it is $83.64 cm$ long with a diameter of $4.67 mm$. Calculate the resistivity of the wire | $6.14e-07 \Omega m$ |</span>
</span><span id="L-53"><a href="#L-53"><span class="linenos"> 53</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-54"><a href="#L-54"><span class="linenos"> 54</span></a> <span class="c1"># This question requires a lot of unit conversions and calculating the area of a circle from diameter</span>
</span><span id="L-55"><a href="#L-55"><span class="linenos"> 55</span></a> <span class="n">diameter_mm</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_diameter_mm</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># Random diameter in mm</span>
</span><span id="L-56"><a href="#L-56"><span class="linenos"> 56</span></a> <span class="n">cross_sectional_area</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">pi</span> <span class="o">*</span> <span class="p">(</span><span class="n">diameter_mm</span> <span class="o">/</span> <span class="mi">2000</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span> <span class="c1"># Calculate the cross sectional area using pi r²</span>
</span><span id="L-57"><a href="#L-57"><span class="linenos"> 57</span></a> <span class="n">length_cm</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_length_cm</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># Random wire length in cm</span>
</span><span id="L-58"><a href="#L-58"><span class="linenos"> 58</span></a> <span class="n">resistance</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_resistance</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># Random reistance in ohms</span>
</span><span id="L-59"><a href="#L-59"><span class="linenos"> 59</span></a>
</span><span id="L-60"><a href="#L-60"><span class="linenos"> 60</span></a> <span class="n">resistivity</span> <span class="o">=</span> <span class="p">(</span><span class="n">resistance</span> <span class="o">*</span> <span class="n">cross_sectional_area</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">length_cm</span> <span class="o">/</span> <span class="mi">100</span><span class="p">)</span>
</span><span id="L-61"><a href="#L-61"><span class="linenos"> 61</span></a>
</span><span id="L-62"><a href="#L-62"><span class="linenos"> 62</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;A wire has resistance $</span><span class="si">{</span><span class="n">resistance</span><span class="o">*</span><span class="mi">1000</span><span class="si">}</span><span class="s2"> m</span><span class="se">\\</span><span class="s2">Omega$ when it is $</span><span class="si">{</span><span class="n">length_cm</span><span class="si">}</span><span class="s2"> cm$ long with a diameter of $</span><span class="si">{</span><span class="n">diameter_mm</span><span class="si">}</span><span class="s2"> mm$. Calculate the resistivity of the wire&quot;</span>
</span><span id="L-63"><a href="#L-63"><span class="linenos"> 63</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="si">{</span><span class="n">resistivity</span><span class="si">:</span><span class="s2">.2e</span><span class="si">}</span><span class="s2"> </span><span class="se">\\</span><span class="s2">Omega m$&quot;</span>
</span><span id="L-64"><a href="#L-64"><span class="linenos"> 64</span></a>
</span><span id="L-65"><a href="#L-65"><span class="linenos"> 65</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span><span id="L-66"><a href="#L-66"><span class="linenos"> 66</span></a>
</span><span id="L-67"><a href="#L-67"><span class="linenos"> 67</span></a><span class="k">def</span><span class="w"> </span><span class="nf">electric_field_strength_two_points</span><span class="p">(</span><span class="n">max_seperation_cm</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">max_charge_uC</span><span class="o">=</span><span class="mi">1000</span><span class="p">):</span>
</span><span id="L-68"><a href="#L-68"><span class="linenos"> 68</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Calculate the total electric field strength at point P with given points A and B, using the equation kQ/r²</span>
</span><span id="L-69"><a href="#L-69"><span class="linenos"> 69</span></a>
</span><span id="L-70"><a href="#L-70"><span class="linenos"> 70</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="L-71"><a href="#L-71"><span class="linenos"> 71</span></a><span class="sd"> | --- | --- |</span>
</span><span id="L-72"><a href="#L-72"><span class="linenos"> 72</span></a><span class="sd"> | Charges A and B and point P are arranged like this: B &lt;-- 7 cm --&gt; P &lt;-- 79 cm --&gt; A, Where A and B have charges of -56 µC and -410 µC, What is the electric field strength at point P? | $-751417824 NC^{-1}$ (to the right) |</span>
</span><span id="L-73"><a href="#L-73"><span class="linenos"> 73</span></a>
</span><span id="L-74"><a href="#L-74"><span class="linenos"> 74</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-75"><a href="#L-75"><span class="linenos"> 75</span></a> <span class="n">a_charge</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="o">-</span><span class="n">max_charge_uC</span><span class="p">,</span><span class="n">max_charge_uC</span><span class="p">)</span>
</span><span id="L-76"><a href="#L-76"><span class="linenos"> 76</span></a> <span class="n">b_charge</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="o">-</span><span class="n">max_charge_uC</span><span class="p">,</span><span class="n">max_charge_uC</span><span class="p">)</span>
</span><span id="L-77"><a href="#L-77"><span class="linenos"> 77</span></a> <span class="n">arrangement</span> <span class="o">=</span> <span class="p">[[</span><span class="s1">&#39;P&#39;</span><span class="p">],[</span><span class="s1">&#39;A&#39;</span><span class="p">,</span><span class="n">a_charge</span><span class="p">],[</span><span class="s1">&#39;B&#39;</span><span class="p">,</span><span class="n">b_charge</span><span class="p">]]</span> <span class="c1"># Arrangement of charge A, B and the point of focus</span>
</span><span id="L-78"><a href="#L-78"><span class="linenos"> 78</span></a> <span class="n">random</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">arrangement</span><span class="p">)</span>
</span><span id="L-79"><a href="#L-79"><span class="linenos"> 79</span></a> <span class="n">seperations</span> <span class="o">=</span> <span class="p">[</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">max_seperation_cm</span><span class="p">),</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">max_seperation_cm</span><span class="p">)]</span>
</span><span id="L-80"><a href="#L-80"><span class="linenos"> 80</span></a> <span class="n">total_efs</span> <span class="o">=</span> <span class="mi">0</span>
</span><span id="L-81"><a href="#L-81"><span class="linenos"> 81</span></a> <span class="c1"># Work out how far A and B are from P (vector)</span>
</span><span id="L-82"><a href="#L-82"><span class="linenos"> 82</span></a> <span class="k">if</span> <span class="n">arrangement</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;P&#39;</span><span class="p">:</span>
</span><span id="L-83"><a href="#L-83"><span class="linenos"> 83</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">seperations</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
</span><span id="L-84"><a href="#L-84"><span class="linenos"> 84</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">seperations</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">+</span><span class="n">seperations</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
</span><span id="L-85"><a href="#L-85"><span class="linenos"> 85</span></a> <span class="k">elif</span> <span class="n">arrangement</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;P&#39;</span><span class="p">:</span>
</span><span id="L-86"><a href="#L-86"><span class="linenos"> 86</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="o">-</span><span class="n">seperations</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
</span><span id="L-87"><a href="#L-87"><span class="linenos"> 87</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">seperations</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
