Merge branch 'YuviGold-add-flake8'

This commit is contained in:
lukew3
2020-10-17 14:47:58 -04:00
5 changed files with 343 additions and 276 deletions

View File

@@ -17,5 +17,7 @@ jobs:
run: | run: |
python -m pip install -U pip python -m pip install -U pip
python -m pip install -r dev-requirements.txt python -m pip install -r dev-requirements.txt
- name: Linter
run: make lint
- name: Test - name: Test
run: make test run: make test

View File

@@ -1,2 +1,7 @@
FLAKE_FLAGS = --ignore=E501,F401,F403,F405
lint:
python -m flake8 $(FLAKE_FLAGS)
test: test:
python -m pytest --verbose -s tests python -m pytest --verbose -s tests

View File

@@ -1,2 +1,3 @@
pytest pytest
hypothesis hypothesis
flake8

View File

@@ -4,6 +4,7 @@ import fractions
genList = [] genList = []
# || Generator class # || Generator class
class Generator: class Generator:
def __init__(self, title, id, generalProb, generalSol, func): def __init__(self, title, id, generalProb, generalSol, func):
@@ -20,52 +21,59 @@ class Generator:
def __call__(self, **kwargs): def __call__(self, **kwargs):
return self.func(**kwargs) return self.func(**kwargs)
# || Non-generator Functions # || Non-generator Functions
def genById(id): def genById(id):
generator = genList[id][2] generator = genList[id][2]
return(generator()) return(generator())
def getGenList(): def getGenList():
return(genList) return(genList)
# || Generator Functions # || Generator Functions
def additionFunc(maxSum = 99, maxAddend = 50):
def additionFunc(maxSum=99, maxAddend=50):
a = random.randint(0, maxAddend) a = random.randint(0, maxAddend)
b = random.randint(0, min((maxSum-a), maxAddend)) #The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well b = random.randint(0, min((maxSum - a), maxAddend)) # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
c = a+b c = a + b
problem = str(a) + "+" + str(b) + "=" problem = str(a) + "+" + str(b) + "="
solution = str(c) solution = str(c)
return problem, solution return problem, solution
def subtractionFunc(maxMinuend = 99, maxDiff = 99):
def subtractionFunc(maxMinuend=99, maxDiff=99):
a = random.randint(0, maxMinuend) a = random.randint(0, maxMinuend)
b = random.randint(max(0, (a-maxDiff)), a) b = random.randint(max(0, (a - maxDiff)), a)
c = a-b c = a - b
problem = str(a) + "-" + str(b) + "=" problem = str(a) + "-" + str(b) + "="
solution = str(c) solution = str(c)
return problem, solution return problem, solution
def multiplicationFunc(maxRes = 99, maxMulti = 99):
def multiplicationFunc(maxRes=99, maxMulti=99):
a = random.randint(0, maxMulti) a = random.randint(0, maxMulti)
b = random.randint(0, min(int(maxMulti/a), maxRes)) b = random.randint(0, min(int(maxMulti / a), maxRes))
c = a*b c = a * b
problem = str(a) + "*" + str(b) + "=" problem = str(a) + "*" + str(b) + "="
solution = str(c) solution = str(c)
return problem, solution return problem, solution
def divisionFunc(maxRes = 99, maxDivid = 99):
def divisionFunc(maxRes=99, maxDivid=99):
a = random.randint(0, maxDivid) a = random.randint(0, maxDivid)
b = random.randint(0, min(maxRes, maxDivid)) b = random.randint(0, min(maxRes, maxDivid))
c = a/b c = a / b
problem = str(a) + "/" + str(b) + "=" problem = str(a) + "/" + str(b) + "="
solution = str(c) solution = str(c)
return problem, solution return problem, solution
def binaryComplement1sFunc(maxDigits = 10):
def binaryComplement1sFunc(maxDigits=10):
question = '' question = ''
answer = '' answer = ''
for i in range(random.randint(1,maxDigits)): for i in range(random.randint(1, maxDigits)):
temp = str(random.randint(0, 1)) temp = str(random.randint(0, 1))
question += temp question += temp
answer += "0" if temp == "1" else "1" answer += "0" if temp == "1" else "1"
@@ -74,22 +82,25 @@ def binaryComplement1sFunc(maxDigits = 10):
solution = answer solution = answer
return problem, solution return problem, solution
def moduloFunc(maxRes = 99, maxModulo= 99):
def moduloFunc(maxRes=99, maxModulo=99):
a = random.randint(0, maxModulo) a = random.randint(0, maxModulo)
b = random.randint(0, min(maxRes, maxModulo)) b = random.randint(0, min(maxRes, maxModulo))
c = a%b c = a % b
problem = str(a) + "%" + str(b) + "=" problem = str(a) + "%" + str(b) + "="
solution = str(c) solution = str(c)
return problem, solution return problem, solution
def squareRootFunc(minNo = 1, maxNo = 12):
def squareRootFunc(minNo=1, maxNo=12):
b = random.randint(minNo, maxNo) b = random.randint(minNo, maxNo)
a = b*b a = b * b
problem = "sqrt(" + str(a) + ")=" problem = "sqrt(" + str(a) + ")="
solution = str(b) solution = str(b)
return problem, solution return problem, solution
def powerRuleDifferentiationFunc(maxCoef = 10, maxExp = 10, maxTerms = 5):
def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5):
numTerms = random.randint(1, maxTerms) numTerms = random.randint(1, maxTerms)
problem = "" problem = ""
solution = "" solution = ""
@@ -103,23 +114,26 @@ def powerRuleDifferentiationFunc(maxCoef = 10, maxExp = 10, maxTerms = 5):
solution += str(coefficient * exponent) + "x^" + str(exponent - 1) solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
return problem, solution return problem, solution
def squareFunc(maxSquareNum = 20):
def squareFunc(maxSquareNum=20):
a = random.randint(1, maxSquareNum) a = random.randint(1, maxSquareNum)
b = a * a b = a * a
problem = str(a) + "^2" + "=" problem = str(a) + "^2" + "="
solution = str(b) solution = str(b)
return problem, solution return problem, solution
def gcdFunc(maxVal=20): def gcdFunc(maxVal=20):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
b = random.randint(1, maxVal) b = random.randint(1, maxVal)
x, y = a, b x, y = a, b
