diff --git a/docs/data.js b/docs/data.js deleted file mode 100644 index b5a66be..0000000 --- a/docs/data.js +++ /dev/null @@ -1,5978 +0,0 @@ -const data = [ - { - "function_name": "addition", - "id": 0, - "kwargs": [ - "maxSum=99", - "maxAddend=50" - ], - "name": "Addition", - "samples": [ - { - "problem": "34+25=", - "solution": "59" - }, - { - "problem": "32+2=", - "solution": "34" - }, - { - "problem": "18+47=", - "solution": "65" - }, - { - "problem": "31+31=", - "solution": "62" - }, - { - "problem": "23+47=", - "solution": "70" - }, - { - "problem": "47+18=", - "solution": "65" - }, - { - "problem": "46+42=", - "solution": "88" - }, - { - "problem": "12+42=", - "solution": "54" - }, - { - "problem": "24+6=", - "solution": "30" - }, - { - "problem": "2+13=", - "solution": "15" - } - ], - "subject": "basic_math" - }, - { - "function_name": "subtraction", - "id": 1, - "kwargs": [ - "maxMinuend=99", - "maxDiff=99" - ], - "name": "Subtraction", - "samples": [ - { - "problem": "57-43=", - "solution": "14" - }, - { - "problem": "69-61=", - "solution": "8" - }, - { - "problem": "19-11=", - "solution": "8" - }, - { - "problem": "11-6=", - "solution": "5" - }, - { - "problem": "72-13=", - "solution": "59" - }, - { - "problem": "74-15=", - "solution": "59" - }, - { - "problem": "94-53=", - "solution": "41" - }, - { - "problem": "89-47=", - "solution": "42" - }, - { - "problem": "93-68=", - "solution": "25" - }, - { - "problem": "50-13=", - "solution": "37" - } - ], - "subject": "basic_math" - }, - { - "function_name": "multiplication", - "id": 2, - "kwargs": [ - "maxMulti=12" - ], - "name": "Multiplication", - "samples": [ - { - "problem": "11*10=", - "solution": "110" - }, - { - "problem": "1*7=", - "solution": "7" - }, - { - "problem": "1*5=", - "solution": "5" - }, - { - "problem": "3*11=", - "solution": "33" - }, - { - "problem": "10*2=", - "solution": "20" - }, - { - "problem": "1*6=", - "solution": "6" - }, - { - "problem": "4*12=", - "solution": "48" - }, - { - "problem": "10*6=", - "solution": "60" - }, - { - "problem": "4*2=", - "solution": "8" - }, - { - "problem": "0*2=", - "solution": "0" - } - ], - "subject": "basic_math" - }, - { - "function_name": "division", - "id": 3, - "kwargs": [ - "maxA=25", - "maxB=25" - ], - "name": "Division", - "samples": [ - { - "problem": "14/1=", - "solution": "14" - }, - { - "problem": "90/15=", - "solution": "6" - }, - { - "problem": "153/17=", - "solution": "9" - }, - { - "problem": "13/13=", - "solution": "1" - }, - { - "problem": "152/19=", - "solution": "8" - }, - { - "problem": "13/1=", - "solution": "13" - }, - { - "problem": "28/4=", - "solution": "7" - }, - { - "problem": "50/2=", - "solution": "25" - }, - { - "problem": "69/3=", - "solution": "23" - }, - { - "problem": "126/14=", - "solution": "9" - } - ], - "subject": "basic_math" - }, - { - "function_name": "binary_complement_1s", - "id": 4, - "kwargs": [ - "maxDigits=10" - ], - "name": "Binary Complement 1s", - "samples": [ - { - "problem": "01=", - "solution": "10" - }, - { - "problem": "101=", - "solution": "010" - }, - { - "problem": "100=", - "solution": "011" - }, - { - "problem": "0=", - "solution": "1" - }, - { - "problem": "1001110011=", - "solution": "0110001100" - }, - { - "problem": "11101110=", - "solution": "00010001" - }, - { - "problem": "1001010110=", - "solution": "0110101001" - }, - { - "problem": "110010=", - "solution": "001101" - }, - { - "problem": "01=", - "solution": "10" - }, - { - "problem": "10010=", - "solution": "01101" - } - ], - "subject": "computer_science" - }, - { - "function_name": "modulo_division", - "id": 5, - "kwargs": [ - "maxRes=99", - "maxModulo=99" - ], - "name": "Modulo Division", - "samples": [ - { - "problem": "86%1=", - "solution": "0" - }, - { - "problem": "14%69=", - "solution": "14" - }, - { - "problem": "89%70=", - "solution": "19" - }, - { - "problem": "2%89=", - "solution": "2" - }, - { - "problem": "37%22=", - "solution": "15" - }, - { - "problem": "51%52=", - "solution": "51" - }, - { - "problem": "80%84=", - "solution": "80" - }, - { - "problem": "33%96=", - "solution": "33" - }, - { - "problem": "69%56=", - "solution": "13" - }, - { - "problem": "17%63=", - "solution": "17" - } - ], - "subject": "computer_science" - }, - { - "function_name": "square_root", - "id": 6, - "kwargs": [ - "minNo=1", - "maxNo=12" - ], - "name": "Square Root", - "samples": [ - { - "problem": "sqrt(25)=", - "solution": "5" - }, - { - "problem": "sqrt(144)=", - "solution": "12" - }, - { - "problem": "sqrt(49)=", - "solution": "7" - }, - { - "problem": "sqrt(25)=", - "solution": "5" - }, - { - "problem": "sqrt(9)=", - "solution": "3" - }, - { - "problem": "sqrt(144)=", - "solution": "12" - }, - { - "problem": "sqrt(121)=", - "solution": "11" - }, - { - "problem": "sqrt(1)=", - "solution": "1" - }, - { - "problem": "sqrt(121)=", - "solution": "11" - }, - { - "problem": "sqrt(1)=", - "solution": "1" - } - ], - "subject": "basic_math" - }, - { - "function_name": "power_rule_differentiation", - "id": 7, - "kwargs": [ - "maxCoef=10", - "maxExp=10", - "maxTerms=5" - ], - "name": "Power Rule Differentiation", - "samples": [ - { - "problem": "6x^5 + 4x^6 + 3x^10 + 6x^6 + 10x^5", - "solution": "30x^4 + 24x^5 + 30x^9 + 36x^5 + 50x^4" - }, - { - "problem": "10x^10 + 10x^4 + 10x^3 + 2x^1", - "solution": "100x^9 + 40x^3 + 30x^2 + 2x^0" - }, - { - "problem": "7x^1 + 2x^1 + 7x^9", - "solution": "7x^0 + 2x^0 + 63x^8" - }, - { - "problem": "10x^2 + 8x^1 + 2x^4 + 8x^4 + 5x^2", - "solution": "20x^1 + 8x^0 + 8x^3 + 32x^3 + 10x^1" - }, - { - "problem": "2x^4 + 8x^8 + 6x^9 + 6x^8", - "solution": "8x^3 + 64x^7 + 54x^8 + 48x^7" - }, - { - "problem": "1x^7", - "solution": "7x^6" - }, - { - "problem": "6x^10 + 3x^8 + 6x^10 + 4x^7 + 4x^3", - "solution": "60x^9 + 24x^7 + 60x^9 + 28x^6 + 12x^2" - }, - { - "problem": "5x^3 + 1x^1 + 10x^3", - "solution": "15x^2 + 1x^0 + 30x^2" - }, - { - "problem": "10x^3 + 1x^1", - "solution": "30x^2 + 1x^0" - }, - { - "problem": "10x^1", - "solution": "10x^0" - } - ], - "subject": "calculus" - }, - { - "function_name": "square", - "id": 8, - "kwargs": [ - "maxSquareNum=20" - ], - "name": "Square", - "samples": [ - { - "problem": "12^2=", - "solution": "144" - }, - { - "problem": "3^2=", - "solution": "9" - }, - { - "problem": "4^2=", - "solution": "16" - }, - { - "problem": "5^2=", - "solution": "25" - }, - { - "problem": "19^2=", - "solution": "361" - }, - { - "problem": "7^2=", - "solution": "49" - }, - { - "problem": "19^2=", - "solution": "361" - }, - { - "problem": "10^2=", - "solution": "100" - }, - { - "problem": "19^2=", - "solution": "361" - }, - { - "problem": "3^2=", - "solution": "9" - } - ], - "subject": "basic_math" - }, - { - "function_name": "lcm", - "id": 9, - "kwargs": [ - "maxVal=20" - ], - "name": "LCM (Least Common Multiple)", - "samples": [ - { - "problem": "LCM of 9 and 4 =", - "solution": "36" - }, - { - "problem": "LCM of 13 and 15 =", - "solution": "195" - }, - { - "problem": "LCM of 13 and 4 =", - "solution": "52" - }, - { - "problem": "LCM of 6 and 16 =", - "solution": "48" - }, - { - "problem": "LCM of 7 and 1 =", - "solution": "7" - }, - { - "problem": "LCM of 5 and 4 =", - "solution": "20" - }, - { - "problem": "LCM of 10 and 11 =", - "solution": "110" - }, - { - "problem": "LCM of 12 and 12 =", - "solution": "12" - }, - { - "problem": "LCM of 20 and 3 =", - "solution": "60" - }, - { - "problem": "LCM of 19 and 15 =", - "solution": "285" - } - ], - "subject": "misc" - }, - { - "function_name": "gcd", - "id": 10, - "kwargs": [ - "maxVal=20" - ], - "name": "GCD (Greatest Common Denominator)", - "samples": [ - { - "problem": "GCD of 9 and 4 = ", - "solution": "1" - }, - { - "problem": "GCD of 6 and 9 = ", - "solution": "3" - }, - { - "problem": "GCD of 5 and 13 = ", - "solution": "1" - }, - { - "problem": "GCD of 3 and 3 = ", - "solution": "3" - }, - { - "problem": "GCD of 18 and 17 = ", - "solution": "1" - }, - { - "problem": "GCD of 19 and 18 = ", - "solution": "1" - }, - { - "problem": "GCD of 13 and 11 = ", - "solution": "1" - }, - { - "problem": "GCD of 4 and 18 = ", - "solution": "2" - }, - { - "problem": "GCD of 1 and 15 = ", - "solution": "1" - }, - { - "problem": "GCD of 20 and 15 = ", - "solution": "5" - } - ], - "subject": "misc" - }, - { - "function_name": "basic_algebra", - "id": 11, - "kwargs": [ - "maxVariable=10" - ], - "name": "Basic Algebra", - "samples": [ - { - "problem": "9x + 3 = 10", - "solution": "7/9" - }, - { - "problem": "4x + 3 = 8", - "solution": "5/4" - }, - { - "problem": "1x + 8 = 9", - "solution": "1" - }, - { - "problem": "1x + 6 = 10", - "solution": "4" - }, - { - "problem": "9x + 6 = 7", - "solution": "1/9" - }, - { - "problem": "10x + 9 = 9", - "solution": "0" - }, - { - "problem": "7x + 6 = 8", - "solution": "2/7" - }, - { - "problem": "9x + 10 = 10", - "solution": "0" - }, - { - "problem": "9x + 5 = 5", - "solution": "0" - }, - { - "problem": "1x + 3 = 8", - "solution": "5" - } - ], - "subject": "algebra" - }, - { - "function_name": "log", - "id": 12, - "kwargs": [ - "maxBase=3", - "maxVal=8" - ], - "name": "Logarithm", - "samples": [ - { - "problem": "log3(9)", - "solution": "2" - }, - { - "problem": "log3(27)", - "solution": "3" - }, - { - "problem": "log3(81)", - "solution": "4" - }, - { - "problem": "log2(128)", - "solution": "7" - }, - { - "problem": "log2(128)", - "solution": "7" - }, - { - "problem": "log2(4)", - "solution": "2" - }, - { - "problem": "log3(3)", - "solution": "1" - }, - { - "problem": "log2(2)", - "solution": "1" - }, - { - "problem": "log2(16)", - "solution": "4" - }, - { - "problem": "log3(9)", - "solution": "2" - } - ], - "subject": "algebra" - }, - { - "function_name": "complex_division", - "id": 13, - "kwargs": [ - "maxRes=99", - "maxDivid=99" - ], - "name": "Complex Division", - "samples": [ - { - "problem": "6/36=", - "solution": "0.17" - }, - { - "problem": "58/91=", - "solution": "0.64" - }, - { - "problem": "55/4=", - "solution": "13.75" - }, - { - "problem": "60/39=", - "solution": "1.54" - }, - { - "problem": "2/90=", - "solution": "0.02" - }, - { - "problem": "80/28=", - "solution": "2.86" - }, - { - "problem": "90/36=", - "solution": "2.5" - }, - { - "problem": "0/25=", - "solution": "0.0" - }, - { - "problem": "17/95=", - "solution": "0.18" - }, - { - "problem": "50/80=", - "solution": "0.62" - } - ], - "subject": "basic_math" - }, - { - "function_name": "decimal_to_binary", - "id": 14, - "kwargs": [ - "max_dec=99" - ], - "name": "Decimal to Binary", - "samples": [ - { - "problem": "Binary of 11=", - "solution": "1011" - }, - { - "problem": "Binary of 86=", - "solution": "1010110" - }, - { - "problem": "Binary of 95=", - "solution": "1011111" - }, - { - "problem": "Binary of 19=", - "solution": "10011" - }, - { - "problem": "Binary of 10=", - "solution": "1010" - }, - { - "problem": "Binary of 82=", - "solution": "1010010" - }, - { - "problem": "Binary of 44=", - "solution": "101100" - }, - { - "problem": "Binary of 82=", - "solution": "1010010" - }, - { - "problem": "Binary of 53=", - "solution": "110101" - }, - { - "problem": "Binary of 95=", - "solution": "1011111" - } - ], - "subject": "computer_science" - }, - { - "function_name": "binary_to_decimal", - "id": 15, - "kwargs": [ - "max_dig=10" - ], - "name": "Binary to Decimal", - "samples": [ - { - "problem": "010", - "solution": 2 - }, - { - "problem": "10110001", - "solution": 177 - }, - { - "problem": "0", - "solution": 0 - }, - { - "problem": "111", - "solution": 7 - }, - { - "problem": "1111010010", - "solution": 978 - }, - { - "problem": "1010100101", - "solution": 677 - }, - { - "problem": "0001001", - "solution": 9 - }, - { - "problem": "0001000011", - "solution": 67 - }, - { - "problem": "000110", - "solution": 6 - }, - { - "problem": "0001", - "solution": 1 - } - ], - "subject": "computer_science" - }, - { - "function_name": "divide_fractions", - "id": 16, - "kwargs": [ - "maxVal=10" - ], - "name": "Fraction Division", - "samples": [ - { - "problem": "(7/6)/(7/10)", - "solution": "5/3" - }, - { - "problem": "(10/9)/(1/7)", - "solution": "70/9" - }, - { - "problem": "(4/7)/(8/10)", - "solution": "5/7" - }, - { - "problem": "(4/10)/(1/9)", - "solution": "18/5" - }, - { - "problem": "(10/8)/(5/9)", - "solution": "9/4" - }, - { - "problem": "(5/1)/(2/5)", - "solution": "25/2" - }, - { - "problem": "(9/2)/(7/5)", - "solution": "45/14" - }, - { - "problem": "(10/9)/(10/1)", - "solution": "1/9" - }, - { - "problem": "(2/7)/(10/8)", - "solution": "8/35" - }, - { - "problem": "(9/2)/(1/4)", - "solution": "18" - } - ], - "subject": "basic_math" - }, - { - "function_name": "multiply_int_to_22_matrix", - "id": 17, - "kwargs": [ - "maxMatrixVal=10", - "maxRes=100" - ], - "name": "Integer Multiplication with 2x2 Matrix", - "samples": [ - { - "problem": "1 * [[3, 1], [7, 1]] = ", - "solution": "[[3,1],[7,1]]" - }, - { - "problem": "9 * [[0, 10], [6, 2]] = ", - "solution": "[[0,90],[54,18]]" - }, - { - "problem": "0 * [[1, 10], [4, 5]] = ", - "solution": "[[0,0],[0,0]]" - }, - { - "problem": "3 * [[1, 5], [10, 8]] = ", - "solution": "[[3,15],[30,24]]" - }, - { - "problem": "8 * [[4, 4], [7, 9]] = ", - "solution": "[[32,32],[56,72]]" - }, - { - "problem": "8 * [[1, 9], [2, 6]] = ", - "solution": "[[8,72],[16,48]]" - }, - { - "problem": "0 * [[9, 3], [3, 2]] = ", - "solution": "[[0,0],[0,0]]" - }, - { - "problem": "12 * [[3, 8], [8, 8]] = ", - "solution": "[[36,96],[96,96]]" - }, - { - "problem": "5 * [[7, 9], [6, 1]] = ", - "solution": "[[35,45],[30,5]]" - }, - { - "problem": "0 * [[0, 9], [9, 4]] = ", - "solution": "[[0,0],[0,0]]" - } - ], - "subject": "algebra" - }, - { - "function_name": "area_of_triangle", - "id": 18, - "kwargs": [ - "maxA=20", - "maxB=20", - "maxC=20" - ], - "name": "Area of Triangle", - "samples": [ - { - "problem": "Area of triangle with side lengths: 17 19 1 = ", - "solution": "(9.541493884968725e-16+15.582442042247422j)" - }, - { - "problem": "Area of triangle with side lengths: 17 13 14 = ", - "solution": "88.99438184514796" - }, - { - "problem": "Area of triangle with side lengths: 3 17 17 = ", - "solution": "25.40054133281415" - }, - { - "problem": "Area of triangle with side lengths: 14 17 19 = ", - "solution": "114.89125293076057" - }, - { - "problem": "Area of triangle with side lengths: 14 18 14 = ", - "solution": "96.51424765287247" - }, - { - "problem": "Area of triangle with side lengths: 15 1 20 = ", - "solution": "(2.623718239906474e-15+42.8485705712571j)" - }, - { - "problem": "Area of triangle with side lengths: 15 4 4 = ", - "solution": "(2.9135673507458437e-15+47.5821657766857j)" - }, - { - "problem": "Area of triangle with side lengths: 13 16 20 = ", - "solution": "103.81202964974725" - }, - { - "problem": "Area of triangle with side lengths: 3 14 4 = ", - "solution": "(2.5917722631556257e-15+42.32685317856738j)" - }, - { - "problem": "Area of triangle with side lengths: 10 11 19 = ", - "solution": "42.42640687119285" - } - ], - "subject": "geometry" - }, - { - "function_name": "valid_triangle", - "id": 19, - "kwargs": [ - "maxSideLength=50" - ], - "name": "Triangle exists check", - "samples": [ - { - "problem": "Does triangle with sides 28, 17 and 19 exist?", - "solution": "Yes" - }, - { - "problem": "Does triangle with sides 16, 23 and 2 exist?", - "solution": "No" - }, - { - "problem": "Does triangle with sides 35, 30 and 3 exist?", - "solution": "No" - }, - { - "problem": "Does triangle with sides 39, 8 and 41 exist?", - "solution": "Yes" - }, - { - "problem": "Does triangle with sides 5, 7 and 43 exist?", - "solution": "No" - }, - { - "problem": "Does triangle with sides 45, 31 and 10 exist?", - "solution": "No" - }, - { - "problem": "Does triangle with sides 41, 26 and 37 exist?", - "solution": "Yes" - }, - { - "problem": "Does triangle with sides 6, 27 and 20 exist?", - "solution": "No" - }, - { - "problem": "Does triangle with sides 29, 24 and 13 exist?", - "solution": "Yes" - }, - { - "problem": "Does triangle with sides 29, 19 and 25 exist?", - "solution": "Yes" - } - ], - "subject": "geometry" - }, - { - "function_name": "midpoint_of_two_points", - "id": 20, - "kwargs": [ - "maxValue=20" - ], - "name": "Midpoint of the two point", - "samples": [ - { - "problem": "(-17,-1),(7,2)=", - "solution": "(-5.0,0.5)" - }, - { - "problem": "(-17,16),(16,-19)=", - "solution": "(-0.5,-1.5)" - }, - { - "problem": "(-10,15),(-3,-3)=", - "solution": "(-6.5,6.0)" - }, - { - "problem": "(0,0),(10,-9)=", - "solution": "(5.0,-4.5)" - }, - { - "problem": "(0,13),(-1,-13)=", - "solution": "(-0.5,0.0)" - }, - { - "problem": "(3,-8),(-1,-20)=", - "solution": "(1.0,-14.0)" - }, - { - "problem": "(-6,7),(-17,15)=", - "solution": "(-11.5,11.0)" - }, - { - "problem": "(13,14),(-7,6)=", - "solution": "(3.0,10.0)" - }, - { - "problem": "(-7,-15),(10,9)=", - "solution": "(1.5,-3.0)" - }, - { - "problem": "(5,-6),(-17,-4)=", - "solution": "(-6.0,-5.0)" - } - ], - "subject": "algebra" - }, - { - "function_name": "factoring", - "id": 21, - "kwargs": [ - "range_x1=10", - "range_x2=10" - ], - "name": "Factoring Quadratic", - "samples": [ - { - "problem": "x^2+9x+8", - "solution": "(x+1)(x+8)" - }, - { - "problem": "x^2-8x", - "solution": "(x-8)(x)" - }, - { - "problem": "x^2+2x-63", - "solution": "(x-7)(x+9)" - }, - { - "problem": "x^2-16", - "solution": "(x+4)(x-4)" - }, - { - "problem": "x^2-2x-80", - "solution": "(x-10)(x+8)" - }, - { - "problem": "x^2-11x+24", - "solution": "(x-3)(x-8)" - }, - { - "problem": "x^2-4x+3", - "solution": "(x-3)(x-1)" - }, - { - "problem": "x^2+5x-14", - "solution": "(x-2)(x+7)" - }, - { - "problem": "x^2+12x+27", - "solution": "(x+3)(x+9)" - }, - { - "problem": "x^2-17x+72", - "solution": "(x-9)(x-8)" - } - ], - "subject": "algebra" - }, - { - "function_name": "third_angle_of_triangle", - "id": 22, - "kwargs": [ - "maxAngle=89" - ], - "name": "Third Angle of Triangle", - "samples": [ - { - "problem": "Third angle of triangle with angles 31 and 56 = ", - "solution": 93 - }, - { - "problem": "Third angle of triangle with angles 39 and 33 = ", - "solution": 108 - }, - { - "problem": "Third angle of triangle with angles 36 and 26 = ", - "solution": 118 - }, - { - "problem": "Third angle of triangle with angles 61 and 7 = ", - "solution": 112 - }, - { - "problem": "Third angle of triangle with angles 79 and 55 = ", - "solution": 46 - }, - { - "problem": "Third angle of triangle with angles 13 and 16 = ", - "solution": 151 - }, - { - "problem": "Third angle of triangle with angles 33 and 26 = ", - "solution": 121 - }, - { - "problem": "Third angle of triangle with angles 20 and 85 = ", - "solution": 75 - }, - { - "problem": "Third