</span><span id="L-88"><a href="#L-88"><span class="linenos"> 88</span></a> <span class="k">else</span><span class="p">:</span>
</span><span id="L-89"><a href="#L-89"><span class="linenos"> 89</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="o">-</span><span class="p">(</span><span class="n">seperations</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">+</span><span class="n">seperations</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span>
</span><span id="L-90"><a href="#L-90"><span class="linenos"> 90</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="o">-</span><span class="n">seperations</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
</span><span id="L-91"><a href="#L-91"><span class="linenos"> 91</span></a>
</span><span id="L-92"><a href="#L-92"><span class="linenos"> 92</span></a> <span class="c1"># Work out the EFS at point P caused by A and B seperatley, then sum them together in `total_efs`</span>
</span><span id="L-93"><a href="#L-93"><span class="linenos"> 93</span></a> <span class="k">for</span> <span class="n">point</span> <span class="ow">in</span> <span class="n">arrangement</span><span class="p">:</span>
</span><span id="L-94"><a href="#L-94"><span class="linenos"> 94</span></a> <span class="k">if</span> <span class="n">point</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;P&#39;</span><span class="p">:</span>
</span><span id="L-95"><a href="#L-95"><span class="linenos"> 95</span></a> <span class="k">continue</span>
</span><span id="L-96"><a href="#L-96"><span class="linenos"> 96</span></a> <span class="k">else</span><span class="p">:</span>
</span><span id="L-97"><a href="#L-97"><span class="linenos"> 97</span></a> <span class="n">efs</span> <span class="o">=</span> <span class="p">((</span><span class="mf">8.99</span><span class="o">*</span><span class="mi">10</span><span class="o">**</span><span class="mi">9</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">point</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">10</span><span class="o">**-</span><span class="mi">6</span><span class="p">))</span><span class="o">/</span><span class="p">((</span><span class="n">point</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">/</span><span class="mi">100</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># efs = kQ/r²</span>
</span><span id="L-98"><a href="#L-98"><span class="linenos"> 98</span></a> <span class="k">if</span> <span class="n">point</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span> <span class="n">efs</span> <span class="o">=</span> <span class="o">-</span><span class="n">efs</span>
</span><span id="L-99"><a href="#L-99"><span class="linenos"> 99</span></a> <span class="n">point</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">efs</span><span class="p">)</span>
</span><span id="L-100"><a href="#L-100"><span class="linenos">100</span></a> <span class="n">total_efs</span> <span class="o">+=</span> <span class="n">efs</span>
</span><span id="L-101"><a href="#L-101"><span class="linenos">101</span></a>
</span><span id="L-102"><a href="#L-102"><span class="linenos">102</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Charges A and B and point P are arranged like this:</span><span class="se">\n</span><span class="si">{</span><span class="n">arrangement</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s2"> &lt;-- $</span><span class="si">{</span><span class="n">seperations</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s2">$ cm --&gt; </span><span class="si">{</span><span class="n">arrangement</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s2"> &lt;-- $</span><span class="si">{</span><span class="n">seperations</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="si">}</span><span class="s2">$ cm --&gt; </span><span class="si">{</span><span class="n">arrangement</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="se">\n</span><span class="s2">Where A and B have charges of $</span><span class="si">{</span><span class="n">a_charge</span><span class="si">}</span><span class="s2">$ µC and $</span><span class="si">{</span><span class="n">b_charge</span><span class="si">}</span><span class="s2">$ µC</span><span class="se">\n</span><span class="s2">What is the electric field strength at point P?&quot;</span>
</span><span id="L-103"><a href="#L-103"><span class="linenos">103</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="si">{</span><span class="nb">round</span><span class="p">(</span><span class="n">total_efs</span><span class="p">)</span><span class="si">}</span><span class="s2"> NC^</span><span class="si">{</span><span class="o">-</span><span class="mi">1</span><span class="si">}</span><span class="s2">$ (to the right)&quot;</span>
</span><span id="L-104"><a href="#L-104"><span class="linenos">104</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span><span id="L-105"><a href="#L-105"><span class="linenos">105</span></a>
</span><span id="L-106"><a href="#L-106"><span class="linenos">106</span></a>
</span><span id="L-107"><a href="#L-107"><span class="linenos">107</span></a><span class="c1"># Waves</span>
</span><span id="L-108"><a href="#L-108"><span class="linenos">108</span></a><span class="k">def</span><span class="w"> </span><span class="nf">fringe_spacing</span><span class="p">(</span><span class="n">max_screen_distance</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">max_slit_spacing_mm</span><span class="o">=</span><span class="mi">100</span><span class="p">):</span>
</span><span id="L-109"><a href="#L-109"><span class="linenos">109</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Calculate the fringe spacing in a double slit experiment with w=(λD)/s</span>
</span><span id="L-110"><a href="#L-110"><span class="linenos">110</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="L-111"><a href="#L-111"><span class="linenos">111</span></a><span class="sd"> | --- | --- |</span>
</span><span id="L-112"><a href="#L-112"><span class="linenos">112</span></a><span class="sd"> | A laser with a wavelength of $450nm$ is shone through a double slit system to produce an interference pattern on a screen. The screen is $12m$ from the slits and the slits are $0.30mm$ apart. Calculate the spacing between the bright fringes. | Using the equation $\\frac{{\\lambda D}}{{s}}$, we get a fringe spacing of $0.018m$ |</span>
</span><span id="L-113"><a href="#L-113"><span class="linenos">113</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-114"><a href="#L-114"><span class="linenos">114</span></a> <span class="n">wavelength_nm</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">380</span><span class="p">,</span><span class="mi">750</span><span class="p">)</span> <span class="c1"># Random wavelength between violet and red (nm)</span>
</span><span id="L-115"><a href="#L-115"><span class="linenos">115</span></a> <span class="n">screen_distance</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_screen_distance</span><span class="p">)</span> <span class="c1"># Random distance between screen and slits (m)</span>
</span><span id="L-116"><a href="#L-116"><span class="linenos">116</span></a> <span class="n">slit_spacing_mm</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_slit_spacing_mm</span><span class="p">)</span> <span class="c1"># Random slit spacing (mm)</span>
</span><span id="L-117"><a href="#L-117"><span class="linenos">117</span></a>
</span><span id="L-118"><a href="#L-118"><span class="linenos">118</span></a> <span class="n">fringe_spacing</span> <span class="o">=</span> <span class="nb">round</span><span class="p">((((</span><span class="n">wavelength_nm</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**-</span><span class="mi">9</span><span class="p">)</span> <span class="o">*</span> <span class="n">screen_distance</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">slit_spacing_mm</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**-</span><span class="mi">3</span><span class="p">)),</span><span class="mi">5</span><span class="p">)</span>