while(y): while(y):
x, y = y, x % y x, y = y, x % y
problem = f"GCD of {a} and {b} = " problem = f"GCD of {a} and {b} = "
solution = str(x) solution = str(x)
return problem, solution return problem, solution
def lcmFunc(maxVal=20): def lcmFunc(maxVal=20):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
b = random.randint(1, maxVal) b = random.randint(1, maxVal)
@@ -132,11 +146,13 @@ def lcmFunc(maxVal=20):
solution = str(d) solution = str(d)
return problem, solution return problem, solution
def basicAlgebraFunc(maxVariable = 10):
def basicAlgebraFunc(maxVariable=10):
a = random.randint(1, maxVariable) a = random.randint(1, maxVariable)
b = random.randint(1, maxVariable) b = random.randint(1, maxVariable)
c = random.randint(b, maxVariable) c = random.randint(b, maxVariable)
# calculate gcd # calculate gcd
def calculate_gcd(x, y): def calculate_gcd(x, y):
while(y): while(y):
x, y = y, x % y x, y = y, x % y
@@ -145,44 +161,49 @@ def basicAlgebraFunc(maxVariable = 10):
x = f"{(c - b)//i}/{a//i}" x = f"{(c - b)//i}/{a//i}"
if (c - b == 0): if (c - b == 0):
x = "0" x = "0"
elif a == 1 or a == i : elif a == 1 or a == i:
x = f"{c - b}" x = f"{c - b}"
problem = f"{a}x + {b} = {c}" problem = f"{a}x + {b} = {c}"
solution = x solution = x
return problem, solution return problem, solution
def logFunc(maxBase=3, maxVal=8): def logFunc(maxBase=3, maxVal=8):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
b = random.randint(2, maxBase) b = random.randint(2, maxBase)
c = pow(b,a) c = pow(b, a)
problem = "log"+str(b)+"("+str(c)+")" problem = "log" + str(b) + "(" + str(c) + ")"
solution = str(a) solution = str(a)
return problem, solution return problem, solution
def divisionToIntFunc(maxA=25, maxB=25): def divisionToIntFunc(maxA=25, maxB=25):
a = random.randint(1,maxA) a = random.randint(1, maxA)
b = random.randint(1,maxB) b = random.randint(1, maxB)
divisor = a*b divisor = a * b
dividend=random.choice([a,b]) dividend = random.choice([a, b])
problem = f"{divisor}/{dividend} = " problem = f"{divisor}/{dividend} = "
solution=int(divisor/dividend) solution = int(divisor / dividend)
return problem,solution return problem, solution
def DecimalToBinaryFunc(max_dec=99): def DecimalToBinaryFunc(max_dec=99):
a = random.randint(1, max_dec) a = random.randint(1, max_dec)
b = bin(a).replace("0b", "") b = bin(a).replace("0b", "")
problem = "Binary of "+str(a)+"=" problem = "Binary of " + str(a) + "="
solution = str(b) solution = str(b)
return problem, solution return problem, solution
def BinaryToDecimalFunc(max_dig=10):
problem=''
for i in range(random.randint(1,max_dig)):
temp = str(random.randint(0, 1))
problem += temp
solution=int(problem, 2); def BinaryToDecimalFunc(max_dig=10):
return problem, solution problem = ''
for i in range(random.randint(1, max_dig)):
temp = str(random.randint(0, 1))
problem += temp
solution = int(problem, 2)
return problem, solution
def divideFractionsFunc(maxVal=10): def divideFractionsFunc(maxVal=10):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
@@ -193,6 +214,7 @@ def divideFractionsFunc(maxVal=10):
d = random.randint(1, maxVal) d = random.randint(1, maxVal)
while (c == d): while (c == d):
d = random.randint(1, maxVal) d = random.randint(1, maxVal)
def calculate_gcd(x, y): def calculate_gcd(x, y):
while(y): while(y):
x, y = y, x % y x, y = y, x % y
@@ -208,27 +230,30 @@ def divideFractionsFunc(maxVal=10):
solution = x solution = x
return problem, solution return problem, solution
def multiplyIntToMatrix22(maxMatrixVal = 10, maxRes = 100):
def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100):
a = random.randint(0, maxMatrixVal) a = random.randint(0, maxMatrixVal)
b = random.randint(0, maxMatrixVal) b = random.randint(0, maxMatrixVal)
c = random.randint(0, maxMatrixVal) c = random.randint(0, maxMatrixVal)
d = random.randint(0, maxMatrixVal) d = random.randint(0, maxMatrixVal)
constant = random.randint(0, int(maxRes/max(a,b,c,d))) constant = random.randint(0, int(maxRes / max(a, b, c, d)))
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = " problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]" solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
return problem, solution return problem, solution
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
a = random.randint(1, maxA)
b = random.randint(1, maxB)
c = random.randint(1, maxC)
s = (a+b+c)/2
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
problem = "Area of triangle with side lengths: "+ str(a) +" "+ str(b) +" "+ str(c) + " = "
solution = area
return problem, solution
def isTriangleValidFunc(maxSideLength = 50): def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
a = random.randint(1, maxA)
b = random.randint(1, maxB)
c = random.randint(1, maxC)
s = (a + b + c) / 2
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
problem = "Area of triangle with side lengths: " + str(a) + " " + str(b) + " " + str(c) + " = "
solution = area
return problem, solution
def isTriangleValidFunc(maxSideLength=50):
sideA = random.randint(1, maxSideLength) sideA = random.randint(1, maxSideLength)
sideB = random.randint(1, maxSideLength) sideB = random.randint(1, maxSideLength)
sideC = random.randint(1, maxSideLength) sideC = random.randint(1, maxSideLength)
@@ -242,51 +267,56 @@ def isTriangleValidFunc(maxSideLength = 50):
solution = "No" solution = "No"
return problem, solution return problem, solution
def MidPointOfTwoPointFunc(maxValue=20): def MidPointOfTwoPointFunc(maxValue=20):
x1=random.randint(-20,maxValue) x1 = random.randint(-20, maxValue)
y1=random.randint(-20,maxValue) y1 = random.randint(-20, maxValue)