angle of triangle with angles 44 and 71 = ", - "solution": 65 - }, - { - "problem": "Third angle of triangle with angles 57 and 77 = ", - "solution": 46 - } - ], - "subject": "geometry" - }, - { - "function_name": "system_of_equations", - "id": 23, - "kwargs": [ - "range_x=10", - "range_y=10", - "coeff_mult_range=10" - ], - "name": "Solve a System of Equations in R^2", - "samples": [ - { - "problem": "9x - 2y = 23, 9x + 9y = 45", - "solution": "x = 3, y = 2" - }, - { - "problem": "4x - 5y = 40, -8x + 3y = -80", - "solution": "x = 10, y = 0" - }, - { - "problem": "-3x - 8y = 45, 7x - 7y = -28", - "solution": "x = -7, y = -3" - }, - { - "problem": "5x + y = 46, 2x + 3y = 21", - "solution": "x = 9, y = 1" - }, - { - "problem": "-x - 7y = -43, 4x - 9y = -50", - "solution": "x = 1, y = 6" - }, - { - "problem": "2x - 6y = 44, x + = 4", - "solution": "x = 4, y = -6" - }, - { - "problem": "-8x + 7y = -126, -5x + 9y = -125", - "solution": "x = 7, y = -10" - }, - { - "problem": "8x - 8y = 0, -5x - y = -54", - "solution": "x = 9, y = 9" - }, - { - "problem": "7x - 7y = 91, -7x + = -21", - "solution": "x = 3, y = -10" - }, - { - "problem": "-x + 6y = -51, 5x + = 45", - "solution": "x = 9, y = -7" - } - ], - "subject": "algebra" - }, - { - "function_name": "distance_two_points", - "id": 24, - "kwargs": [ - "maxValXY=20", - "minValXY=-20" - ], - "name": "Distance between 2 points", - "samples": [ - { - "problem": "Find the distance between (-9, -20) and (15, 16)", - "solution": "sqrt(1872)" - }, - { - "problem": "Find the distance between (14, 18) and (11, 1)", - "solution": "sqrt(298)" - }, - { - "problem": "Find the distance between (20, 10) and (19, 19)", - "solution": "sqrt(82)" - }, - { - "problem": "Find the distance between (9, 0) and (18, 0)", - "solution": "sqrt(81)" - }, - { - "problem": "Find the distance between (-12, -8) and (-7, 10)", - "solution": "sqrt(349)" - }, - { - "problem": "Find the distance between (-3, -16) and (16, -2)", - "solution": "sqrt(557)" - }, - { - "problem": "Find the distance between (-14, -19) and (-18, -1)", - "solution": "sqrt(340)" - }, - { - "problem": "Find the distance between (-19, 21) and (-4, -9)", - "solution": "sqrt(1125)" - }, - { - "problem": "Find the distance between (-6, 16) and (-10, 0)", - "solution": "sqrt(272)" - }, - { - "problem": "Find the distance between (3, -7) and (4, 17)", - "solution": "sqrt(577)" - } - ], - "subject": "algebra" - }, - { - "function_name": "pythagorean_theorem", - "id": 25, - "kwargs": [ - "maxLength=20" - ], - "name": "Pythagorean Theorem", - "samples": [ - { - "problem": "The hypotenuse of a right triangle given the other two lengths 18 and 15 = ", - "solution": "23.43" - }, - { - "problem": "The hypotenuse of a right triangle given the other two lengths 3 and 15 = ", - "solution": "15.30" - }, - { - "problem": "The hypotenuse of a right triangle given the other two lengths 15 and 5 = ", - "solution": "15.81" - }, - { - "problem": "The hypotenuse of a right triangle given the other two lengths 12 and 8 = ", - "solution": "14.42" - }, - { - "problem": "The hypotenuse of a right triangle given the other two lengths 20 and 5 = ", - "solution": "20.62" - }, - { - "problem": "The hypotenuse of a right triangle given the other two lengths 14 and 6 = ", - "solution": "15.23" - }, - { - "problem": "The hypotenuse of a right triangle given the other two lengths 7 and 9 = ", - "solution": "11.40" - }, - { - "problem": "The hypotenuse of a right triangle given the other two lengths 10 and 4 = ", - "solution": "10.77" - }, - { - "problem": "The hypotenuse of a right triangle given the other two lengths 14 and 16 = ", - "solution": "21.26" - }, - { - "problem": "The hypotenuse of a right triangle given the other two lengths 15 and 2 = ", - "solution": "15.13" - } - ], - "subject": "geometry" - }, - { - "function_name": "linear_equations", - "id": 26, - "kwargs": [ - "n=2", - "varRange=20", - "coeffRange=20" - ], - "name": "Linear Equations", - "samples": [ - { - "problem": "-13x + 9y = 188, 8x + -10y = -196", - "solution": "x = -2, y = 18" - }, - { - "problem": "-3x + 10y = -47, 2x + 15y = -12", - "solution": "x = 9, y = -2" - }, - { - "problem": "9x + -2y = 160, 9x + -4y = 176", - "solution": "x = 16, y = -8" - }, - { - "problem": "19x + 7y = 58, -16x + -17y = -171", - "solution": "x = -1, y = 11" - }, - { - "problem": "11x + -14y = -11, 11x + -2y = 121", - "solution": "x = 13, y = 11" - }, - { - "problem": "-17x + 10y = 328, -3x + 13y = 159", - "solution": "x = -14, y = 9" - }, - { - "problem": "-10x + -2y = 82, 9x + 7y = -79", - "solution": "x = -8, y = -1" - }, - { - "problem": "-18x + -1y = -333, 15x + -11y = 171", - "solution": "x = 18, y = 9" - }, - { - "problem": "4x + 9y = -105, 4x + 5y = -85", - "solution": "x = -15, y = -5" - }, - { - "problem": "-1x + 4y = 81, -9x + 1y = 64", - "solution": "x = -5, y = 19" - } - ], - "subject": "algebra" - }, - { - "function_name": "prime_factors", - "id": 27, - "kwargs": [ - "minVal=1", - "maxVal=200" - ], - "name": "Prime Factorisation", - "samples": [ - { - "problem": "Find prime factors of 141", - "solution": "[3, 47]" - }, - { - "problem": "Find prime factors of 104", - "solution": "[2, 2, 2, 13]" - }, - { - "problem": "Find prime factors of 15", - "solution": "[3, 5]" - }, - { - "problem": "Find prime factors of 173", - "solution": "[173]" - }, - { - "problem": "Find prime factors of 169", - "solution": "[13, 13]" - }, - { - "problem": "Find prime factors of 125", - "solution": "[5, 5, 5]" - }, - { - "problem": "Find prime factors of 86", - "solution": "[2, 43]" - }, - { - "problem": "Find prime factors of 25", - "solution": "[5, 5]" - }, - { - "problem": "Find prime factors of 44", - "solution": "[2, 2, 11]" - }, - { - "problem": "Find prime factors of 14", - "solution": "[2, 7]" - } - ], - "subject": "misc" - }, - { - "function_name": "fraction_multiplication", - "id": 28, - "kwargs": [ - "maxVal=10" - ], - "name": "Fraction Multiplication", - "samples": [ - { - "problem": "(3/2)*(5/9)", - "solution": "5/6" - }, - { - "problem": "(2/9)*(3/9)", - "solution": "2/27" - }, - { - "problem": "(4/3)*(3/10)", - "solution": "2/5" - }, - { - "problem": "(9/10)*(4/8)", - "solution": "9/20" - }, - { - "problem": "(1/6)*(3/4)", - "solution": "1/8" - }, - { - "problem": "(3/1)*(1/2)", - "solution": "3/2" - }, - { - "problem": "(1/8)*(5/7)", - "solution": "5/56" - }, - { - "problem": "(9/6)*(4/5)", - "solution": "6/5" - }, - { - "problem": "(6/9)*(5/4)", - "solution": "5/6" - }, - { - "problem": "(1/10)*(6/4)", - "solution": "3/20" - } - ], - "subject": "basic_math" - }, - { - "function_name": "angle_regular_polygon", - "id": 29, - "kwargs": [ - "minVal=3", - "maxVal=20" - ], - "name": "Angle of a Regular Polygon", - "samples": [ - { - "problem": "Find the angle of a regular polygon with 15 sides", - "solution": 156.0 - }, - { - "problem": "Find the angle of a regular polygon with 16 sides", - "solution": 157.5 - }, - { - "problem": "Find the angle of a regular polygon with 19 sides", - "solution": 161.05 - }, - { - "problem": "Find the angle of a regular polygon with 9 sides", - "solution": 140.0 - }, - { - "problem": "Find the angle of a regular polygon with 12 sides", - "solution": 150.0 - }, - { - "problem": "Find the angle of a regular polygon with 20 sides", - "solution": 162.0 - }, - { - "problem": "Find the angle of a regular polygon with 4 sides", - "solution": 90.0 - }, - { - "problem": "Find the angle of a regular polygon with 13 sides", - "solution": 152.31 - }, - { - "problem": "Find the angle of a regular polygon with 5 sides", - "solution": 108.0 - }, - { - "problem": "Find the angle of a regular polygon with 5 sides", - "solution": 108.0 - } - ], - "subject": "geometry" - }, - { - "function_name": "combinations", - "id": 30, - "kwargs": [ - "maxlength=20" - ], - "name": "Combinations of Objects", - "samples": [ - { - "problem": "Number of combinations from 16 objects picked 6 at a time ", - "solution": 8008 - }, - { - "problem": "Number of combinations from 13 objects picked 1 at a time ", - "solution": 13 - }, - { - "problem": "Number of combinations from 16 objects picked 4 at a time ", - "solution": 1820 - }, - { - "problem": "Number of combinations from 20 objects picked 2 at a time ", - "solution": 190 - }, - { - "problem": "Number of combinations from 17 objects picked 3 at a time ", - "solution": 680 - }, - { - "problem": "Number of combinations from 13 objects picked 3 at a time ", - "solution": 286 - }, - { - "problem": "Number of combinations from 19 objects picked 1 at a time ", - "solution": 19 - }, - { - "problem": "Number of combinations from 11 objects picked 6 at a time ", - "solution": 462 - }, - { - "problem": "Number of combinations from 19 objects picked 8 at a time ", - "solution": 75582 - }, - { - "problem": "Number of combinations from 17 objects picked 7 at a time ", - "solution": 19448 - } - ], - "subject": "statistics" - }, - { - "function_name": "factorial", - "id": 31, - "kwargs": [ - "maxInput=6" - ], - "name": "Factorial", - "samples": [ - { - "problem": "0! = ", - "solution": "1" - }, - { - "problem": "5! = ", - "solution": "120" - }, - { - "problem": "0! = ", - "solution": "1" - }, - { - "problem": "1! = ", - "solution": "1" - }, - { - "problem": "5! = ", - "solution": "120" - }, - { - "problem": "5! = ", - "solution": "120" - }, - { - "problem": "6! = ", - "solution": "720" - }, - { - "problem": "0! = ", - "solution": "1" - }, - { - "problem": "1! = ", - "solution": "1" - }, - { - "problem": "2! = ", - "solution": "2" - } - ], - "subject": "basic_math" - }, - { - "function_name": "surface_area_cube", - "id": 32, - "kwargs": [ - "maxSide=20", - "unit='m'" - ], - "name": "Surface Area of Cube", - "samples": [ - { - "problem": "Surface area of cube with side = 18m is", - "solution": "1944 m^2" - }, - { - "problem": "Surface area of cube with side = 4m is", - "solution": "96 m^2" - }, - { - "problem": "Surface area of cube with side = 1m is", - "solution": "6 m^2" - }, - { - "problem": "Surface area of cube with side = 14m is", - "solution": "1176 m^2" - }, - { - "problem": "Surface area of cube with side = 2m is", - "solution": "24 m^2" - }, - { - "problem": "Surface area of cube with side = 1m is", - "solution": "6 m^2" - }, - { - "problem": "Surface area of cube with side = 6m is", - "solution": "216 m^2" - }, - { - "problem": "Surface area of cube with side = 4m is", - "solution": "96 m^2" - }, - { - "problem": "Surface area of cube with side = 11m is", - "solution": "726 m^2" - }, - { - "problem": "Surface area of cube with side = 16m is", - "solution": "1536 m^2" - } - ], - "subject": "geometry" - }, - { - "function_name": "surface_area_cuboid", - "id": 33, - "kwargs": [ - "maxSide=20", - "unit='m'" - ], - "name": "Surface Area of Cuboid", - "samples": [ - { - "problem": "Surface area of cuboid with sides = 13m, 12m, 13m is", - "solution": "962 m^2" - }, - { - "problem": "Surface area of cuboid with sides = 15m, 6m, 19m is", - "solution": "978 m^2" - }, - { - "problem": "Surface area of cuboid with sides = 19m, 5m, 7m is", - "solution": "526 m^2" - }, - { - "problem": "Surface area of cuboid with sides = 2m, 7m, 1m is", - "solution": "46 m^2" - }, - { - "problem": "Surface area of cuboid with sides = 17m, 10m, 9m is", - "solution": "826 m^2" - }, - { - "problem": "Surface area of cuboid with sides = 13m, 11m, 18m is", - "solution": "1150 m^2" - }, - { - "problem": "Surface area of cuboid with sides = 12m, 17m, 2m is", - "solution": "524 m^2" - }, - { - "problem": "Surface area of cuboid with sides = 20m, 9m, 3m is", - "solution": "534 m^2" - }, - { - "problem": "Surface area of cuboid with sides = 4m, 18m, 5m is", - "solution": "364 m^2" - }, - { - "problem": "Surface area of cuboid with sides = 1m, 2m, 3m is", - "solution": "22 m^2" - } - ], - "subject": "geometry" - }, - { - "function_name": "surface_area_cylinder", - "id": 34, - "kwargs": [ - "maxRadius=20", - "maxHeight=50", - "unit='m'" - ], - "name": "Surface Area of Cylinder", - "samples": [ - { - "problem": "Surface area of cylinder with height = 16m and radius = 18m is", - "solution": "3845 m^2" - }, - { - "problem": "Surface area of cylinder with height = 12m and radius = 16m is", - "solution": "2814 m^2" - }, - { - "problem": "Surface area of cylinder with height = 9m and radius = 12m is", - "solution": "1583 m^2" - }, - { - "problem": "Surface area of cylinder with height = 6m and radius = 6m is", - "solution": "452 m^2" - }, - { - "problem": "Surface area of cylinder with height = 37m and radius = 10m is", - "solution": "2953 m^2" - }, - { - "problem": "Surface area of cylinder with height = 6m and radius = 4m is", - "solution": "251 m^2" - }, - { - "problem": "Surface area of cylinder with height = 34m and radius = 5m is", - "solution": "1225 m^2" - }, - { - "problem": "Surface area of cylinder with height = 35m and radius = 18m is", - "solution": "5994 m^2" - }, - { - "problem": "Surface area of cylinder with height = 44m and radius = 10m is", - "solution": "3392 m^2" - }, - { - "problem": "Surface area of cylinder with height = 35m and radius = 13m is", - "solution": "3920 m^2" - } - ], - "subject": "geometry" - }, - { - "function_name": "volume_cube", - "id": 35, - "kwargs": [ - "maxSide=20", - "unit='m'" - ], - "name": "Volum of Cube", - "samples": [ - { - "problem": "Volume of cube with side = 7m is", - "solution": "343 m^3" - }, - { - "problem": "Volume of cube with side = 13m is", - "solution": "2197 m^3" - }, - { - "problem": "Volume of cube with side = 3m is", - "solution": "27 m^3" - }, - { - "problem": "Volume of cube with side = 2m is", - "solution": "8 m^3" - }, - { - "problem": "Volume of cube with side = 19m is", - "solution": "6859 m^3" - }, - { - "problem": "Volume of cube with side = 14m is", - "solution": "2744 m^3" - }, - { - "problem": "Volume of cube with side = 6m is", - "solution": "216 m^3" - }, - { - "problem": "Volume of cube with side = 13m is", - "solution": "2197 m^3" - }, - { - "problem": "Volume of cube with side = 9m is", - "solution": "729 m^3" - }, - { - "problem": "Volume of cube with side = 5m is", - "solution": "125 m^3" - } - ], - "subject": "geometry" - }, - { - "function_name": "volume_cuboid", - "id": 36, - "kwargs": [ - "maxSide=20", - "unit='m'" - ], - "name": "Volume of Cuboid", - "samples": [ - { - "problem": "Volume of cuboid with sides = 16m, 9m, 14m is", - "solution": "2016 m^3" - }, - { - "problem": "Volume of cuboid with sides = 18m, 14m, 14m is", - "solution": "3528 m^3" - }, - { - "problem": "Volume of cuboid with sides = 16m, 2m, 9m is", - "solution": "288 m^3" - }, - { - "problem": "Volume of cuboid with sides = 7m, 2m, 11m is", - "solution": "154 m^3" - }, - { - "problem": "Volume of cuboid with sides = 1m, 15m, 3m is", - "solution": "45 m^3" - }, - { - "problem": "Volume of cuboid with sides = 18m, 6m, 14m is", - "solution": "1512 m^3" - }, - { - "problem": "Volume of cuboid with sides = 12m, 8m, 2m is", - "solution": "192 m^3" - }, - { - "problem": "Volume of cuboid with sides = 3m, 16m, 19m is", - "solution": "912 m^3" - }, - { - "problem": "Volume of cuboid with sides = 20m, 18m, 10m is", - "solution": "3600 m^3" - }, - { - "problem": "Volume of cuboid with sides = 13m, 15m, 12m is", - "solution": "2340 m^3" - } - ], - "subject": "geometry" - }, - { - "function_name": "volume_cylinder", - "id": 37, - "kwargs": [ - "maxRadius=20", - "maxHeight=50", - "unit='m'" - ], - "name": "Volume of cylinder", - "samples": [ - { - "problem": "Volume of cylinder with height = 37m and radius = 15m is", - "solution": "26153 m^3" - }, - { - "problem": "Volume of cylinder with height = 50m and radius = 18m is", - "solution": "50893 m^3" - }, - { - "problem": "Volume of cylinder with height = 9m and radius = 14m is", - "solution": "5541 m^3" - }, - { - "problem": "Volume of cylinder with height = 22m and radius = 7m is", - "solution": "3386 m^3" - }, - { - "problem": "Volume of cylinder with height = 23m and radius = 14m is", - "solution": "14162 m^3" - }, - { - "problem": "Volume of cylinder with height = 18m and radius = 8m is", - "solution": "3619 m^3" - }, - { - "problem": "Volume of cylinder with height = 27m and radius = 7m is", - "solution": "4156 m^3" - }, - { - "problem": "Volume of cylinder with height = 45m and radius = 2m is", - "solution": "565 m^3" - }, - { - "problem": "Volume of cylinder with height = 46m and radius = 14m is", - "solution": "28324 m^3" - }, - { - "problem": "Volume of cylinder with height = 34m and radius = 2m is", - "solution": "427 m^3" - } - ], - "subject": "geometry" - }, - { - "function_name": "surface_area_cone", - "id": 38, - "kwargs": [ - "maxRadius=20", - "maxHeight=50", - "unit='m'" - ], - "name": "Surface Area of cone", - "samples": [ - { - "problem": "Surface area of cone with height = 1m and radius = 5m is", - "solution": "158 m^2" - }, - { - "problem": "Surface area of cone with height = 21m and radius = 20m is", - "solution": "3078 m^2" - }, - { - "problem": "Surface area of cone with height = 44m and radius = 16m is", - "solution": "3157 m^2" - }, - { - "problem": "Surface area of cone with height = 14m and radius = 2m is", - "solution": "101 m^2" - }, - { - "problem": "Surface area of cone with height = 9m and radius = 17m is", - "solution": "1935 m^2" - }, - { - "problem": "Surface area of cone with height = 41m and radius = 3m is", - "solution": "415 m^2" - }, - { - "problem": "Surface area of cone with height = 14m and radius = 8m is", - "solution": "606 m^2" - }, - { - "problem": "Surface area of cone with height = 18m and radius = 9m is", - "solution": "823 m^2" - }, - { - "problem": "Surface area of cone with height = 7m and radius = 4m is", - "solution": "151 m^2" - }, - { - "problem": "Surface area of cone with height = 7m and radius = 13m is", - "solution": "1133 m^2" - } - ], - "subject": "geometry" - }, - { - "function_name": "volume_cone", - "id": 39, - "kwargs": [ - "maxRadius=20", - "maxHeight=50", - "unit='m'" - ], - "name": "Volume of cone", - "samples": [ - { - "problem": "Volume of cone with height = 4m and radius = 20m is", - "solution": "1675 m^3" - }, - { - "problem": "Volume of cone with height = 4m and radius = 19m is", - "solution": "1512 m^3" - }, - { - "problem": "Volume of cone with height = 40m and radius = 8m is", - "solution": "2680 m^3" - }, - { - "problem": "Volume of cone with height = 39m and radius = 1m is", - "solution": "40 m^3" - }, - { - "problem": "Volume of cone with height = 20m and radius = 14m is", - "solution": "4105 m^3" - }, - { - "problem": "Volume of cone with height = 2m and radius = 2m is", - "solution": "8 