</span><span id="L-119"><a href="#L-119"><span class="linenos">119</span></a>
</span><span id="L-120"><a href="#L-120"><span class="linenos">120</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;A laser with a wavelength of $</span><span class="si">{</span><span class="n">wavelength_nm</span><span class="si">}</span><span class="s2">nm$ is shone through a double slit system to produce an interference pattern on a screen. The screen is $</span><span class="si">{</span><span class="n">screen_distance</span><span class="si">}</span><span class="s2">m$ from the slits and the slits are $</span><span class="si">{</span><span class="n">slit_spacing_mm</span><span class="si">}</span><span class="s2">mm$ apart. Calculate the spacing between the bright fringes.&quot;</span>
</span><span id="L-121"><a href="#L-121"><span class="linenos">121</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Using the equation $</span><span class="se">\\</span><span class="s2">frac</span><span class="se">{{\\</span><span class="s2">lambda D</span><span class="se">}}{{</span><span class="s2">s</span><span class="se">}}</span><span class="s2">$, we get a fringe spacing of $</span><span class="si">{</span><span class="n">fringe_spacing</span><span class="si">}</span><span class="s2">m$&quot;</span>
</span><span id="L-122"><a href="#L-122"><span class="linenos">122</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span><span id="L-123"><a href="#L-123"><span class="linenos">123</span></a>
</span><span id="L-124"><a href="#L-124"><span class="linenos">124</span></a><span class="k">def</span><span class="w"> </span><span class="nf">diffraction_grating_wavelength</span><span class="p">(</span><span class="n">min_slits_per_mm</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">max_slits_per_mm</span><span class="o">=</span><span class="mi">500</span><span class="p">,</span> <span class="n">max_order_number</span><span class="o">=</span><span class="mi">5</span><span class="p">):</span>
</span><span id="L-125"><a href="#L-125"><span class="linenos">125</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Calculate the wavelength when given the number of slits per mm, order number and angle of order using the equation nλ = dsinθ</span>
</span><span id="L-126"><a href="#L-126"><span class="linenos">126</span></a>
</span><span id="L-127"><a href="#L-127"><span class="linenos">127</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="L-128"><a href="#L-128"><span class="linenos">128</span></a><span class="sd"> | --- | --- |</span>
</span><span id="L-129"><a href="#L-129"><span class="linenos">129</span></a><span class="sd"> | A laser is shone through a diffraction grating which has $293$ lines per mm, the fringe of order number $2$ is at an angle of $0.39$ rad. Calculate the wavelength of the light | $\lambda = 6.487856913364529e-07m = 649nm |</span>
</span><span id="L-130"><a href="#L-130"><span class="linenos">130</span></a>
</span><span id="L-131"><a href="#L-131"><span class="linenos">131</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-132"><a href="#L-132"><span class="linenos">132</span></a> <span class="n">slits_per_mm</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="n">min_slits_per_mm</span><span class="p">,</span> <span class="n">max_slits_per_mm</span><span class="p">)</span>
</span><span id="L-133"><a href="#L-133"><span class="linenos">133</span></a> <span class="n">slit_spacing</span> <span class="o">=</span> <span class="mi">1</span><span class="o">/</span><span class="p">(</span><span class="n">slits_per_mm</span> <span class="o">*</span> <span class="mi">1000</span><span class="p">)</span>
</span><span id="L-134"><a href="#L-134"><span class="linenos">134</span></a> <span class="n">order_number</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">max_order_number</span><span class="p">)</span>
</span><span id="L-135"><a href="#L-135"><span class="linenos">135</span></a> <span class="n">angle_of_order</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mf">0.2</span><span class="p">,</span> <span class="p">(</span><span class="n">math</span><span class="o">.</span><span class="n">pi</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span><span class="o">-</span><span class="mf">0.2</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
</span><span id="L-136"><a href="#L-136"><span class="linenos">136</span></a> <span class="n">wavelength</span> <span class="o">=</span> <span class="p">((</span><span class="n">slit_spacing</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">angle_of_order</span><span class="p">))</span> <span class="o">/</span> <span class="n">order_number</span><span class="p">)</span>
</span><span id="L-137"><a href="#L-137"><span class="linenos">137</span></a>
</span><span id="L-138"><a href="#L-138"><span class="linenos">138</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;A laser is shone through a diffraction grating which has $</span><span class="si">{</span><span class="n">slits_per_mm</span><span class="si">}</span><span class="s2">$ lines per mm, the fringe of order number $</span><span class="si">{</span><span class="n">order_number</span><span class="si">}</span><span class="s2">$ is at an angle of $</span><span class="si">{</span><span class="n">angle_of_order</span><span class="si">}</span><span class="s2">$ rad. Calculate the wavelength of the light&quot;</span>
</span><span id="L-139"><a href="#L-139"><span class="linenos">139</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="se">\\</span><span class="s2">lambda = </span><span class="si">{</span><span class="n">wavelength</span><span class="si">}</span><span class="s2">m = </span><span class="si">{</span><span class="nb">round</span><span class="p">(</span><span class="n">wavelength</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">10</span><span class="o">**-</span><span class="mi">9</span><span class="p">)</span><span class="si">}</span><span class="s2">nm$&quot;</span>
</span><span id="L-140"><a href="#L-140"><span class="linenos">140</span></a>
</span><span id="L-141"><a href="#L-141"><span class="linenos">141</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span></pre></div>
@@ -329,6 +394,78 @@
</div>
</section>
<section id="electric_field_strength_two_points">
<input id="electric_field_strength_two_points-view-source" class="view-source-toggle-state" type="checkbox" aria-hidden="true" tabindex="-1">
<div class="attr function">
<span class="def">def</span>
<span class="name">electric_field_strength_two_points</span><span class="signature pdoc-code condensed">(<span class="param"><span class="n">max_seperation_cm</span><span class="o">=</span><span class="mi">100</span>, </span><span class="param"><span class="n">max_charge_uC</span><span class="o">=</span><span class="mi">1000</span></span><span class="return-annotation">):</span></span>
<label class="view-source-button" for="electric_field_strength_two_points-view-source"><span>View Source</span></label>
</div>
<a class="headerlink" href="#electric_field_strength_two_points"></a>
<div class="pdoc-code codehilite"><pre><span></span><span id="electric_field_strength_two_points-68"><a href="#electric_field_strength_two_points-68"><span class="linenos"> 68</span></a><span class="k">def</span><span class="w"> </span><span class="nf">electric_field_strength_two_points</span><span class="p">(</span><span class="n">max_seperation_cm</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">max_charge_uC</span><span class="o">=</span><span class="mi">1000</span><span class="p">):</span>
</span><span id="electric_field_strength_two_points-69"><a href="#electric_field_strength_two_points-69"><span class="linenos"> 69</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Calculate the total electric field strength at point P with given points A and B, using the equation kQ/r²</span>
</span><span id="electric_field_strength_two_points-70"><a href="#electric_field_strength_two_points-70"><span class="linenos"> 70</span></a>