x2=random.randint(-20,maxValue) x2 = random.randint(-20, maxValue)
y2=random.randint(-20,maxValue) y2 = random.randint(-20, maxValue)
problem=f"({x1},{y1}),({x2},{y2})=" problem = f"({x1},{y1}),({x2},{y2})="
solution=f"({(x1+x2)/2},{(y1+y2)/2})" solution = f"({(x1+x2)/2},{(y1+y2)/2})"
return problem,solution return problem, solution
def factoringFunc(range_x1 = 10, range_x2 = 10):
x1 = random.randint(-range_x1, range_x1)
x2 = random.randint(-range_x2, range_x2)
def intParser(z):
if (z == 0):
return ""
if (z > 0):
return "+" + str(z)
if (z < 0):
return "-" + str(abs(z))
b = intParser(x1 + x2) def factoringFunc(range_x1=10, range_x2=10):
c = intParser(x1 * x2) x1 = random.randint(-range_x1, range_x1)
x2 = random.randint(-range_x2, range_x2)
if (b == "+1"): def intParser(z):
b = "+" if (z == 0):
return ""
if (z > 0):
return "+" + str(z)
if (z < 0):
return "-" + str(abs(z))
if (b == ""): b = intParser(x1 + x2)
problem = f"x^2{c}" c = intParser(x1 * x2)
else:
problem = f"x^2{b}x{c}" if (b == "+1"):
b = "+"
if (b == ""):
problem = f"x^2{c}"
else:
problem = f"x^2{b}x{c}"
x1 = intParser(x1)
x2 = intParser(x2)
solution = f"(x{x1})(x{x2})"
return problem, solution
x1 = intParser(x1)
x2 = intParser(x2)
solution = f"(x{x1})(x{x2})"
return problem, solution
def thirdAngleOfTriangleFunc(maxAngle=89): def thirdAngleOfTriangleFunc(maxAngle=89):
angle1 = random.randint(1, maxAngle) angle1 = random.randint(1, maxAngle)
angle2 = random.randint(1, maxAngle) angle2 = random.randint(1, maxAngle)
angle3 = 180 - (angle1 + angle2) angle3 = 180 - (angle1 + angle2)
problem = f"Third angle of triangle with angles {angle1} and {angle2} = " problem = f"Third angle of triangle with angles {angle1} and {angle2} = "
solution = angle3 solution = angle3
return problem, solution return problem, solution
def systemOfEquationsFunc(range_x = 10, range_y = 10, coeff_mult_range=10):
def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
# Generate solution point first # Generate solution point first
x = random.randint(-range_x, range_x) x = random.randint(-range_x, range_x)
y = random.randint(-range_y, range_y) y = random.randint(-range_y, range_y)
@@ -331,17 +361,19 @@ def systemOfEquationsFunc(range_x = 10, range_y = 10, coeff_mult_range=10):
# Add random (non-zero) multiple of equations to each other # Add random (non-zero) multiple of equations to each other
def distanceTwoPointsFunc(maxValXY = 20, minValXY=-20):
point1X = random.randint(minValXY, maxValXY+1) def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
point1Y = random.randint(minValXY, maxValXY+1) point1X = random.randint(minValXY, maxValXY + 1)
point2X = random.randint(minValXY, maxValXY+1) point1Y = random.randint(minValXY, maxValXY + 1)
point2Y = random.randint(minValXY, maxValXY+1) point2X = random.randint(minValXY, maxValXY + 1)
point2Y = random.randint(minValXY, maxValXY + 1)
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2 distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
solution = f"sqrt({distanceSq})" solution = f"sqrt({distanceSq})"
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})" problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
return problem, solution return problem, solution
def pythagoreanTheoremFunc(maxLength = 20):
def pythagoreanTheoremFunc(maxLength=20):
a = random.randint(1, maxLength) a = random.randint(1, maxLength)
b = random.randint(1, maxLength) b = random.randint(1, maxLength)
c = (a**2 + b**2)**0.5 c = (a**2 + b**2)**0.5
@@ -349,19 +381,20 @@ def pythagoreanTheoremFunc(maxLength = 20):
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}" solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
return problem, solution return problem, solution
def linearEquationsFunc(n = 2, varRange = 20, coeffRange = 20):
def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
if n > 10: if n > 10:
print("[!] n cannot be greater than 10") print("[!] n cannot be greater than 10")
return None, None return None, None
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n] vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
soln = [ random.randint(-varRange, varRange) for i in range(n) ] soln = [random.randint(-varRange, varRange) for i in range(n)]
problem = list() problem = list()
solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)]) solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)])
for _ in range(n): for _ in range(n):
coeff = [ random.randint(-coeffRange, coeffRange) for i in range(n) ] coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
res = sum([ coeff[i] * soln[i] for i in range(n)]) res = sum([coeff[i] * soln[i] for i in range(n)])
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)] prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)]
while "" in prob: while "" in prob:
@@ -372,6 +405,7 @@ def linearEquationsFunc(n = 2, varRange = 20, coeffRange = 20):
problem = "\n".join(problem) problem = "\n".join(problem)
return problem, solution return problem, solution
def primeFactorsFunc(minVal=1, maxVal=200): def primeFactorsFunc(minVal=1, maxVal=200):
a = random.randint(minVal, maxVal) a = random.randint(minVal, maxVal)
n = a n = a
@@ -389,6 +423,7 @@ def primeFactorsFunc(minVal=1, maxVal=200):
solution = f"{factors}" solution = f"{factors}"
return problem, solution return problem, solution
def multiplyFractionsFunc(maxVal=10): def multiplyFractionsFunc(maxVal=10):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
b = random.randint(1, maxVal) b = random.randint(1, maxVal)
@@ -398,6 +433,7 @@ def multiplyFractionsFunc(maxVal=10):
b = random.randint(1, maxVal) b = random.randint(1, maxVal)
while (c == d): while (c == d):