m^3" - }, - { - "problem": "Volume of cone with height = 3m and radius = 20m is", - "solution": "1256 m^3" - }, - { - "problem": "Volume of cone with height = 40m and radius = 3m is", - "solution": "376 m^3" - }, - { - "problem": "Volume of cone with height = 47m and radius = 20m is", - "solution": "19687 m^3" - }, - { - "problem": "Volume of cone with height = 41m and radius = 11m is", - "solution": "5195 m^3" - } - ], - "subject": "geometry" - }, - { - "function_name": "common_factors", - "id": 40, - "kwargs": [ - "maxVal=100" - ], - "name": "Common Factors", - "samples": [ - { - "problem": "Common Factors of 56 and 37 = ", - "solution": [ - 1 - ] - }, - { - "problem": "Common Factors of 68 and 86 = ", - "solution": [ - 1, - 2 - ] - }, - { - "problem": "Common Factors of 94 and 89 = ", - "solution": [ - 1 - ] - }, - { - "problem": "Common Factors of 35 and 51 = ", - "solution": [ - 1 - ] - }, - { - "problem": "Common Factors of 60 and 72 = ", - "solution": [ - 1, - 2, - 3, - 4, - 6, - 12 - ] - }, - { - "problem": "Common Factors of 58 and 42 = ", - "solution": [ - 1, - 2 - ] - }, - { - "problem": "Common Factors of 38 and 39 = ", - "solution": [ - 1 - ] - }, - { - "problem": "Common Factors of 40 and 77 = ", - "solution": [ - 1 - ] - }, - { - "problem": "Common Factors of 27 and 33 = ", - "solution": [ - 1, - 3 - ] - }, - { - "problem": "Common Factors of 20 and 54 = ", - "solution": [ - 1, - 2 - ] - } - ], - "subject": "misc" - }, - { - "function_name": "intersection_of_two_lines", - "id": 41, - "kwargs": [ - "minM=-10", - "maxM=10", - "minB=-10", - "maxB=10", - "minDenominator=1", - "maxDenominator=6" - ], - "name": "Intersection of Two Lines", - "samples": [ - { - "problem": "Find the point of intersection of the two lines: y = -10/6x - 7 and y = 8/3x - 3", - "solution": "(-12/13, -71/13)" - }, - { - "problem": "Find the point of intersection of the two lines: y = 5/6x + 4 and y = 7/5x + 2", - "solution": "(60/17, 118/17)" - }, - { - "problem": "Find the point of intersection of the two lines: y = -8/3x - 10 and y = 5x - 7", - "solution": "(-9/23, -206/23)" - }, - { - "problem": "Find the point of intersection of the two lines: y = -10x + 8 and y = 3/3x + 2", - "solution": "(6/11, 28/11)" - }, - { - "problem": "Find the point of intersection of the two lines: y = 0/4x + 1 and y = 10/2x + 1", - "solution": "(0, 1)" - }, - { - "problem": "Find the point of intersection of the two lines: y = 5/4x + 8 and y = 9x - 3", - "solution": "(44/31, 303/31)" - }, - { - "problem": "Find the point of intersection of the two lines: y = -7/3x - 3 and y = -4/5x + 4", - "solution": "(-105/23, 176/23)" - }, - { - "problem": "Find the point of intersection of the two lines: y = 3/2x - 2 and y = -1/5x - 6", - "solution": "(-40/17, -94/17)" - }, - { - "problem": "Find the point of intersection of the two lines: y = 6x + 10 and y = 8/4x + 4", - "solution": "(-3/2, 1)" - }, - { - "problem": "Find the point of intersection of the two lines: y = -5/5x - 9 and y = -4/3x - 8", - "solution": "(3, -12)" - } - ], - "subject": "algebra" - }, - { - "function_name": "permutation", - "id": 42, - "kwargs": [ - "maxlength=20" - ], - "name": "Permutations", - "samples": [ - { - "problem": "Number of Permutations from 16 objects picked 4 at a time = ", - "solution": 43680 - }, - { - "problem": "Number of Permutations from 19 objects picked 3 at a time = ", - "solution": 5814 - }, - { - "problem": "Number of Permutations from 18 objects picked 5 at a time = ", - "solution": 1028160 - }, - { - "problem": "Number of Permutations from 11 objects picked 5 at a time = ", - "solution": 55440 - }, - { - "problem": "Number of Permutations from 11 objects picked 8 at a time = ", - "solution": 6652800 - }, - { - "problem": "Number of Permutations from 14 objects picked 9 at a time = ", - "solution": 726485760 - }, - { - "problem": "Number of Permutations from 12 objects picked 3 at a time = ", - "solution": 1320 - }, - { - "problem": "Number of Permutations from 16 objects picked 2 at a time = ", - "solution": 240 - }, - { - "problem": "Number of Permutations from 13 objects picked 7 at a time = ", - "solution": 8648640 - }, - { - "problem": "Number of Permutations from 18 objects picked 7 at a time = ", - "solution": 160392960 - } - ], - "subject": "statistics" - }, - { - "function_name": "vector_cross", - "id": 43, - "kwargs": [ - "minVal=-20", - "maxVal=20" - ], - "name": "Cross Product of 2 Vectors", - "samples": [ - { - "problem": "[17, 0, -2] X [-10, -2, -2] = ", - "solution": "[-4, 54, -34]" - }, - { - "problem": "[-20, 15, -15] X [2, -17, -19] = ", - "solution": "[-540, -410, 310]" - }, - { - "problem": "[4, -10, 16] X [-5, -7, 13] = ", - "solution": "[-18, -132, -78]" - }, - { - "problem": "[-6, 10, -9] X [-4, -1, 13] = ", - "solution": "[121, 114, 46]" - }, - { - "problem": "[3, 13, 5] X [0, 14, -18] = ", - "solution": "[-304, 54, 42]" - }, - { - "problem": "[-7, 1, -9] X [17, 5, 16] = ", - "solution": "[61, -41, -52]" - }, - { - "problem": "[-1, 8, -13] X [6, -7, 2] = ", - "solution": "[-75, -76, -41]" - }, - { - "problem": "[-2, -12, 10] X [3, 15, 10] = ", - "solution": "[-270, 50, 6]" - }, - { - "problem": "[9, 10, 4] X [-19, 19, 2] = ", - "solution": "[-56, -94, 361]" - }, - { - "problem": "[20, 5, 5] X [9, 3, -14] = ", - "solution": "[-85, 325, 15]" - } - ], - "subject": "algebra" - }, - { - "function_name": "compare_fractions", - "id": 44, - "kwargs": [ - "maxVal=10" - ], - "name": "Compare Fractions", - "samples": [ - { - "problem": "Which symbol represents the comparison between 1/2 and 7/4?", - "solution": "<" - }, - { - "problem": "Which symbol represents the comparison between 8/6 and 9/10?", - "solution": ">" - }, - { - "problem": "Which symbol represents the comparison between 8/7 and 3/1?", - "solution": "<" - }, - { - "problem": "Which symbol represents the comparison between 6/4 and 3/9?", - "solution": ">" - }, - { - "problem": "Which symbol represents the comparison between 5/4 and 7/3?", - "solution": "<" - }, - { - "problem": "Which symbol represents the comparison between 3/6 and 8/2?", - "solution": "<" - }, - { - "problem": "Which symbol represents the comparison between 10/2 and 9/7?", - "solution": ">" - }, - { - "problem": "Which symbol represents the comparison between 8/9 and 7/3?", - "solution": "<" - }, - { - "problem": "Which symbol represents the comparison between 2/3 and 3/7?", - "solution": ">" - }, - { - "problem": "Which symbol represents the comparison between 8/2 and 6/9?", - "solution": ">" - } - ], - "subject": "basic_math" - }, - { - "function_name": "simple_interest", - "id": 45, - "kwargs": [ - "maxPrinciple=10000", - "maxRate=10", - "maxTime=10" - ], - "name": "Simple Interest", - "samples": [ - { - "problem": "Simple interest for a principle amount of 7217 dollars, 9% rate of interest and for a time period of 10 years is = ", - "solution": 6495.3 - }, - { - "problem": "Simple interest for a principle amount of 8597 dollars, 6% rate of interest and for a time period of 1 years is = ", - "solution": 515.82 - }, - { - "problem": "Simple interest for a principle amount of 4010 dollars, 8% rate of interest and for a time period of 7 years is = ", - "solution": 2245.6 - }, - { - "problem": "Simple interest for a principle amount of 2754 dollars, 10% rate of interest and for a time period of 9 years is = ", - "solution": 2478.6 - }, - { - "problem": "Simple interest for a principle amount of 4678 dollars, 6% rate of interest and for a time period of 6 years is = ", - "solution": 1684.08 - }, - { - "problem": "Simple interest for a principle amount of 8776 dollars, 4% rate of interest and for a time period of 5 years is = ", - "solution": 1755.2 - }, - { - "problem": "Simple interest for a principle amount of 4773 dollars, 9% rate of interest and for a time period of 7 years is = ", - "solution": 3006.99 - }, - { - "problem": "Simple interest for a principle amount of 6810 dollars, 7% rate of interest and for a time period of 3 years is = ", - "solution": 1430.1 - }, - { - "problem": "Simple interest for a principle amount of 3839 dollars, 4% rate of interest and for a time period of 5 years is = ", - "solution": 767.8 - }, - { - "problem": "Simple interest for a principle amount of 5532 dollars, 4% rate of interest and for a time period of 3 years is = ", - "solution": 663.84 - } - ], - "subject": "algebra" - }, - { - "function_name": "matrix_multiplication", - "id": 46, - "kwargs": [ - "maxVal=100", - "max_dim=10" - ], - "name": "Multiplication of two matrices", - "samples": [ - { - "problem": "Multiply \n[[ 3, -16, 94, 78, -79, 65, -68, -64, 71]\n [ 57, -24, 79, 49, -14, -12, -74, -53, -22]\n [ 39, -96, -83, -7, 92, -18, 78, -85, 3]\n [ 66, 93, -100, -98, 95, -28, 33, 36, -24]\n [ -95, -9, 36, -53, -94, 94, -4, -59, -27]\n [ 59, -70, 26, 19, -97, -86, -50, 1, -46]\n [ -90, -82, -18, -78, 76, 55, -100, 85, -48]\n [ 7, -5, 35, 70, -30, -57, 84, -29, -86]\n [ -64, -49, 44, -65, 46, 96, 42, 87, 63]]\n and \n\n[[ 23, 46, -51, 100, -56, 32]\n [ -19, 26, -5, 60, -83, -36]\n [ -77, 80, -16, 64, 21, 98]\n [ -28, 49, -38, -27, 96, -66]\n [ -21, -100, -37, 66, 86, 13]\n [ -28, -12, -44, -24, 49, -42]\n [ 48, -29, -78, -79, -27, -80]\n [ -35, -97, 41, 31, -100, 24]\n [ -59, -3, 13, -46, -88, 6]]", - "solution": "[[-14423, 26151, -875, -3402, 