</span><span id="electric_field_strength_two_points-71"><a href="#electric_field_strength_two_points-71"><span class="linenos"> 71</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="electric_field_strength_two_points-72"><a href="#electric_field_strength_two_points-72"><span class="linenos"> 72</span></a><span class="sd"> | --- | --- |</span>
</span><span id="electric_field_strength_two_points-73"><a href="#electric_field_strength_two_points-73"><span class="linenos"> 73</span></a><span class="sd"> | Charges A and B and point P are arranged like this: B &lt;-- 7 cm --&gt; P &lt;-- 79 cm --&gt; A, Where A and B have charges of -56 µC and -410 µC, What is the electric field strength at point P? | $-751417824 NC^{-1}$ (to the right) |</span>
</span><span id="electric_field_strength_two_points-74"><a href="#electric_field_strength_two_points-74"><span class="linenos"> 74</span></a>
</span><span id="electric_field_strength_two_points-75"><a href="#electric_field_strength_two_points-75"><span class="linenos"> 75</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="electric_field_strength_two_points-76"><a href="#electric_field_strength_two_points-76"><span class="linenos"> 76</span></a> <span class="n">a_charge</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="o">-</span><span class="n">max_charge_uC</span><span class="p">,</span><span class="n">max_charge_uC</span><span class="p">)</span>
</span><span id="electric_field_strength_two_points-77"><a href="#electric_field_strength_two_points-77"><span class="linenos"> 77</span></a> <span class="n">b_charge</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="o">-</span><span class="n">max_charge_uC</span><span class="p">,</span><span class="n">max_charge_uC</span><span class="p">)</span>
</span><span id="electric_field_strength_two_points-78"><a href="#electric_field_strength_two_points-78"><span class="linenos"> 78</span></a> <span class="n">arrangement</span> <span class="o">=</span> <span class="p">[[</span><span class="s1">&#39;P&#39;</span><span class="p">],[</span><span class="s1">&#39;A&#39;</span><span class="p">,</span><span class="n">a_charge</span><span class="p">],[</span><span class="s1">&#39;B&#39;</span><span class="p">,</span><span class="n">b_charge</span><span class="p">]]</span> <span class="c1"># Arrangement of charge A, B and the point of focus</span>
</span><span id="electric_field_strength_two_points-79"><a href="#electric_field_strength_two_points-79"><span class="linenos"> 79</span></a> <span class="n">random</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">arrangement</span><span class="p">)</span>
</span><span id="electric_field_strength_two_points-80"><a href="#electric_field_strength_two_points-80"><span class="linenos"> 80</span></a> <span class="n">seperations</span> <span class="o">=</span> <span class="p">[</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">max_seperation_cm</span><span class="p">),</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">max_seperation_cm</span><span class="p">)]</span>
</span><span id="electric_field_strength_two_points-81"><a href="#electric_field_strength_two_points-81"><span class="linenos"> 81</span></a> <span class="n">total_efs</span> <span class="o">=</span> <span class="mi">0</span>
</span><span id="electric_field_strength_two_points-82"><a href="#electric_field_strength_two_points-82"><span class="linenos"> 82</span></a> <span class="c1"># Work out how far A and B are from P (vector)</span>
</span><span id="electric_field_strength_two_points-83"><a href="#electric_field_strength_two_points-83"><span class="linenos"> 83</span></a> <span class="k">if</span> <span class="n">arrangement</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;P&#39;</span><span class="p">:</span>
</span><span id="electric_field_strength_two_points-84"><a href="#electric_field_strength_two_points-84"><span class="linenos"> 84</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">seperations</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
</span><span id="electric_field_strength_two_points-85"><a href="#electric_field_strength_two_points-85"><span class="linenos"> 85</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">seperations</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">+</span><span class="n">seperations</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
</span><span id="electric_field_strength_two_points-86"><a href="#electric_field_strength_two_points-86"><span class="linenos"> 86</span></a> <span class="k">elif</span> <span class="n">arrangement</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;P&#39;</span><span class="p">:</span>
</span><span id="electric_field_strength_two_points-87"><a href="#electric_field_strength_two_points-87"><span class="linenos"> 87</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="o">-</span><span class="n">seperations</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
</span><span id="electric_field_strength_two_points-88"><a href="#electric_field_strength_two_points-88"><span class="linenos"> 88</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">seperations</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
</span><span id="electric_field_strength_two_points-89"><a href="#electric_field_strength_two_points-89"><span class="linenos"> 89</span></a> <span class="k">else</span><span class="p">:</span>
</span><span id="electric_field_strength_two_points-90"><a href="#electric_field_strength_two_points-90"><span class="linenos"> 90</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="o">-</span><span class="p">(</span><span class="n">seperations</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">+</span><span class="n">seperations</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span>
</span><span id="electric_field_strength_two_points-91"><a href="#electric_field_strength_two_points-91"><span class="linenos"> 91</span></a> <span class="n">arrangement</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="o">-</span><span class="n">seperations</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
</span><span id="electric_field_strength_two_points-92"><a href="#electric_field_strength_two_points-92"><span class="linenos"> 92</span></a>
</span><span id="electric_field_strength_two_points-93"><a href="#electric_field_strength_two_points-93"><span class="linenos"> 93</span></a> <span class="c1"># Work out the EFS at point P caused by A and B seperatley, then sum them together in `total_efs`</span>
</span><span id="electric_field_strength_two_points-94"><a href="#electric_field_strength_two_points-94"><span class="linenos"> 94</span></a> <span class="k">for</span> <span class="n">point</span> <span class="ow">in</span> <span class="n">arrangement</span><span class="p">:</span>
</span><span id="electric_field_strength_two_points-95"><a href="#electric_field_strength_two_points-95"><span class="linenos"> 95</span></a> <span class="k">if</span> <span class="n">point</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;P&#39;</span><span class="p">:</span>
</span><span id="electric_field_strength_two_points-96"><a href="#electric_field_strength_two_points-96"><span class="linenos"> 96</span></a> <span class="k">continue</span>
</span><span id="electric_field_strength_two_points-97"><a href="#electric_field_strength_two_points-97"><span class="linenos"> 97</span></a> <span class="k">else</span><span class="p">:</span>
</span><span id="electric_field_strength_two_points-98"><a href="#electric_field_strength_two_points-98"><span class="linenos"> 98</span></a> <span class="n">efs</span> <span class="o">=</span> <span class="p">((</span><span class="mf">8.99</span><span class="o">*</span><span class="mi">10</span><span class="o">**</span><span class="mi">9</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">point</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="mi">10</span><span class="o">**-</span><span class="mi">6</span><span class="p">))</span><span class="o">/</span><span class="p">((</span><span class="n">point</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">/</span><span class="mi">100</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># efs = kQ/r²</span>