d = random.randint(1, maxVal) d = random.randint(1, maxVal)
def calculate_gcd(x, y): def calculate_gcd(x, y):
while(y): while(y):
x, y = y, x % y x, y = y, x % y
@@ -412,32 +448,33 @@ def multiplyFractionsFunc(maxVal=10):
solution = x solution = x
return problem, solution return problem, solution
def regularPolygonAngleFunc(minVal = 3,maxVal = 20):
def regularPolygonAngleFunc(minVal=3, maxVal=20):
sideNum = random.randint(minVal, maxVal) sideNum = random.randint(minVal, maxVal)
problem = f"Find the angle of a regular polygon with {sideNum} sides" problem = f"Find the angle of a regular polygon with {sideNum} sides"
exteriorAngle = round((360/sideNum),2) exteriorAngle = round((360 / sideNum), 2)
solution = 180 - exteriorAngle solution = 180 - exteriorAngle
return problem, solution return problem, solution
def combinationsFunc(maxlength=20): def combinationsFunc(maxlength=20):
def factorial(a): def factorial(a):
d=1 d = 1
for i in range(a): for i in range(a):
a=(i+1)*d a = (i + 1) * d
d=a d = a
return d return d
a= random.randint(10,maxlength) a = random.randint(10, maxlength)
b=random.randint(0,9) b = random.randint(0, 9)
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
problem = "Number of combinations from {} objects picked {} at a time ".format(a, b)
solution= int(factorial(a)/(factorial(b)*factorial(a-b)))
problem= "Number of combinations from {} objects picked {} at a time ".format(a,b)
return problem, solution return problem, solution
def factorialFunc(maxInput = 6):
def factorialFunc(maxInput=6):
a = random.randint(0, maxInput) a = random.randint(0, maxInput)
n = a n = a
problem = str(a) + "! = " problem = str(a) + "! = "
@@ -452,31 +489,35 @@ def factorialFunc(maxInput = 6):
solution = str(b) solution = str(b)
return problem, solution return problem, solution
def surfaceAreaCube(maxSide = 20, unit = 'm'):
def surfaceAreaCube(maxSide=20, unit='m'):
a = random.randint(1, maxSide) a = random.randint(1, maxSide)
problem = f"Surface area of cube with side = {a}{unit} is" problem = f"Surface area of cube with side = {a}{unit} is"
ans = 6 * a * a ans = 6 * a * a
solution = f"{ans} {unit}^2" solution = f"{ans} {unit}^2"
return problem, solution return problem, solution
def volumeCube(maxSide = 20, unit = 'm'):
def volumeCube(maxSide=20, unit='m'):
a = random.randint(1, maxSide) a = random.randint(1, maxSide)
problem = f"Volume of cube with side = {a}{unit} is" problem = f"Volume of cube with side = {a}{unit} is"
ans = a * a * a ans = a * a * a
solution = f"{ans} {unit}^3" solution = f"{ans} {unit}^3"
return problem, solution return problem, solution
def surfaceAreaCuboid(maxSide = 20, unit = 'm'):
def surfaceAreaCuboid(maxSide=20, unit='m'):
a = random.randint(1, maxSide) a = random.randint(1, maxSide)
b = random.randint(1, maxSide) b = random.randint(1, maxSide)
c = random.randint(1, maxSide) c = random.randint(1, maxSide)
problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is" problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
ans = 2 * (a*b + b*c + c*a) ans = 2 * (a * b + b * c + c * a)
solution = f"{ans} {unit}^2" solution = f"{ans} {unit}^2"
return problem, solution return problem, solution
def volumeCuboid(maxSide = 20, unit = 'm'):
def volumeCuboid(maxSide=20, unit='m'):
a = random.randint(1, maxSide) a = random.randint(1, maxSide)
b = random.randint(1, maxSide) b = random.randint(1, maxSide)
c = random.randint(1, maxSide) c = random.randint(1, maxSide)
@@ -485,7 +526,8 @@ def volumeCuboid(maxSide = 20, unit = 'm'):
solution = f"{ans} {unit}^3" solution = f"{ans} {unit}^3"
return problem, solution return problem, solution
def surfaceAreaCylinder(maxRadius = 20, maxHeight = 50,unit = 'm'):
def surfaceAreaCylinder(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight) a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius) b = random.randint(1, maxRadius)
problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is" problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is"
@@ -493,7 +535,8 @@ def surfaceAreaCylinder(maxRadius = 20, maxHeight = 50,unit = 'm'):
solution = f"{ans} {unit}^2" solution = f"{ans} {unit}^2"
return problem, solution return problem, solution
def volumeCylinder(maxRadius = 20, maxHeight = 50, unit = 'm'):
def volumeCylinder(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight) a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius) b = random.randint(1, maxRadius)
problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is" problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is"
@@ -501,7 +544,8 @@ def volumeCylinder(maxRadius = 20, maxHeight = 50, unit = 'm'):
solution = f"{ans} {unit}^3" solution = f"{ans} {unit}^3"
return problem, solution return problem, solution
def surfaceAreaCone(maxRadius = 20, maxHeight = 50,unit = 'm'):
def surfaceAreaCone(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight) a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius) b = random.randint(1, maxRadius)
slopingHeight = math.sqrt(a**2 + b**2) slopingHeight = math.sqrt(a**2 + b**2)
@@ -510,14 +554,16 @@ def surfaceAreaCone(maxRadius = 20, maxHeight = 50,unit = 'm'):
solution = f"{ans} {unit}^2" solution = f"{ans} {unit}^2"
return problem, solution return problem, solution
def volumeCone(maxRadius = 20, maxHeight = 50, unit = 'm'):
def volumeCone(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight) a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius) b = random.randint(1, maxRadius)
problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is" problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is"