9001, 5309]\n [ -5457, 19616, -1554, 12572, 12605, 12034]\n [ 14422, -10695, -12057, -9414, 16529, -9278]\n [ 10724, -20889, -2200, 14981, -18504, -4077]\n [ -494, 9871, 3212, -15036, 6641, -2118]\n [ 4877, 16128, 6919, 4610, -2382, 11801]\n [ -5021, -24995, 13681, 3473, 11635, 11886]\n [ 7948, 10741, -8793, -3441, 10305, -6714]\n [-10509, -19481, 459, -7556, -4383, 3990]]" - }, - { - "problem": "Multiply \n[[ 28, -66, 17, -96, -8]\n [ -64, -48, -100, 33, -39]]\n and \n\n[[ -47, -49]\n [ 58, 92]\n [ -76, 11]\n [ -56, -21]\n [ -68, -47]]", - "solution": "[[ -516, -4865]\n [ 8628, -1240]]" - }, - { - "problem": "Multiply \n[[ -32, -80]\n [ -65, 67]]\n and \n\n[[ 2, 53, -23, 56, -5, 87, -50, 84]\n [ 25, -14, -78, -49, 37, 97, -93, 28]]", - "solution": "[[ -2064, -576, 6976, 2128, -2800, -10544, 9040, -4928]\n [ 1545, -4383, -3731, -6923, 2804, 844, -2981, -3584]]" - }, - { - "problem": "Multiply \n[[ 49, -35, 82, 66, 11]\n [ -55, -94, -70, -24, -18]\n [ 48, 63, -36, 59, -81]]\n and \n\n[[ 89, 49, 4, -29, -50, 51, 38, -56, -86, 12]\n [ -54, 65, -19, 43, 70, 47, 84, -19, -38, 14]\n [ 2, 10, -41, -34, 21, 27, 41, 61, -14, 22]\n [ -60, 48, -67, -43, -66, -1, -6, 22, -94, 17]\n [ -22, 94, 57, -72, 94, -66, -71, -54, 29, -92]]", - "solution": "[[ 2213, 5148, -6296, -9344, -6500, 2276, 1107, 3781, -9917, 2012]\n [ 1877, -12349, 5018, 2261, -5408, -7901, -11434, 1040, 11016, -2268]\n [ -960, 1305, -8099, 5836, -10254, 9724, 11037, -409, -13913, 9121]]" - }, - { - "problem": "Multiply \n[[ -38, 20, -21, -87]\n [ 38, -36, -10, 56]\n [ 96, -9, -85, -43]]\n and \n\n[[ 91, -18, -19, -27, -55, 10, 24, -12]\n [ 11, 55, 79, -1, 19, 19, -26, -23]\n [ -8, 80, 9, 32, -87, 85, -29, -34]\n [ -93, 27, 11, -9, -80, 68, 36, -14]]", - "solution": "[[ 5021, -2245, 1156, 1117, 11257, -7701, -3955, 1928]\n [ -2066, -1952, -3040, -1814, -6384, 2654, 4154, -72]\n [ 13316, -10184, -3773, -4916, 5384, -9360, 3455, 2547]]" - }, - { - "problem": "Multiply \n[[ -63, -52, -33, -41, 87]\n [ -42, -96, 14, 15, 44]\n [ 51, -69, 41, -4, 22]\n [ -63, 87, 75, 62, -100]\n [ -99, -59, 94, -87, -91]\n [ 32, 41, -28, -97, -86]\n [ 30, 53, 65, 20, 47]\n [ 82, 77, 53, -32, -11]]\n and \n\n[[ -41, 91, 28, -45, -80, -90, 33, 42]\n [ -17, 43, 50, -29, 30, 55, 35, -47]\n [ 70, 83, 81, -82, -92, -62, 81, 16]\n [ -86, 79, 62, -56, 32, -18, -5, 52]\n [ 5, 76, -89, -76, -61, 54, 53, 77]]", - "solution": "[[ 5118, -7335, -17322, 2733, -103, 10292, -1756, 3837]\n [ 3264, -2259, -7828, -658, -3012, -262, -1355, 7140]\n [ 2406, 6433, -907, -5104, -11392, -9667, 3775, 7527]\n [ 522, 1531, 21405, -1710, 8834, -711, 1431, -10011]\n [ 18669, -17533, 4597, 10246, 269, -3511, -2106, -11412]\n [ 3943, -11848, 2318, 11635, 3388, -1787, -3850, -12697]\n [ 934, 15556, 5812, -12909, -9017, -1637, 10501, 4468]\n [ 1736, 11808, 9434, -7641, -9479, -6449, 9271, -1838]]" - }, - { - "problem": "Multiply \n[[ 100, -56, 97, -51, -79, 47, -5]\n [ -8, -53, -36, 20, -88, -100, 11]\n [ -20, 13, -51, -6, -96, -38, 100]\n [ -25, -51, -23, -66, -5, 9, -36]\n [ -34, -89, -4, -96, -24, -99, -21]]\n and \n\n[[ 4, -82, 15, -37, -92, 96]\n [ -83, -81, -65, 5, 24, -85]\n [ 91, 20, -92, 99, 30, 56]\n [ -21, -81, 39, -50, 17, -97]\n [ 63, 97, -17, -79, -30, -8]\n [ -3, -51, -57, -31, -69, 18]\n [ -34, -60, 95, 12, 27, 35]]", - "solution": "[[ 9998, -7353, -7584, 12897, -9509, 26042]\n [ -4947, -1487, 15658, 5651, 8561, -930]\n [-15008, -13321, 16611, 6018, 8722, -1715]\n [ 4308, 12283, -1366, 1377, -2179, 5991]\n [ 8402, 21674, 5955, 9930, 6224, 11064]]" - }, - { - "problem": "Multiply \n[[ 30, -11, -12, 30, 70, -63]\n [ -43, 58, 75, -11, -97, -66]\n [ 66, 65, 71, -47, 2, 3]\n [ 14, 60, -29, -34, 8, -86]\n [ -79, -15, 62, -9, -48, 87]\n [ 73, 96, 7, 38, -54, 0]\n [ -52, -12, 30, -38, -15, -99]\n [ -57, 5, -89, 39, 1, 18]\n [ -7, -57, 11, 26, -41, -69]]\n and \n\n[[ -35, -40, -80, -13]\n [ -13, 96, 26, 14]\n [ -89, -42, -16, -56]\n [ 84, -53, -54, -7]\n [ -8, -16, -39, 96]\n [ -90, 79, 74, -23]]", - "solution": "[[ 7791, -9439, -11506, 8087]\n [ -132, 1059, 3241, -10546]\n [-13708, 3314, -2044, -3472]\n [ 6131, 1298, -3936, 5266]\n [-10760, 7234, 13734, -9201]\n [ -802, 4852, -3402, -5447]\n [ 5144, -5899, -1321, -69]\n [ 11499, 5837, 5301, 5204]\n [ 8729, -11827, -6009, -3854]]" - }, - { - "problem": "Multiply \n[[ 90, 20, 39, -83, -51]\n [ -46, 31, 85, 2, -69]\n [ -90, 12, 52, 48, 58]]\n and \n\n[[ 28, -55, -74, -80, -65, 6]\n [ -27, 89, 81, -57, -48, -35]\n [ -70, 35, -20, 98, -50, 25]\n [ -85, 88, 100, -99, 81, 11]\n [ 87, 43, -81, 13, -10, -60]]", - "solution": "[[ 1868, -11302, -9989, 3036, -14973, 2962]\n [-14248, 5473, 10004, 9148, -1896, 4926]\n [ -5518, 14556, 6694, 7614, 5982, -2612]]" - }, - { - "problem": "Multiply \n[[ -27, 26, -86, -74, -3, 2]\n [ -8, 11, -31, 42, 90, -11]]\n and \n\n[[ 23, -38, -45, 15]\n [ 49, -35, 23, -75]\n [ 57, -26, -7, 38]\n [ 30, -28, -22, 74]\n [ -26, -69, 88, 16]\n [ 61, 17, -61, 31]]", - "solution": "[[ -6269, 4665, 3657, -11085]\n [ -3163, -6848, 8497, 2084]]" - } - ], - "subject": "algebra" - }, - { - "function_name": "cube_root", - "id": 47, - "kwargs": [ - "minNo=1", - "maxNo=1000" - ], - "name": "Cube Root", - "samples": [ - { - "problem": "What is the cube root of 647 up to 2 decimal places?", - "solution": "8.65" - }, - { - "problem": "What is the cube root of 794 up to 2 decimal places?", - "solution": "9.26" - }, - { - "problem": "What is the cube root of 398 up to 2 decimal places?", - "solution": "7.36" - }, - { - "problem": "What is the cube root of 484 up to 2 decimal places?", - "solution": "7.85" - }, - { - "problem": "What is the cube root of 10 up to 2 decimal places?", - "solution": "2.15" - }, - { - "problem": "What is the cube root of 255 up to 2 decimal places?", - "solution": "6.34" - }, - { - "problem": "What is the cube root of 281 up to 2 decimal places?", - "solution": "6.55" - }, - { - "problem": "What is the cube root of 379 up to 2 decimal places?", - "solution": "7.24" - }, - { - "problem": "What is the cube root of 880 up to 2 decimal places?", - "solution": "9.58" - }, - { - "problem": "What is the cube root of 576 up to 2 decimal places?", - "solution": "8.32" - } - ], - "subject": "basic_math" - }, - { - "function_name": "power_rule_integration", - "id": 48, - "kwargs": [ - "maxCoef=10", - "maxExp=10", - "maxTerms=5" - ], - "name": "Power Rule Integration", - "samples": [ - { - "problem": "1x^9 + 3x^9 + 4x^9", - "solution": "(1/9)x^10 + (3/9)x^10 + (4/9)x^10 + c" - }, - { - "problem": "7x^4 + 8x^5 + 6x^4 + 2x^4", - "solution": "(7/4)x^5 + (8/5)x^6 + (6/4)x^5 + (2/4)x^5 + c" - }, - { - "problem": "3x^4", - "solution": "(3/4)x^5 + c" - }, - { - "problem": "2x^2", - "solution": "(2/2)x^3 + c" - }, - { - "problem": "9x^7 + 1x^4 + 1x^5 + 2x^5", - "solution": "(9/7)x^8 + (1/4)x^5 + (1/5)x^6 + (2/5)x^6 + c" - }, - { - "problem": "5x^1 + 3x^1 + 9x^3", - "solution": "(5/1)x^2 + (3/1)x^2 + (9/3)x^4 + c" - }, - { - "problem": "10x^6 + 2x^5 + 4x^2 + 4x^2 + 1x^7", - "solution": "(10/6)x^7 + (2/5)x^6 + (4/2)x^3 + (4/2)x^3 + (1/7)x^8 + c" - }, - { - "problem": "10x^10 + 2x^9", - "solution": "(10/10)x^11 + (2/9)x^10 + c" - }, - { - "problem": "6x^4 + 1x^4 + 4x^2 + 6x^8 + 2x^6", - "solution": "(6/4)x^5 + (1/4)x^5 + (4/2)x^3 + (6/8)x^9 + (2/6)x^7 + c" - }, - { - "problem": "1x^3 + 10x^1", - "solution": "(1/3)x^4 + (10/1)x^2 + c" - } - ], - "subject": "calculus" - }, - { - "function_name": "fourth_angle_of_quadrilateral", - "id": 49, - "kwargs": [ - "maxAngle=180" - ], - "name": "Fourth Angle of Quadrilateral", - "samples": [ - { - "problem": "Fourth angle of quadrilateral with angles 73 , 13, 195 =", - "solution": 79 - }, - { - "problem": "Fourth angle of quadrilateral with angles 149 , 85, 65 =", - "solution": 61 - }, - { - "problem": "Fourth angle of quadrilateral with angles 56 , 170, 90 =", - "solution": 44 - }, - { - "problem": "Fourth angle of quadrilateral with angles 163 , 28, 137 =", - "solution": 32 - }, - { - "problem": "Fourth angle of quadrilateral with angles 5 , 76, 241 =", - "solution": 38 - }, - { - "problem": "Fourth angle of quadrilateral with angles 61 , 167, 98 =", - "solution": 34 - }, - { - "problem": "Fourth angle of quadrilateral with angles 174 , 62, 48 =", - "solution": 76 - }, - { - "problem": "Fourth angle of quadrilateral with angles 17 , 101, 98 =", - "solution": 144 - }, - { - "problem": "Fourth angle of quadrilateral with angles 172 , 8, 16 =", - "solution": 164 - }, - { - "problem": "Fourth angle of quadrilateral with angles 13 , 184, 67 =", - "solution": 96 - } - ], - "subject": "geometry" - }, - { - "function_name": "quadratic_equation", - "id": 50, - "kwargs": [ - "maxVal=100" - ], - "name": "Quadratic Equation", - "samples": [ - { - "problem": "Zeros of the Quadratic Equation 25x^2+114x+85=0", - "solution": "[-0.94, -3.62]" - }, - { - "problem": "Zeros of the Quadratic Equation 48x^2+75x+17=0", - "solution": "[-0.28, -1.29]" - }, - { - "problem": "Zeros of the Quadratic Equation 4x^2+56x+75=0", - "solution": "[-1.5, -12.5]" - }, - { - "problem": "Zeros of the Quadratic Equation 41x^2+144x+17=0", - "solution": "[-0.12, -3.39]" - }, - { - "problem": "Zeros of the Quadratic Equation 67x^2+168x+16=0", - "solution": "[-0.1, -2.41]" - }, - { - "problem": "Zeros of the Quadratic Equation 95x^2+196x+93=0", - "solution": "[-0.74, -1.32]" - }, - { - "problem": "Zeros