</span><span id="electric_field_strength_two_points-99"><a href="#electric_field_strength_two_points-99"><span class="linenos"> 99</span></a> <span class="k">if</span> <span class="n">point</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span> <span class="n">efs</span> <span class="o">=</span> <span class="o">-</span><span class="n">efs</span>
</span><span id="electric_field_strength_two_points-100"><a href="#electric_field_strength_two_points-100"><span class="linenos">100</span></a> <span class="n">point</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">efs</span><span class="p">)</span>
</span><span id="electric_field_strength_two_points-101"><a href="#electric_field_strength_two_points-101"><span class="linenos">101</span></a> <span class="n">total_efs</span> <span class="o">+=</span> <span class="n">efs</span>
</span><span id="electric_field_strength_two_points-102"><a href="#electric_field_strength_two_points-102"><span class="linenos">102</span></a>
</span><span id="electric_field_strength_two_points-103"><a href="#electric_field_strength_two_points-103"><span class="linenos">103</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Charges A and B and point P are arranged like this:</span><span class="se">\n</span><span class="si">{</span><span class="n">arrangement</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s2"> &lt;-- $</span><span class="si">{</span><span class="n">seperations</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s2">$ cm --&gt; </span><span class="si">{</span><span class="n">arrangement</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s2"> &lt;-- $</span><span class="si">{</span><span class="n">seperations</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="si">}</span><span class="s2">$ cm --&gt; </span><span class="si">{</span><span class="n">arrangement</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="se">\n</span><span class="s2">Where A and B have charges of $</span><span class="si">{</span><span class="n">a_charge</span><span class="si">}</span><span class="s2">$ µC and $</span><span class="si">{</span><span class="n">b_charge</span><span class="si">}</span><span class="s2">$ µC</span><span class="se">\n</span><span class="s2">What is the electric field strength at point P?&quot;</span>
</span><span id="electric_field_strength_two_points-104"><a href="#electric_field_strength_two_points-104"><span class="linenos">104</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="si">{</span><span class="nb">round</span><span class="p">(</span><span class="n">total_efs</span><span class="p">)</span><span class="si">}</span><span class="s2"> NC^</span><span class="si">{</span><span class="o">-</span><span class="mi">1</span><span class="si">}</span><span class="s2">$ (to the right)&quot;</span>
</span><span id="electric_field_strength_two_points-105"><a href="#electric_field_strength_two_points-105"><span class="linenos">105</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span></pre></div>
<div class="docstring"><p>Calculate the total electric field strength at point P with given points A and B, using the equation kQ/r²</p>
<table>
<thead>
<tr>
<th>Ex. Problem</th>
<th>Ex. Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charges A and B and point P are arranged like this: B &lt;-- 7 cm --> P &lt;-- 79 cm --> A, Where A and B have charges of -56 µC and -410 µC, What is the electric field strength at point P?</td>
<td>$-751417824 NC^{-1}$ (to the right)</td>
</tr>
</tbody>
</table>
</div>
</section>
<section id="fringe_spacing">
<input id="fringe_spacing-view-source" class="view-source-toggle-state" type="checkbox" aria-hidden="true" tabindex="-1">
@@ -341,21 +478,21 @@
</div>
<a class="headerlink" href="#fringe_spacing"></a>
<div class="pdoc-code codehilite"><pre><span></span><span id="fringe_spacing-69"><a href="#fringe_spacing-69"><span class="linenos">69</span></a><span class="k">def</span><span class="w"> </span><span class="nf">fringe_spacing</span><span class="p">(</span><span class="n">max_screen_distance</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">max_slit_spacing_mm</span><span class="o">=</span><span class="mi">100</span><span class="p">):</span>
</span><span id="fringe_spacing-70"><a href="#fringe_spacing-70"><span class="linenos">70</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Calculate the fringe spacing in a double slit experiment with w=(λD)/s</span>
</span><span id="fringe_spacing-71"><a href="#fringe_spacing-71"><span class="linenos">71</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="fringe_spacing-72"><a href="#fringe_spacing-72"><span class="linenos">72</span></a><span class="sd"> | --- | --- |</span>
</span><span id="fringe_spacing-73"><a href="#fringe_spacing-73"><span class="linenos">73</span></a><span class="sd"> | A laser with a wavelength of $450nm$ is shone through a double slit system to produce an interference pattern on a screen. The screen is $12m$ from the slits and the slits are $0.30mm$ apart. Calculate the spacing between the bright fringes. | Using the equation $\\frac{{\\lambda D}}{{s}}$, we get a fringe spacing of $0.018m$ |</span>
</span><span id="fringe_spacing-74"><a href="#fringe_spacing-74"><span class="linenos">74</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="fringe_spacing-75"><a href="#fringe_spacing-75"><span class="linenos">75</span></a> <span class="n">wavelength_nm</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">380</span><span class="p">,</span><span class="mi">750</span><span class="p">)</span> <span class="c1"># Random wavelength between violet and red (nm)</span>
</span><span id="fringe_spacing-76"><a href="#fringe_spacing-76"><span class="linenos">76</span></a> <span class="n">screen_distance</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_screen_distance</span><span class="p">)</span> <span class="c1"># Random distance between screen and slits (m)</span>
</span><span id="fringe_spacing-77"><a href="#fringe_spacing-77"><span class="linenos">77</span></a> <span class="n">slit_spacing_mm</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_slit_spacing_mm</span><span class="p">)</span> <span class="c1"># Random slit spacing (mm)</span>
</span><span id="fringe_spacing-78"><a href="#fringe_spacing-78"><span class="linenos">78</span></a>
</span><span id="fringe_spacing-79"><a href="#fringe_spacing-79"><span class="linenos">79</span></a> <span class="n">fringe_spacing</span> <span class="o">=</span> <span class="nb">round</span><span class="p">((((</span><span class="n">wavelength_nm</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**-</span><span class="mi">9</span><span class="p">)</span> <span class="o">*</span> <span class="n">screen_distance</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">slit_spacing_mm</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**-</span><span class="mi">3</span><span class="p">)),</span><span class="mi">5</span><span class="p">)</span>
</span><span id="fringe_spacing-80"><a href="#fringe_spacing-80"><span class="linenos">80</span></a>
</span><span id="fringe_spacing-81"><a href="#fringe_spacing-81"><span class="linenos">81</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;A laser with a wavelength of $</span><span class="si">{</span><span class="n">wavelength_nm</span><span class="si">}</span><span class="s2">nm$ is shone through a double slit system to produce an interference pattern on a screen. The screen is $</span><span class="si">{</span><span class="n">screen_distance</span><span class="si">}</span><span class="s2">m$ from the slits and the slits are $</span><span class="si">{</span><span class="n">slit_spacing_mm</span><span class="si">}</span><span class="s2">mm$ apart. Calculate the spacing between the bright fringes.&quot;</span>