ans = int(math.pi * b * b * a * (1/3)) ans = int(math.pi * b * b * a * (1 / 3))
solution = f"{ans} {unit}^3" solution = f"{ans} {unit}^3"
return problem, solution return problem, solution
def commonFactorsFunc(maxVal=100): def commonFactorsFunc(maxVal=100):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
b = random.randint(1, maxVal) b = random.randint(1, maxVal)
@@ -537,6 +583,7 @@ def commonFactorsFunc(maxVal=100):
solution = arr solution = arr
return problem, solution return problem, solution
def intersectionOfTwoLinesFunc( def intersectionOfTwoLinesFunc(
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6 minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
): ):
@@ -590,21 +637,24 @@ def intersectionOfTwoLinesFunc(
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})" solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
return problem, solution return problem, solution
def permutationFunc(maxlength=20): def permutationFunc(maxlength=20):
a = random.randint(10,maxlength) a = random.randint(10, maxlength)
b = random.randint(0,9) b = random.randint(0, 9)
solution= int(math.factorial(a)/(math.factorial(a-b))) solution = int(math.factorial(a) / (math.factorial(a - b)))
problem= "Number of Permutations from {} objects picked {} at a time = ".format(a,b) problem = "Number of Permutations from {} objects picked {} at a time = ".format(a, b)
return problem, solution return problem, solution
def vectorCrossFunc(minVal=-20, maxVal=20): def vectorCrossFunc(minVal=-20, maxVal=20):
a = [random.randint(minVal, maxVal) for i in range(3)] a = [random.randint(minVal, maxVal) for i in range(3)]
b = [random.randint(minVal, maxVal) for i in range(3)] b = [random.randint(minVal, maxVal) for i in range(3)]
c = [a[1]*b[2] - a[2]*b[1], c = [a[1] * b[2] - a[2] * b[1],
a[2]*b[0] - a[0]*b[2], a[2] * b[0] - a[0] * b[2],
a[0]*b[1] - a[1]*b[0]] a[0] * b[1] - a[1] * b[0]]
return str(a) + " X " + str(b) + " = ", str(c) return str(a) + " X " + str(b) + " = ", str(c)
def compareFractionsFunc(maxVal=10): def compareFractionsFunc(maxVal=10):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
b = random.randint(1, maxVal) b = random.randint(1, maxVal)
@@ -616,79 +666,84 @@ def compareFractionsFunc(maxVal=10):
while (c == d): while (c == d):
d = random.randint(1, maxVal) d = random.randint(1, maxVal)
first=a/b first = a / b
second=c/d second = c / d
if(first>second): if(first > second):
solution=">" solution = ">"
elif(first<second): elif(first < second):
solution="<" solution = "<"
else: else:
solution="=" solution = "="
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?" problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
return problem,solution return problem, solution
def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
a = random.randint(1000, maxPrinciple)
b = random.randint(1, maxRate)
c = random.randint(1, maxTime)
d = (a * b * c) / 100
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(b) + "% rate of interest and for a time period of " + str(c) + " years is = "
solution = round(d, 2)
return problem, solution
def simpleInterestFunc(maxPrinciple = 10000, maxRate = 10, maxTime = 10):
a = random.randint(1000, maxPrinciple)
b = random.randint(1, maxRate)
c = random.randint(1, maxTime)
d = (a*b*c)/100
problem = "Simple interest for a principle amount of " + str(a) +" dollars, " + str(b) + "% rate of interest and for a time period of " + str(c) + " years is = "
solution = round(d, 2)
return problem, solution
def matrixMultiplicationFunc(maxVal=100): def matrixMultiplicationFunc(maxVal=100):
m= random.randint(2, 10) m = random.randint(2, 10)
n= random.randint(2, 10) n = random.randint(2, 10)
k= random.randint(2, 10) k = random.randint(2, 10)
#generate matrices a and b # generate matrices a and b
a=[] a = []
for r in range(m): for r in range(m):
a.append([]) a.append([])
for c in range(n): for c in range(n):
a[r].append(random.randint(-maxVal,maxVal)) a[r].append(random.randint(-maxVal, maxVal))
b=[] b = []
for r in range(n): for r in range(n):
b.append([]) b.append([])
for c in range(k): for c in range(k):
b[r].append(random.randint(-maxVal, maxVal)) b[r].append(random.randint(-maxVal, maxVal))
res= [] res = []
a_string= matrixMultiplicationFuncHelper(a) a_string = matrixMultiplicationFuncHelper(a)
b_string= matrixMultiplicationFuncHelper(b) b_string = matrixMultiplicationFuncHelper(b)
for r in range(m): for r in range(m):
res.append([]) res.append([])
for c in range(k): for c in range(k):
temp= 0 temp = 0
for t in range(n): for t in range(n):
temp+=a[r][t]*b[t][c] temp += a[r][t] * b[t][c]
res[r].append(temp) res[r].append(temp)
problem= f"Multiply {a} and {b}" #consider using a, b instead of a_string, b_string if the problem doesn't look right problem = f"Multiply \n{a_string}\n and \n\n{b_string}" # consider using a, b instead of a_string, b_string if the problem doesn't look right
solution= res#matrixMultiplicationFuncHelper(res) solution = matrixMultiplicationFuncHelper(res)
return problem, solution return problem, solution
def matrixMultiplicationFuncHelper(inp): def matrixMultiplicationFuncHelper(inp):
m= len(inp) m = len(inp)
n= len(inp[0]) n = len(inp[0])
string= "" string = ""
for i in range(m): for i in range(m):
for j in range(n): for j in range(n):
string+=f"{inp[i][j]: 6d}" string += f"{inp[i][j]: 6d}"
string+=" " string += " "
string+="\n" string += "\n"
return string return string
def cubeRootFunc(minNo = 1, maxNo = 1000):
def cubeRootFunc(minNo=1, maxNo=1000):
b = random.randint(minNo, maxNo) b = random.randint(minNo, maxNo)
a = b**(1/3) a = b**(1 / 3)
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:" problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
