Merge pull request #299 from strikeraryu/master

Added complex quadratic generator
This commit is contained in:
Luke Weiler
2020-10-21 21:43:17 -04:00
committed by GitHub
2 changed files with 74 additions and 0 deletions

View File

@@ -104,3 +104,4 @@ from .perimeter_of_polygons import *
from .power_of_powers import * from .power_of_powers import *
from .quotient_of_power_same_base import * from .quotient_of_power_same_base import *
from .quotient_of_power_same_power import * from .quotient_of_power_same_power import *
from .complex_quadratic import *

View File

@@ -0,0 +1,73 @@
from .__init__ import *
def complexQuadraticFunc(prob_type=0, max_range=10):
if prob_type < 0 or prob_type > 1:
print("prob_type not supported")
print("prob_type = 0 for real roots problems ")
print("prob_tpye = 1 for imaginary roots problems")
return None
if prob_type == 0:
d = -1
while d < 0:
a = random.randrange(1, max_range)
b = random.randrange(1, max_range)
c = random.randrange(1, max_range)
d = (b**2 - 4*a*c)
else:
d = 0
while d >= 0:
a = random.randrange(1, max_range)
b = random.randrange(1, max_range)
c = random.randrange(1, max_range)
d = (b**2 - 4*a*c)
eq = ''
if a == 1:
eq += 'x^2 + '
else:
eq += str(a) + 'x^2 + '
if b == 1:
eq += 'x + '
else:
eq += str(b) + 'x + '
eq += str(c) + ' = 0'
problem = f'Find the roots of given Quadratic Equation ' + eq
if d < 0:
roots = ''
sqrt_d = (-d)**0.5
if sqrt_d - int(sqrt_d) == 0:
sqrt_d = int(sqrt_d)
solution = f'(({-b} + {sqrt_d}i)/2*{a}, ({-b} - {sqrt_d}i)/2*{a})'
else:
solution = f'(({-b} + sqrt({-d})i)/2*{a}, ({-b} - sqrt({-d})i)/2*{a})'
return problem, solution
else:
s_root1 = round((-b + (d)**0.5)/(2*a), 3)
s_root2 = round((-b - (d)**0.5)/(2*a), 3)
sqrt_d = (d)**0.5
if sqrt_d - int(sqrt_d) == 0:
sqrt_d = int(sqrt_d)
g_sol = f'(({-b} + {sqrt_d})/2*{a}, ({-b} - {sqrt_d})/2*{a})'
else:
g_sol = f'(({-b} + sqrt({d}))/2*{a}, ({-b} - sqrt({d}))/2*{a})'
solution = f'simplified solution : ({s_root1, s_root2}), generalized solution : ' + g_sol
return problem, solution
complex_quadratic = Generator("complex Quadratic Equation", 91, "Find the roots of given Quadratic Equation ",
"simplified solution : (x1, x2), generalized solution : ((-b + sqrt(d))/2a, (-b - sqrt(d))/2a) or ((-b + sqrt(d)i)/2a, (-b - sqrt(d)i)/2a)", complexQuadraticFunc)