</span><span id="fringe_spacing-82"><a href="#fringe_spacing-82"><span class="linenos">82</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Using the equation $</span><span class="se">\\</span><span class="s2">frac</span><span class="se">{{\\</span><span class="s2">lambda D</span><span class="se">}}{{</span><span class="s2">s</span><span class="se">}}</span><span class="s2">$, we get a fringe spacing of $</span><span class="si">{</span><span class="n">fringe_spacing</span><span class="si">}</span><span class="s2">m$&quot;</span>
</span><span id="fringe_spacing-83"><a href="#fringe_spacing-83"><span class="linenos">83</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
<div class="pdoc-code codehilite"><pre><span></span><span id="fringe_spacing-109"><a href="#fringe_spacing-109"><span class="linenos">109</span></a><span class="k">def</span><span class="w"> </span><span class="nf">fringe_spacing</span><span class="p">(</span><span class="n">max_screen_distance</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">max_slit_spacing_mm</span><span class="o">=</span><span class="mi">100</span><span class="p">):</span>
</span><span id="fringe_spacing-110"><a href="#fringe_spacing-110"><span class="linenos">110</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Calculate the fringe spacing in a double slit experiment with w=(λD)/s</span>
</span><span id="fringe_spacing-111"><a href="#fringe_spacing-111"><span class="linenos">111</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="fringe_spacing-112"><a href="#fringe_spacing-112"><span class="linenos">112</span></a><span class="sd"> | --- | --- |</span>
</span><span id="fringe_spacing-113"><a href="#fringe_spacing-113"><span class="linenos">113</span></a><span class="sd"> | A laser with a wavelength of $450nm$ is shone through a double slit system to produce an interference pattern on a screen. The screen is $12m$ from the slits and the slits are $0.30mm$ apart. Calculate the spacing between the bright fringes. | Using the equation $\\frac{{\\lambda D}}{{s}}$, we get a fringe spacing of $0.018m$ |</span>
</span><span id="fringe_spacing-114"><a href="#fringe_spacing-114"><span class="linenos">114</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="fringe_spacing-115"><a href="#fringe_spacing-115"><span class="linenos">115</span></a> <span class="n">wavelength_nm</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">380</span><span class="p">,</span><span class="mi">750</span><span class="p">)</span> <span class="c1"># Random wavelength between violet and red (nm)</span>
</span><span id="fringe_spacing-116"><a href="#fringe_spacing-116"><span class="linenos">116</span></a> <span class="n">screen_distance</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_screen_distance</span><span class="p">)</span> <span class="c1"># Random distance between screen and slits (m)</span>
</span><span id="fringe_spacing-117"><a href="#fringe_spacing-117"><span class="linenos">117</span></a> <span class="n">slit_spacing_mm</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">max_slit_spacing_mm</span><span class="p">)</span> <span class="c1"># Random slit spacing (mm)</span>
</span><span id="fringe_spacing-118"><a href="#fringe_spacing-118"><span class="linenos">118</span></a>
</span><span id="fringe_spacing-119"><a href="#fringe_spacing-119"><span class="linenos">119</span></a> <span class="n">fringe_spacing</span> <span class="o">=</span> <span class="nb">round</span><span class="p">((((</span><span class="n">wavelength_nm</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**-</span><span class="mi">9</span><span class="p">)</span> <span class="o">*</span> <span class="n">screen_distance</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">slit_spacing_mm</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**-</span><span class="mi">3</span><span class="p">)),</span><span class="mi">5</span><span class="p">)</span>
</span><span id="fringe_spacing-120"><a href="#fringe_spacing-120"><span class="linenos">120</span></a>
</span><span id="fringe_spacing-121"><a href="#fringe_spacing-121"><span class="linenos">121</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;A laser with a wavelength of $</span><span class="si">{</span><span class="n">wavelength_nm</span><span class="si">}</span><span class="s2">nm$ is shone through a double slit system to produce an interference pattern on a screen. The screen is $</span><span class="si">{</span><span class="n">screen_distance</span><span class="si">}</span><span class="s2">m$ from the slits and the slits are $</span><span class="si">{</span><span class="n">slit_spacing_mm</span><span class="si">}</span><span class="s2">mm$ apart. Calculate the spacing between the bright fringes.&quot;</span>
</span><span id="fringe_spacing-122"><a href="#fringe_spacing-122"><span class="linenos">122</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Using the equation $</span><span class="se">\\</span><span class="s2">frac</span><span class="se">{{\\</span><span class="s2">lambda D</span><span class="se">}}{{</span><span class="s2">s</span><span class="se">}}</span><span class="s2">$, we get a fringe spacing of $</span><span class="si">{</span><span class="n">fringe_spacing</span><span class="si">}</span><span class="s2">m$&quot;</span>
</span><span id="fringe_spacing-123"><a href="#fringe_spacing-123"><span class="linenos">123</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span></pre></div>
@@ -378,6 +515,58 @@
</div>
</section>
<section id="diffraction_grating_wavelength">
<input id="diffraction_grating_wavelength-view-source" class="view-source-toggle-state" type="checkbox" aria-hidden="true" tabindex="-1">
<div class="attr function">
<span class="def">def</span>
<span class="name">diffraction_grating_wavelength</span><span class="signature pdoc-code condensed">(<span class="param"><span class="n">min_slits_per_mm</span><span class="o">=</span><span class="mi">100</span>, </span><span class="param"><span class="n">max_slits_per_mm</span><span class="o">=</span><span class="mi">500</span>, </span><span class="param"><span class="n">max_order_number</span><span class="o">=</span><span class="mi">5</span></span><span class="return-annotation">):</span></span>
<label class="view-source-button" for="diffraction_grating_wavelength-view-source"><span>View Source</span></label>
</div>
<a class="headerlink" href="#diffraction_grating_wavelength"></a>
<div class="pdoc-code codehilite"><pre><span></span><span id="diffraction_grating_wavelength-125"><a href="#diffraction_grating_wavelength-125"><span class="linenos">125</span></a><span class="k">def</span><span class="w"> </span><span class="nf">diffraction_grating_wavelength</span><span class="p">(</span><span class="n">min_slits_per_mm</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">max_slits_per_mm</span><span class="o">=</span><span class="mi">500</span><span class="p">,</span> <span class="n">max_order_number</span><span class="o">=</span><span class="mi">5</span><span class="p">):</span>
</span><span id="diffraction_grating_wavelength-126"><a href="#diffraction_grating_wavelength-126"><span class="linenos">126</span></a><span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Calculate the wavelength when given the number of slits per mm, order number and angle of order using the equation nλ = dsinθ</span>
</span><span id="diffraction_grating_wavelength-127"><a href="#diffraction_grating_wavelength-127"><span class="linenos">127</span></a>
</span><span id="diffraction_grating_wavelength-128"><a href="#diffraction_grating_wavelength-128"><span class="linenos">128</span></a><span class="sd"> | Ex. Problem | Ex. Solution |</span>
</span><span id="diffraction_grating_wavelength-129"><a href="#diffraction_grating_wavelength-129"><span class="linenos">129</span></a><span class="sd"> | --- | --- |</span>
</span><span id="diffraction_grating_wavelength-130"><a href="#diffraction_grating_wavelength-130"><span class="linenos">130</span></a><span class="sd"> | A laser is shone through a diffraction grating which has $293$ lines per mm, the fringe of order number $2$ is at an angle of $0.39$ rad. Calculate the wavelength of the light | $\lambda = 6.487856913364529e-07m = 649nm |</span>