solution = str(round(a,2)) solution = str(round(a, 2))
return problem, solution return problem, solution
def powerRuleIntegrationFunc(maxCoef = 10, maxExp = 10, maxTerms = 5):
def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
numTerms = random.randint(1, maxTerms) numTerms = random.randint(1, maxTerms)
problem = "" problem = ""
solution = "" solution = ""
@@ -699,39 +754,40 @@ def powerRuleIntegrationFunc(maxCoef = 10, maxExp = 10, maxTerms = 5):
coefficient = random.randint(1, maxCoef) coefficient = random.randint(1, maxCoef)
exponent = random.randint(1, maxExp) exponent = random.randint(1, maxExp)
problem += str(coefficient) + "x^" + str(exponent) problem += str(coefficient) + "x^" + str(exponent)
solution += "("+str(coefficient) +"/"+str(exponent + 1) +")x^" + str(exponent +1) solution += "(" + str(coefficient) + "/" + str(exponent) + ")x^" + str(exponent + 1)
solution = solution + " + c" solution = solution + " + c"
return problem, solution return problem, solution
def fourthAngleOfQuadriFunc(maxAngle = 180): def fourthAngleOfQuadriFunc(maxAngle=180):
angle1 = random.randint(1, maxAngle) angle1 = random.randint(1, maxAngle)
angle2 = random.randint(1, 240-angle1) angle2 = random.randint(1, 240 - angle1)
angle3 = random.randint(1, 340-(angle1 + angle2)) angle3 = random.randint(1, 340 - (angle1 + angle2))
sum_ = angle1 + angle2 + angle3 sum_ = angle1 + angle2 + angle3
angle4 = 360 - sum_ angle4 = 360 - sum_
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} =" problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
solution = angle4 solution = angle4
return problem, solution return problem, solution
def quadraticEquation(maxVal=100): def quadraticEquation(maxVal=100):
a = random.randint(1,maxVal) a = random.randint(1, maxVal)
c = random.randint(1,maxVal) c = random.randint(1, maxVal)
b = random.randint(round(math.sqrt(4*a*c))+1,round(math.sqrt(4*maxVal*maxVal))) b = random.randint(round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a,b,c) problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
D = math.sqrt(b*b-4*a*c) D = math.sqrt(b * b - 4 * a * c)
solution = str([round((-b+D)/(2*a), 2),round((-b-D)/(2*a), 2)]) solution = str([round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)])
return problem,solution return problem, solution
def hcfFunc(maxVal=20): def hcfFunc(maxVal=20):
a = random.randint(1, maxVal) a = random.randint(1, maxVal)
b = random.randint(1, maxVal) b = random.randint(1, maxVal)
x, y = a, b x, y = a, b
while(y): while(y):
x, y = y, x % y x, y = y, x % y
problem = f"HCF of {a} and {b} = " problem = f"HCF of {a} and {b} = "
solution = str(x) solution = str(x)
return problem, solution return problem, solution
@@ -835,8 +891,10 @@ def sumOfAnglesOfPolygonFunc(maxSides = 12):
# || Class Instances # || Class Instances
#Format is: # Format is:
#<title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>) # <title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>)
addition = Generator("Addition", 0, "a+b=", "c", additionFunc) addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc) subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc)
multiplication = Generator("Multiplication", 2, "a*b=", "c", multiplicationFunc) multiplication = Generator("Multiplication", 2, "a*b=", "c", multiplicationFunc)
@@ -845,48 +903,49 @@ binaryComplement1s = Generator("Binary Complement 1s", 4, "1010=", "0101", binar
moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc) moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc) squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc)
powerRuleDifferentiation = Generator("Power Rule Differentiation", 7, "nx^m=", "(n*m)x^(m-1)", powerRuleDifferentiationFunc) powerRuleDifferentiation = Generator("Power Rule Differentiation", 7, "nx^m=", "(n*m)x^(m-1)", powerRuleDifferentiationFunc)
square = Generator("Square", 8,"a^2", "b", squareFunc) square = Generator("Square", 8, "a^2", "b", squareFunc)
lcm = Generator("LCM (Least Common Multiple)", 9, "LCM of a and b = ", "c", lcmFunc) lcm = Generator("LCM (Least Common Multiple)", 9, "LCM of a and b = ", "c", lcmFunc)
gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ", "c", gcdFunc) gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ", "c", gcdFunc)
basicAlgebra = Generator("Basic Algebra", 11, "ax + b = c", "d", basicAlgebraFunc) basicAlgebra = Generator("Basic Algebra", 11, "ax + b = c", "d", basicAlgebraFunc)
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc) log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
intDivision = Generator("Easy Division", 13,"a/b=","c",divisionToIntFunc) intDivision = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)
decimalToBinary = Generator("Decimal to Binary",14,"Binary of a=","b",DecimalToBinaryFunc) decimalToBinary = Generator("Decimal to Binary", 14, "Binary of a=", "b", DecimalToBinaryFunc)
binaryToDecimal = Generator("Binary to Decimal",15,"Decimal of a=","b",BinaryToDecimalFunc) binaryToDecimal = Generator("Binary to Decimal", 15, "Decimal of a=", "b", BinaryToDecimalFunc)
fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc) fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc)
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix", 17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22) intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix", 17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22)
areaOfTriangle = Generator("Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc) areaOfTriangle = Generator("Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc)