of the Quadratic Equation 41x^2+193x+2=0", - "solution": "[-0.01, -4.7]" - }, - { - "problem": "Zeros of the Quadratic Equation 28x^2+179x+76=0", - "solution": "[-0.46, -5.94]" - }, - { - "problem": "Zeros of the Quadratic Equation 22x^2+51x+26=0", - "solution": "[-0.76, -1.56]" - }, - { - "problem": "Zeros of the Quadratic Equation 25x^2+99x+18=0", - "solution": "[-0.19, -3.77]" - } - ], - "subject": "algebra" - }, - { - "function_name": "hcf", - "id": 51, - "kwargs": [ - "maxVal=20" - ], - "name": "HCF (Highest Common Factor)", - "samples": [ - { - "problem": "HCF of 6 and 15 = ", - "solution": "3" - }, - { - "problem": "HCF of 7 and 11 = ", - "solution": "1" - }, - { - "problem": "HCF of 19 and 4 = ", - "solution": "1" - }, - { - "problem": "HCF of 4 and 10 = ", - "solution": "2" - }, - { - "problem": "HCF of 17 and 13 = ", - "solution": "1" - }, - { - "problem": "HCF of 11 and 13 = ", - "solution": "1" - }, - { - "problem": "HCF of 12 and 14 = ", - "solution": "2" - }, - { - "problem": "HCF of 5 and 12 = ", - "solution": "1" - }, - { - "problem": "HCF of 13 and 9 = ", - "solution": "1" - }, - { - "problem": "HCF of 6 and 18 = ", - "solution": "6" - } - ], - "subject": "misc" - }, - { - "function_name": "dice_sum_probability", - "id": 52, - "kwargs": [ - "maxDice=3" - ], - "name": "Probability of a certain sum appearing on faces of dice", - "samples": [ - { - "problem": "If 2 dice are rolled at the same time, the probability of getting a sum of 7 =", - "solution": "6/36" - }, - { - "problem": "If 1 dice are rolled at the same time, the probability of getting a sum of 5 =", - "solution": "1/6" - }, - { - "problem": "If 2 dice are rolled at the same time, the probability of getting a sum of 5 =", - "solution": "4/36" - }, - { - "problem": "If 1 dice are rolled at the same time, the probability of getting a sum of 5 =", - "solution": "1/6" - }, - { - "problem": "If 1 dice are rolled at the same time, the probability of getting a sum of 1 =", - "solution": "1/6" - }, - { - "problem": "If 3 dice are rolled at the same time, the probability of getting a sum of 3 =", - "solution": "1/216" - }, - { - "problem": "If 3 dice are rolled at the same time, the probability of getting a sum of 18 =", - "solution": "1/216" - }, - { - "problem": "If 1 dice are rolled at the same time, the probability of getting a sum of 6 =", - "solution": "1/6" - }, - { - "problem": "If 2 dice are rolled at the same time, the probability of getting a sum of 3 =", - "solution": "2/36" - }, - { - "problem": "If 1 dice are rolled at the same time, the probability of getting a sum of 4 =", - "solution": "1/6" - } - ], - "subject": "statistics" - }, - { - "function_name": "exponentiation", - "id": 53, - "kwargs": [ - "maxBase=20", - "maxExpo=10" - ], - "name": "Exponentiation", - "samples": [ - { - "problem": "4^3 =", - "solution": "64" - }, - { - "problem": "5^3 =", - "solution": "125" - }, - { - "problem": "9^5 =", - "solution": "59049" - }, - { - "problem": "16^7 =", - "solution": "268435456" - }, - { - "problem": "19^1 =", - "solution": "19" - }, - { - "problem": "6^4 =", - "solution": "1296" - }, - { - "problem": "18^10 =", - "solution": "3570467226624" - }, - { - "problem": "8^8 =", - "solution": "16777216" - }, - { - "problem": "15^4 =", - "solution": "50625" - }, - { - "problem": "6^3 =", - "solution": "216" - } - ], - "subject": "basic_math" - }, - { - "function_name": "confidence_interval", - "id": 54, - "kwargs": [ - "" - ], - "name": "Confidence interval For sample S", - "samples": [ - { - "problem": "The confidence interval for sample [223, 227, 245, 206, 296, 228, 205, 201, 242, 234, 204, 231, 214, 276, 270, 210, 200, 255, 233, 215, 271, 299, 254, 203, 232, 230, 235, 292, 273, 220, 275, 286, 222, 264, 274, 219, 244, 267, 297] with 90% confidence is", - "solution": "(250.7912515458906, 234.95233819769913)" - }, - { - "problem": "The confidence interval for sample [257, 246, 283, 226, 296, 212, 265, 275, 206, 250, 220, 242, 239, 273, 227, 253, 236, 261, 284, 209, 213] with 90% confidence is", - "solution": "(255.7557187158305, 236.91094795083617)" - }, - { - "problem": "The confidence interval for sample [201, 258, 206, 264, 283, 232, 227, 276, 253, 260, 273, 293, 294, 216, 266, 230, 267, 225, 277, 245, 254, 218, 217, 219, 271, 278, 269, 235, 222, 241, 281, 249, 210, 261, 257, 290, 259, 298, 223] with 99% confidence is", - "solution": "(262.33660497931584, 240.1249334822226)" - }, - { - "problem": "The confidence interval for sample [281, 225, 236, 274, 208, 212, 267, 217, 233, 254, 229, 205, 230, 289, 268, 253, 231, 218, 252, 245, 283, 265, 223, 201, 280, 203] with 80% confidence is", - "solution": "(248.431297670285, 234.79947156048422)" - }, - { - "problem": "The confidence interval for sample [275, 238, 234, 261, 278, 259, 253, 266, 232, 267, 210, 219, 286, 222, 205, 288, 213, 221, 255, 289, 218, 262, 294, 242, 215, 279, 240, 231] with 90% confidence is", - "solution": "(256.67024998182086, 239.9011785896077)" - }, - { - "problem": "The confidence interval for sample [276, 281, 204, 217, 283, 269, 273, 242, 268, 297, 248, 285, 254, 257, 239, 241, 212, 272, 209, 299, 282, 247, 267] with 90% confidence is", - "solution": "(266.7925057155987, 248.1640160235317)" - }, - { - "problem": "The confidence interval for sample [245, 259, 286, 299, 256, 236, 251, 283, 298, 277, 260, 285, 209, 201, 253, 223, 226, 247, 225, 235, 267, 224, 239, 204, 280, 244, 233, 265, 278, 212, 214, 292] with 99% confidence is", - "solution": "(263.08682437063084, 237.2881756293692)" - }, - { - "problem": "The confidence interval for sample [284, 239, 275, 253, 278, 282, 260, 279, 207, 215, 294, 240, 217, 238, 288, 228, 219, 248, 296, 203, 213, 241, 222, 209, 208, 225, 250, 276, 245, 218, 258, 280, 266, 277, 223, 249, 299, 290, 216] with 90% confidence is", - "solution": "(256.7052516594648, 241.14090218668903)" - }, - { - "problem": "The confidence interval for sample [234, 252, 267, 292, 219, 224, 257, 201, 203, 261, 254, 208, 242, 229, 228, 276, 209, 217, 216, 238, 271, 232, 245, 250, 296, 231, 240, 274, 255, 285, 264, 270, 215] with 95% confidence is", - "solution": "(252.92179671381342, 235.26002146800477)" - }, - { - "problem": "The confidence interval for sample [261, 228, 277, 249, 204, 221, 201, 203, 276, 236, 210, 273, 250, 283, 232, 252, 279, 205, 226, 243, 234, 248, 293, 233, 296, 269] with 90% confidence is", - "solution": "(254.6629081245542, 236.2601687985227)" - } - ], - "subject": "statistics" - }, - { - "function_name": "surds_comparison", - "id": 55, - "kwargs": [ - "maxValue=100", - "maxRoot=10" - ], - "name": "Comparing surds", - "samples": [ - { - "problem": "Fill in the blanks 61^(1/1) _ 79^(1/8)", - "solution": ">" - }, - { - "problem": "Fill in the blanks 80^(1/9) _ 13^(1/6)", - "solution": ">" - }, - { - "problem": "Fill in the blanks 43^(1/1) _ 83^(1/5)", - "solution": ">" - }, - { - "problem": "Fill in the blanks 99^(1/8) _ 23^(1/4)", - "solution": "<" - }, - { - "problem": "Fill in the blanks 66^(1/5) _ 60^(1/9)", - "solution": ">" - }, - { - "problem": "Fill in the blanks 40^(1/1) _ 35^(1/8)", - "solution": ">" - }, - { - "problem": "Fill in the blanks 56^(1/1) _ 41^(1/3)", - "solution": ">" - }, - { - "problem": "Fill in the blanks 70^(1/9) _ 16^(1/8)", - "solution": ">" - }, - { - "problem": "Fill in the blanks 29^(1/5) _ 37^(1/2)", - "solution": "<" - }, - { - "problem": "Fill in the blanks 65^(1/1) _ 6^(1/9)", - "solution": ">" - } - ], - "subject": "misc" - }, - { - "function_name": "fibonacci_series", - "id": 56, - "kwargs": [ - "minNo=1" - ], - "name": "Fibonacci Series", - "samples": [ - { - "problem": "The Fibonacci Series of the first 2 numbers is ?", - "solution": [ - 0, - 1 - ] - }, - { - "problem": "The Fibonacci Series of the first 14 numbers is ?", - "solution": [ - 0, - 1, - 1, - 2, - 3, - 5, - 8, - 13, - 21, - 34, - 55, - 89, - 144, - 233 - ] - }, - { - "problem": "The Fibonacci Series of the first 7 numbers is ?", - "solution": [ - 0, - 1, - 1, - 2, - 3, - 5, - 8 - ] - }, - { - "problem": "The Fibonacci Series of the first 15 numbers is ?", - "solution": [ - 0, - 1, - 1, - 2, - 3, - 5, - 8, - 13, - 21, - 34, - 55, - 89, - 144, - 233, - 377 - ] - }, - { - "problem": "The Fibonacci Series of the first 1 numbers is ?", - "solution": [ - 0 - ] - }, - { - "problem": "The Fibonacci Series of the first 2 numbers is ?", - "solution": [ - 0, - 1 - ] - }, - { - "problem": "The Fibonacci Series of the first 11 numbers is ?", - "solution": [ - 0, - 1, - 1, - 2, - 3, - 5, - 8, - 13, - 21, - 34, - 55 - ] - }, - { - "problem": "The Fibonacci Series of the first 20 numbers is ?", - "solution": [ - 0, - 1, - 1, - 2, - 3, - 5, - 8, - 13, - 21, - 34, - 55, - 89, - 144, - 233, - 377, - 610, - 987, - 1597, - 2584, - 4181 - ] - }, - { - "problem": "The Fibonacci Series of the first 10 numbers is ?", - "solution": [ - 0, - 1, - 1, - 2, - 3, - 5, - 8, - 13, - 21, - 34 - ] - }, - { - "problem": "The Fibonacci Series of the first 3 numbers is ?", - "solution": [ - 0, - 1, - 1 - ] - } - ], - "subject": "computer_science" - }, - { - "function_name": "basic_trigonometry", - "id": 57, - "kwargs": [ - "angles=[0, 30, 45, 60, 90]", - "functions=['sin', 'cos', 'tan']" - ], - "name": "Trigonometric Values", - "samples": [ - { - "problem": "What