</span><span id="diffraction_grating_wavelength-131"><a href="#diffraction_grating_wavelength-131"><span class="linenos">131</span></a>
</span><span id="diffraction_grating_wavelength-132"><a href="#diffraction_grating_wavelength-132"><span class="linenos">132</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="diffraction_grating_wavelength-133"><a href="#diffraction_grating_wavelength-133"><span class="linenos">133</span></a> <span class="n">slits_per_mm</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="n">min_slits_per_mm</span><span class="p">,</span> <span class="n">max_slits_per_mm</span><span class="p">)</span>
</span><span id="diffraction_grating_wavelength-134"><a href="#diffraction_grating_wavelength-134"><span class="linenos">134</span></a> <span class="n">slit_spacing</span> <span class="o">=</span> <span class="mi">1</span><span class="o">/</span><span class="p">(</span><span class="n">slits_per_mm</span> <span class="o">*</span> <span class="mi">1000</span><span class="p">)</span>
</span><span id="diffraction_grating_wavelength-135"><a href="#diffraction_grating_wavelength-135"><span class="linenos">135</span></a> <span class="n">order_number</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">max_order_number</span><span class="p">)</span>
</span><span id="diffraction_grating_wavelength-136"><a href="#diffraction_grating_wavelength-136"><span class="linenos">136</span></a> <span class="n">angle_of_order</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mf">0.2</span><span class="p">,</span> <span class="p">(</span><span class="n">math</span><span class="o">.</span><span class="n">pi</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span><span class="o">-</span><span class="mf">0.2</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
</span><span id="diffraction_grating_wavelength-137"><a href="#diffraction_grating_wavelength-137"><span class="linenos">137</span></a> <span class="n">wavelength</span> <span class="o">=</span> <span class="p">((</span><span class="n">slit_spacing</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">angle_of_order</span><span class="p">))</span> <span class="o">/</span> <span class="n">order_number</span><span class="p">)</span>
</span><span id="diffraction_grating_wavelength-138"><a href="#diffraction_grating_wavelength-138"><span class="linenos">138</span></a>
</span><span id="diffraction_grating_wavelength-139"><a href="#diffraction_grating_wavelength-139"><span class="linenos">139</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;A laser is shone through a diffraction grating which has $</span><span class="si">{</span><span class="n">slits_per_mm</span><span class="si">}</span><span class="s2">$ lines per mm, the fringe of order number $</span><span class="si">{</span><span class="n">order_number</span><span class="si">}</span><span class="s2">$ is at an angle of $</span><span class="si">{</span><span class="n">angle_of_order</span><span class="si">}</span><span class="s2">$ rad. Calculate the wavelength of the light&quot;</span>
</span><span id="diffraction_grating_wavelength-140"><a href="#diffraction_grating_wavelength-140"><span class="linenos">140</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="se">\\</span><span class="s2">lambda = </span><span class="si">{</span><span class="n">wavelength</span><span class="si">}</span><span class="s2">m = </span><span class="si">{</span><span class="nb">round</span><span class="p">(</span><span class="n">wavelength</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">10</span><span class="o">**-</span><span class="mi">9</span><span class="p">)</span><span class="si">}</span><span class="s2">nm$&quot;</span>
</span><span id="diffraction_grating_wavelength-141"><a href="#diffraction_grating_wavelength-141"><span class="linenos">141</span></a>
</span><span id="diffraction_grating_wavelength-142"><a href="#diffraction_grating_wavelength-142"><span class="linenos">142</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span></pre></div>
<div class="docstring"><p>Calculate the wavelength when given the number of slits per mm, order number and angle of order using the equation nλ = dsinθ</p>
<table>
<thead>
<tr>
<th>Ex. Problem</th>
<th>Ex. Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A laser is shone through a diffraction grating which has $293$ lines per mm, the fringe of order number $2$ is at an angle of $0.39$ rad. Calculate the wavelength of the light</td>
<td>$\lambda = 6.487856913364529e-07m = 649nm</td>
</tr>
</tbody>
</table>
</div>
</section>
</main>
<script>

View File

@@ -96,7 +96,7 @@
<div class="pdoc-code codehilite"><pre><span></span><span id="L-1"><a href="#L-1"><span class="linenos"> 1</span></a><span class="kn">import</span><span class="w"> </span><span class="nn">random</span>
</span><span id="L-2"><a href="#L-2"><span class="linenos"> 2</span></a><span class="kn">import</span><span class="w"> </span><span class="nn">math</span>
</span><span id="L-3"><a href="#L-3"><span class="linenos"> 3</span></a>
</span><span id="L-3"><a href="#L-3"><span class="linenos"> 3</span></a><span class="kn">import</span><span class="w"> </span><span class="nn">scipy.stats</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">stats</span>
</span><span id="L-4"><a href="#L-4"><span class="linenos"> 4</span></a>
</span><span id="L-5"><a href="#L-5"><span class="linenos"> 5</span></a><span class="k">def</span><span class="w"> </span><span class="nf">combinations</span><span class="p">(</span><span class="n">max_lengthgth</span><span class="o">=</span><span class="mi">20</span><span class="p">):</span>
</span><span id="L-6"><a href="#L-6"><span class="linenos"> 6</span></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;Combinations of Objects</span>
@@ -274,6 +274,25 @@
</span><span id="L-178"><a href="#L-178"><span class="linenos">178</span></a>
</span><span id="L-179"><a href="#L-179"><span class="linenos">179</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Number of Permutations from $</span><span class="si">{</span><span class="n">a</span><span class="si">}</span><span class="s2">$ objects picked $</span><span class="si">{</span><span class="n">b</span><span class="si">}</span><span class="s2">$ at a time is: &quot;</span>
</span><span id="L-180"><a href="#L-180"><span class="linenos">180</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="si">{</span><span class="n">solution</span><span class="si">}</span><span class="s2">$&quot;</span>
</span><span id="L-181"><a href="#L-181"><span class="linenos">181</span></a>
</span><span id="L-182"><a href="#L-182"><span class="linenos">182</span></a><span class="c1"># TODO</span>
</span><span id="L-183"><a href="#L-183"><span class="linenos">183</span></a><span class="c1">#def normal_distribution_bounds(max_mean=100, max_variance=10): # max value for mean is absolute</span>
</span><span id="L-184"><a href="#L-184"><span class="linenos">184</span></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
</span><span id="L-185"><a href="#L-185"><span class="linenos">185</span></a>
</span><span id="L-186"><a href="#L-186"><span class="linenos">186</span></a>
</span><span id="L-187"><a href="#L-187"><span class="linenos">187</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="L-188"><a href="#L-188"><span class="linenos">188</span></a> <span class="c1"># P(x1 &lt;= X &lt;= x2) = CDF(x2) CDF(x1)</span>
</span><span id="L-189"><a href="#L-189"><span class="linenos">189</span></a>
</span><span id="L-190"><a href="#L-190"><span class="linenos">190</span></a> <span class="c1"># X(x) = 1/2[1+erf(xμ√2σ)]</span>
</span><span id="L-191"><a href="#L-191"><span class="linenos">191</span></a> <span class="n">mean</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="o">-</span><span class="n">max_mean</span><span class="p">,</span> <span class="n">max_mean</span><span class="p">)</span>
</span><span id="L-192"><a href="#L-192"><span class="linenos">192</span></a> <span class="n">variance</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">max_variance</span><span class="p">)</span>