doesTriangleExist = Generator("Triangle exists check", 19, "Does triangle with sides a, b and c exist?","Yes/No", isTriangleValidFunc) doesTriangleExist = Generator("Triangle exists check", 19, "Does triangle with sides a, b and c exist?", "Yes/No", isTriangleValidFunc)
midPointOfTwoPoint=Generator("Midpoint of the two point", 20,"((X1,Y1),(X2,Y2))=","((X1+X2)/2,(Y1+Y2)/2)",MidPointOfTwoPointFunc) midPointOfTwoPoint = Generator("Midpoint of the two point", 20, "((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)", MidPointOfTwoPointFunc)
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc) factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc)
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22, "Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc) thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22, "Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc)
systemOfEquations = Generator("Solve a System of Equations in R^2", 23, "2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3", systemOfEquationsFunc) systemOfEquations = Generator("Solve a System of Equations in R^2", 23, "2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3",
distance2Point = Generator("Distance between 2 points", 24, "Find the distance between (x1,y1) and (x2,y2)","sqrt(distanceSquared)", distanceTwoPointsFunc) systemOfEquationsFunc)
distance2Point = Generator("Distance between 2 points", 24, "Find the distance between (x1,y1) and (x2,y2)", "sqrt(distanceSquared)", distanceTwoPointsFunc)
pythagoreanTheorem = Generator("Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc) pythagoreanTheorem = Generator("Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc)
linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc) #This has multiple variables whereas #23 has only x and y linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc) # This has multiple variables whereas #23 has only x and y
primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc) primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc)
fractionMultiplication = Generator("Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc) fractionMultiplication = Generator("Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc)
angleRegularPolygon = Generator("Angle of a Regular Polygon",29,"Find the angle of a regular polygon with 6 sides","120",regularPolygonAngleFunc) angleRegularPolygon = Generator("Angle of a Regular Polygon", 29, "Find the angle of a regular polygon with 6 sides", "120", regularPolygonAngleFunc)
combinations = Generator("Combinations of Objects",30, "Combinations available for picking 4 objects at a time from 6 distinct objects ="," 15", combinationsFunc) combinations = Generator("Combinations of Objects", 30, "Combinations available for picking 4 objects at a time from 6 distinct objects =", " 15", combinationsFunc)
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc) factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
surfaceAreaCubeGen = Generator("Surface Area of Cube", 32, "Surface area of cube with side a units is","b units^2", surfaceAreaCube) surfaceAreaCubeGen = Generator("Surface Area of Cube", 32, "Surface area of cube with side a units is", "b units^2", surfaceAreaCube)
surfaceAreaCuboidGen = Generator("Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is","d units^2", surfaceAreaCuboid) surfaceAreaCuboidGen = Generator("Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is", "d units^2", surfaceAreaCuboid)
surfaceAreaCylinderGen = Generator("Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is","c units^2", surfaceAreaCylinder) surfaceAreaCylinderGen = Generator("Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is", "c units^2", surfaceAreaCylinder)
volumeCubeGen = Generator("Volum of Cube", 35, "Volume of cube with side a units is","b units^3", volumeCube) volumeCubeGen = Generator("Volum of Cube", 35, "Volume of cube with side a units is", "b units^3", volumeCube)
volumeCuboidGen = Generator("Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is","d units^3", volumeCuboid) volumeCuboidGen = Generator("Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is", "d units^3", volumeCuboid)
volumeCylinderGen = Generator("Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is","c units^3", volumeCylinder) volumeCylinderGen = Generator("Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is", "c units^3", volumeCylinder)
surfaceAreaConeGen = Generator("Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is","c units^2", surfaceAreaCone) surfaceAreaConeGen = Generator("Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is", "c units^2", surfaceAreaCone)
volumeConeGen = Generator("Volume of cone", 39, "Volume of cone with height = a units and radius = b units is","c units^3", volumeCone) volumeConeGen = Generator("Volume of cone", 39, "Volume of cone with height = a units and radius = b units is", "c units^3", volumeCone)
commonFactors = Generator("Common Factors", 40, "Common Factors of {a} and {b} = ","[c, d, ...]",commonFactorsFunc) commonFactors = Generator("Common Factors", 40, "Common Factors of {a} and {b} = ", "[c, d, ...]", commonFactorsFunc)
intersectionOfTwoLines = Generator("Intersection of Two Lines", 41, "Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc) intersectionOfTwoLines = Generator("Intersection of Two Lines", 41, "Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc)
permutations= Generator("Permutations",42, "Total permutations of 4 objects at a time from 10 objects is","5040", permutationFunc) permutations = Generator("Permutations", 42, "Total permutations of 4 objects at a time from 10 objects is", "5040", permutationFunc)
vectorCross = Generator("Cross Product of 2 Vectors", 43, "a X b = ", "c", vectorCrossFunc) vectorCross = Generator("Cross Product of 2 Vectors", 43, "a X b = ", "c", vectorCrossFunc)
compareFractions=Generator("Compare Fractions",44,"Which symbol represents the comparison between a/b and c/d?",">/</=",compareFractionsFunc) compareFractions = Generator("Compare Fractions", 44, "Which symbol represents the comparison between a/b and c/d?", ">/</=", compareFractionsFunc)
simpleInterest = Generator("Simple Interest", 45, "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", simpleInterestFunc) simpleInterest = Generator("Simple Interest", 45, "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", simpleInterestFunc)
matrixMultiplication = Generator("Multiplication of two matrices", 46, "Multiply two matrices A and B", "C", matrixMultiplicationFunc) matrixMultiplication = Generator("Multiplication of two matrices", 46, "Multiply two matrices A and B", "C", matrixMultiplicationFunc)
CubeRoot = Generator("Cube Root",47,"Cuberoot of a upto 2 decimal places is","b",cubeRootFunc) CubeRoot = Generator("Cube Root", 47, "Cuberoot of a upto 2 decimal places is", "b", cubeRootFunc)
powerRuleIntegration = Generator("Power Rule Integration", 48, "nx^m=", "(n/m+1)x^(m+1)", powerRuleIntegrationFunc) powerRuleIntegration = Generator("Power Rule Integration", 48, "nx^m=", "(n/m)x^(m+1)", powerRuleIntegrationFunc)
fourthAngleOfQuadrilateral = Generator("Fourth Angle of Quadrilateral",49,"Fourth angle of Quadrilateral with angles a,b,c =","angle4",fourthAngleOfQuadriFunc) fourthAngleOfQuadrilateral = Generator("Fourth Angle of Quadrilateral", 49, "Fourth angle of Quadrilateral with angles a,b,c =", "angle4", fourthAngleOfQuadriFunc)
quadraticEquationSolve = Generator("Quadratic Equation", 50, "Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2", quadraticEquation) quadraticEquationSolve = Generator("Quadratic Equation", 50, "Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2", quadraticEquation)
hcf = Generator("HCF (Highest Common Factor)", 51, "HCF of a and b = ", "c", hcfFunc) hcf = Generator("HCF (Highest Common Factor)", 51, "HCF of a and b = ", "c", hcfFunc)
diceSumProbability=Generator("Probability of a certain sum appearing on faces of dice", 52,"If n dices are rolled then probabilty of getting sum of x is =","z", DiceSumProbFunc) diceSumProbability=Generator("Probability of a certain sum appearing on faces of dice", 52,"If n dices are rolled then probabilty of getting sum of x is =","z", DiceSumProbFunc)

View File

@@ -5,42 +5,42 @@ from hypothesis import strategies as st, given, assume
@given(maxSum=st.integers(min_value=1), maxAddend=st.integers(min_value=1)) @given(maxSum=st.integers(min_value=1), maxAddend=st.integers(min_value=1))
def test_additionFunc(maxSum, maxAddend): def test_addition(maxSum, maxAddend):
assume(maxSum > maxAddend) assume(maxSum > maxAddend)
problem, solution = additionFunc(maxSum, maxAddend) problem, solution = addition.func(maxSum, maxAddend)
assert eval(problem[:-1]) == int(solution) assert eval(problem[:-1]) == int(solution)
@given(maxMinuend=st.integers(min_value=1), maxDiff=st.integers(min_value=1)) @given(maxMinuend=st.integers(min_value=1), maxDiff=st.integers(min_value=1))
def test_subtractionFunc(maxMinuend, maxDiff): def test_subtraction(maxMinuend, maxDiff):
assume(maxMinuend > maxDiff) assume(maxMinuend > maxDiff)
problem, solution = subtractionFunc(maxMinuend, maxDiff) problem, solution = subtraction.func(maxMinuend, maxDiff)
assert eval(problem[:-1]) == int(solution) assert eval(problem[:-1]) == int(solution)
@given(maxRes=st.integers(min_value=1), maxMulti=st.integers(min_value=1)) @given(maxRes=st.integers(min_value=1), maxMulti=st.integers(min_value=1))
def test_multiplicationFunc(maxRes, maxMulti): def test_multiplication(maxRes, maxMulti):
assume(maxRes > maxMulti) assume(maxRes > maxMulti)
problem, solution = multiplicationFunc(maxRes, maxMulti) problem, solution = multiplication.func(maxRes, maxMulti)
assert eval(problem[:-1]) == int(solution) assert eval(problem[:-1]) == int(solution)
@given(maxRes=st.integers(min_value=1), maxDivid=st.integers(min_value=1)) @given(maxRes=st.integers(min_value=1), maxDivid=st.integers(min_value=1))
def test_divisionFunc(maxRes, maxDivid): def test_division(maxRes, maxDivid):
assume(maxRes > maxDivid) assume(maxRes > maxDivid)
problem, solution = divisionFunc(maxRes, maxDivid) problem, solution = division.func(maxRes, maxDivid)
assert eval(problem[:-1]) == float(solution) assert eval(problem[:-1]) == float(solution)
@given(maxRes=st.integers(min_value=1), maxModulo=st.integers(min_value=1)) @given(maxRes=st.integers(min_value=1), maxModulo=st.integers(min_value=1))
def test_moduloFunc(maxRes, maxModulo): def test_moduloDivision(maxRes, maxModulo):
assume(maxRes > maxModulo) assume(maxRes > maxModulo)
problem, solution = moduloFunc(maxRes, maxModulo) problem, solution = moduloDivision.func(maxRes, maxModulo)
assert eval(problem[:-1]) == int(solution) assert eval(problem[:-1]) == int(solution)
@given(minNo=st.integers(min_value=1), maxNo=st.integers(min_value=1, max_value=2 ** 50)) @given(minNo=st.integers(min_value=1), maxNo=st.integers(min_value=1, max_value=2 ** 50))
def test_squareRootFunc(minNo, maxNo): def test_squareRoot(minNo, maxNo):
assume(maxNo > minNo) assume(maxNo > minNo)
problem, solution = squareRootFunc(minNo, maxNo) problem, solution = squareRoot.func(minNo, maxNo)
assert eval(problem[:-1]) == float(solution) assert eval(problem[:-1]) == float(solution)