</span><span id="L-193"><a href="#L-193"><span class="linenos">193</span></a> <span class="n">bound_1</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">mean</span> <span class="o">-</span> <span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">variance</span><span class="p">))),</span> <span class="nb">round</span><span class="p">(</span><span class="n">mean</span> <span class="o">+</span> <span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">variance</span><span class="p">))))</span>
</span><span id="L-194"><a href="#L-194"><span class="linenos">194</span></a> <span class="n">bound_2</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="n">bound_1</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">mean</span> <span class="o">+</span> <span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">variance</span><span class="p">))))</span>
</span><span id="L-195"><a href="#L-195"><span class="linenos">195</span></a> <span class="n">answer</span> <span class="o">=</span> <span class="n">stats</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">cdf</span><span class="p">(</span><span class="n">bound_2</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">variance</span><span class="p">)</span> <span class="o">-</span> <span class="n">stats</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">cdf</span><span class="p">(</span><span class="n">bound_1</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">variance</span><span class="p">)</span>
</span><span id="L-196"><a href="#L-196"><span class="linenos">196</span></a>
</span><span id="L-197"><a href="#L-197"><span class="linenos">197</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;What is the area under the Normal Distribution $X~N(</span><span class="si">{</span><span class="n">mean</span><span class="si">}</span><span class="s2">,</span><span class="si">{</span><span class="n">variance</span><span class="si">}</span><span class="s2">)$ between $</span><span class="si">{</span><span class="n">bound_1</span><span class="si">}</span><span class="s2">$ and $</span><span class="si">{</span><span class="n">bound_2</span><span class="si">}</span><span class="s2">$&quot;</span>
</span><span id="L-198"><a href="#L-198"><span class="linenos">198</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="si">{</span><span class="n">answer</span><span class="si">}</span><span class="s2">$&quot;</span>
</span><span id="L-199"><a href="#L-199"><span class="linenos">199</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span></pre></div>
@@ -657,6 +676,25 @@
</span><span id="permutation-179"><a href="#permutation-179"><span class="linenos">179</span></a>
</span><span id="permutation-180"><a href="#permutation-180"><span class="linenos">180</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Number of Permutations from $</span><span class="si">{</span><span class="n">a</span><span class="si">}</span><span class="s2">$ objects picked $</span><span class="si">{</span><span class="n">b</span><span class="si">}</span><span class="s2">$ at a time is: &quot;</span>
</span><span id="permutation-181"><a href="#permutation-181"><span class="linenos">181</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="si">{</span><span class="n">solution</span><span class="si">}</span><span class="s2">$&quot;</span>
</span><span id="permutation-182"><a href="#permutation-182"><span class="linenos">182</span></a>
</span><span id="permutation-183"><a href="#permutation-183"><span class="linenos">183</span></a><span class="c1"># TODO</span>
</span><span id="permutation-184"><a href="#permutation-184"><span class="linenos">184</span></a><span class="c1">#def normal_distribution_bounds(max_mean=100, max_variance=10): # max value for mean is absolute</span>
</span><span id="permutation-185"><a href="#permutation-185"><span class="linenos">185</span></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
</span><span id="permutation-186"><a href="#permutation-186"><span class="linenos">186</span></a>
</span><span id="permutation-187"><a href="#permutation-187"><span class="linenos">187</span></a>
</span><span id="permutation-188"><a href="#permutation-188"><span class="linenos">188</span></a><span class="sd"> &quot;&quot;&quot;</span>
</span><span id="permutation-189"><a href="#permutation-189"><span class="linenos">189</span></a> <span class="c1"># P(x1 &lt;= X &lt;= x2) = CDF(x2) CDF(x1)</span>
</span><span id="permutation-190"><a href="#permutation-190"><span class="linenos">190</span></a>
</span><span id="permutation-191"><a href="#permutation-191"><span class="linenos">191</span></a> <span class="c1"># X(x) = 1/2[1+erf(xμ√2σ)]</span>
</span><span id="permutation-192"><a href="#permutation-192"><span class="linenos">192</span></a> <span class="n">mean</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="o">-</span><span class="n">max_mean</span><span class="p">,</span> <span class="n">max_mean</span><span class="p">)</span>
</span><span id="permutation-193"><a href="#permutation-193"><span class="linenos">193</span></a> <span class="n">variance</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">max_variance</span><span class="p">)</span>
</span><span id="permutation-194"><a href="#permutation-194"><span class="linenos">194</span></a> <span class="n">bound_1</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">mean</span> <span class="o">-</span> <span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">variance</span><span class="p">))),</span> <span class="nb">round</span><span class="p">(</span><span class="n">mean</span> <span class="o">+</span> <span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">variance</span><span class="p">))))</span>
</span><span id="permutation-195"><a href="#permutation-195"><span class="linenos">195</span></a> <span class="n">bound_2</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="n">bound_1</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">mean</span> <span class="o">+</span> <span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">variance</span><span class="p">))))</span>
</span><span id="permutation-196"><a href="#permutation-196"><span class="linenos">196</span></a> <span class="n">answer</span> <span class="o">=</span> <span class="n">stats</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">cdf</span><span class="p">(</span><span class="n">bound_2</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">variance</span><span class="p">)</span> <span class="o">-</span> <span class="n">stats</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">cdf</span><span class="p">(</span><span class="n">bound_1</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">variance</span><span class="p">)</span>
</span><span id="permutation-197"><a href="#permutation-197"><span class="linenos">197</span></a>
</span><span id="permutation-198"><a href="#permutation-198"><span class="linenos">198</span></a> <span class="n">problem</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;What is the area under the Normal Distribution $X~N(</span><span class="si">{</span><span class="n">mean</span><span class="si">}</span><span class="s2">,</span><span class="si">{</span><span class="n">variance</span><span class="si">}</span><span class="s2">)$ between $</span><span class="si">{</span><span class="n">bound_1</span><span class="si">}</span><span class="s2">$ and $</span><span class="si">{</span><span class="n">bound_2</span><span class="si">}</span><span class="s2">$&quot;</span>
</span><span id="permutation-199"><a href="#permutation-199"><span class="linenos">199</span></a> <span class="n">solution</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;$</span><span class="si">{</span><span class="n">answer</span><span class="si">}</span><span class="s2">$&quot;</span>
</span><span id="permutation-200"><a href="#permutation-200"><span class="linenos">200</span></a> <span class="k">return</span> <span class="n">problem</span><span class="p">,</span> <span class="n">solution</span>
</span></pre></div>

File diff suppressed because one or more lines are too long