is sin(0)?", - "solution": "0" - }, - { - "problem": "What is tan(60)?", - "solution": "\u221a3" - }, - { - "problem": "What is sin(30)?", - "solution": "1/2" - }, - { - "problem": "What is cos(45)?", - "solution": "1/\u221a2" - }, - { - "problem": "What is sin(60)?", - "solution": "\u221a3/2" - }, - { - "problem": "What is tan(60)?", - "solution": "\u221a3" - }, - { - "problem": "What is sin(90)?", - "solution": "1" - }, - { - "problem": "What is tan(60)?", - "solution": "\u221a3" - }, - { - "problem": "What is sin(0)?", - "solution": "0" - }, - { - "problem": "What is sin(45)?", - "solution": "1/\u221a2" - } - ], - "subject": "geometry" - }, - { - "function_name": "sum_of_polygon_angles", - "id": 58, - "kwargs": [ - "maxSides=12" - ], - "name": "Sum of Angles of Polygon", - "samples": [ - { - "problem": "Sum of angles of polygon with 10 sides = ", - "solution": 1440 - }, - { - "problem": "Sum of angles of polygon with 10 sides = ", - "solution": 1440 - }, - { - "problem": "Sum of angles of polygon with 10 sides = ", - "solution": 1440 - }, - { - "problem": "Sum of angles of polygon with 7 sides = ", - "solution": 900 - }, - { - "problem": "Sum of angles of polygon with 3 sides = ", - "solution": 180 - }, - { - "problem": "Sum of angles of polygon with 11 sides = ", - "solution": 1620 - }, - { - "problem": "Sum of angles of polygon with 12 sides = ", - "solution": 1800 - }, - { - "problem": "Sum of angles of polygon with 4 sides = ", - "solution": 360 - }, - { - "problem": "Sum of angles of polygon with 5 sides = ", - "solution": 540 - }, - { - "problem": "Sum of angles of polygon with 12 sides = ", - "solution": 1800 - } - ], - "subject": "geometry" - }, - { - "function_name": "data_summary", - "id": 59, - "kwargs": [ - "number_values=15", - "minval=5", - "maxval=50" - ], - "name": "Mean,Standard Deviation,Variance", - "samples": [ - { - "problem": "Find the mean,standard deviation and variance for the data[12, 14, 7, 23, 9, 9, 49, 24, 8, 50, 10, 28, 11, 48, 8]", - "solution": "The Mean is 20.666666666666668 , Standard Deviation is 239.15555555555554, Variance is 15.464655041595837" - }, - { - "problem": "Find the mean,standard deviation and variance for the data[25, 33, 20, 19, 25, 12, 11, 46, 41, 25, 30, 34, 39, 28, 34]", - "solution": "The Mean is 28.133333333333333 , Standard Deviation is 95.44888888888887, Variance is 9.769794720918597" - }, - { - "problem": "Find the mean,standard deviation and variance for the data[36, 18, 13, 17, 10, 32, 5, 48, 13, 33, 32, 47, 38, 24, 23]", - "solution": "The Mean is 25.933333333333334 , Standard Deviation is 165.5288888888889, Variance is 12.865803079827115" - }, - { - "problem": "Find the mean,standard deviation and variance for the data[27, 31, 12, 49, 36, 47, 5, 14, 43, 42, 37, 16, 24, 28, 37]", - "solution": "The Mean is 29.866666666666667 , Standard Deviation is 169.84888888888887, Variance is 13.03260867550656" - }, - { - "problem": "Find the mean,standard deviation and variance for the data[32, 15, 23, 12, 15, 31, 41, 16, 40, 24, 28, 50, 31, 27, 11]", - "solution": "The Mean is 26.4 , Standard Deviation is 124.10666666666665, Variance is 11.140317170828965" - }, - { - "problem": "Find the mean,standard deviation and variance for the data[30, 20, 17, 14, 26, 21, 32, 11, 43, 18, 19, 10, 8, 9, 7]", - "solution": "The Mean is 19.0 , Standard Deviation is 97.33333333333333, Variance is 9.865765724632494" - }, - { - "problem": "Find the mean,standard deviation and variance for the data[28, 18, 16, 40, 47, 10, 21, 29, 40, 7, 36, 37, 44, 28, 23]", - "solution": "The Mean is 28.266666666666666 , Standard Deviation is 142.19555555555556, Variance is 11.924577793597372" - }, - { - "problem": "Find the mean,standard deviation and variance for the data[12, 39, 47, 17, 44, 42, 22, 23, 36, 11, 20, 24, 23, 42, 28]", - "solution": "The Mean is 28.666666666666668 , Standard Deviation is 134.62222222222223, Variance is 11.602681682362153" - }, - { - "problem": "Find the mean,standard deviation and variance for the data[34, 23, 41, 41, 32, 6, 37, 31, 20, 7, 21, 13, 34, 8, 27]", - "solution": "The Mean is 25.0 , Standard Deviation is 138.0, Variance is 11.74734012447073" - }, - { - "problem": "Find the mean,standard deviation and variance for the data[44, 47, 8, 35, 42, 8, 19, 47, 30, 23, 43, 42, 17, 27, 46]", - "solution": "The Mean is 31.866666666666667 , Standard Deviation is 185.0488888888889, Variance is 13.603267581316222" - } - ], - "subject": "statistics" - }, - { - "function_name": "surface_area_sphere", - "id": 60, - "kwargs": [ - "maxSide=20", - "unit='m'" - ], - "name": "Surface Area of Sphere", - "samples": [ - { - "problem": "Surface area of Sphere with radius = 5m is", - "solution": "314.1592653589793 m^2" - }, - { - "problem": "Surface area of Sphere with radius = 15m is", - "solution": "2827.4333882308138 m^2" - }, - { - "problem": "Surface area of Sphere with radius = 8m is", - "solution": "804.247719318987 m^2" - }, - { - "problem": "Surface area of Sphere with radius = 10m is", - "solution": "1256.6370614359173 m^2" - }, - { - "problem": "Surface area of Sphere with radius = 18m is", - "solution": "4071.5040790523717 m^2" - }, - { - "problem": "Surface area of Sphere with radius = 8m is", - "solution": "804.247719318987 m^2" - }, - { - "problem": "Surface area of Sphere with radius = 18m is", - "solution": "4071.5040790523717 m^2" - }, - { - "problem": "Surface area of Sphere with radius = 19m is", - "solution": "4536.459791783661 m^2" - }, - { - "problem": "Surface area of Sphere with radius = 13m is", - "solution": "2123.7166338267 m^2" - }, - { - "problem": "Surface area of Sphere with radius = 15m is", - "solution": "2827.4333882308138 m^2" - } - ], - "subject": "geometry" - }, - { - "function_name": "volume_sphere", - "id": 61, - "kwargs": [ - "maxRadius=100" - ], - "name": "Volume of Sphere", - "samples": [ - { - "problem": "Volume of sphere with radius 98 m = ", - "solution": "3942455.8304233127 m^3" - }, - { - "problem": "Volume of sphere with radius 62 m = ", - "solution": "998305.9919263308 m^3" - }, - { - "problem": "Volume of sphere with radius 8 m = ", - "solution": "2144.660584850632 m^3" - }, - { - "problem": "Volume of sphere with radius 95 m = ", - "solution": "3591364.0018287315 m^3" - }, - { - "problem": "Volume of sphere with radius 22 m = ", - "solution": "44602.23810056549 m^3" - }, - { - "problem": "Volume of sphere with radius 41 m = ", - "solution": "288695.6097040828 m^3" - }, - { - "problem": "Volume of sphere with radius 85 m = ", - "solution": "2572440.784514442 m^3" - }, - { - "problem": "Volume of sphere with radius 87 m = ", - "solution": "2758330.916222452 m^3" - }, - { - "problem": "Volume of sphere with radius 10 m = ", - "solution": "4188.790204786391 m^3" - }, - { - "problem": "Volume of sphere with radius 14 m = ", - "solution": "11494.040321933857 m^3" - } - ], - "subject": "geometry" - }, - { - "function_name": "nth_fibonacci_number", - "id": 62, - "kwargs": [ - "maxN=100" - ], - "name": "nth Fibonacci number", - "samples": [ - { - "problem": "What is the 59th Fibonacci number?", - "solution": "956722026041" - }, - { - "problem": "What is the 20th Fibonacci number?", - "solution": "6765" - }, - { - "problem": "What is the 12th Fibonacci number?", - "solution": "144" - }, - { - "problem": "What is the 81th Fibonacci number?", - "solution": "37889062373144008" - }, - { - "problem": "What is the 94th Fibonacci number?", - "solution": "19740274219868282880" - }, - { - "problem": "What is the 50th Fibonacci number?", - "solution": "12586269025" - }, - { - "problem": "What is the 59th Fibonacci number?", - "solution": "956722026041" - }, - { - "problem": "What is the 55th Fibonacci number?", - "solution": "139583862445" - }, - { - "problem": "What is the 50th Fibonacci number?", - "solution": "12586269025" - }, - { - "problem": "What is the 84th Fibonacci number?", - "solution": "160500643816367552" - } - ], - "subject": "computer_science" - }, - { - "function_name": "profit_loss_percent", - "id": 63, - "kwargs": [ - "maxCP=1000", - "maxSP=1000" - ], - "name": "Profit or Loss Percent", - "samples": [ - { - "problem": "Profit percent when CP = 296 and SP = 306 is: ", - "solution": 3.3783783783783785 - }, - { - "problem": "Profit percent when CP = 142 and SP = 236 is: ", - "solution": 66.19718309859155 - }, - { - "problem": "Profit percent when CP = 135 and SP = 313 is: ", - "solution": 131.85185185185185 - }, - { - "problem": "Loss percent when CP = 784 and SP = 547 is: ", - "solution": 30.22959183673469 - }, - { - "problem": "Loss percent when CP = 902 and SP = 799 is: ", - "solution": 11.419068736141908 - }, - { - "problem": "Profit percent when CP = 20 and SP = 52 is: ", - "solution": 160.0 - }, - { - "problem": "Loss percent when CP = 867 and SP = 450 is: ", - "solution": 48.09688581314879 - }, - { - "problem": "Profit percent when CP = 554 and SP = 747 is: ", - "solution": 34.83754512635379 - }, - { - "problem": "Loss percent when CP = 945 and SP = 757 is: ", - "solution": 19.894179894179896 - }, - { - "problem": "Profit percent when CP = 7 and SP = 349 is: ", - "solution": 4885.714285714285 - } - ], - "subject": "misc" - }, - { - "function_name": "binary_to_hex", - "id": 64, - "kwargs": [ - "max_dig=10" - ], - "name": "Binary to Hexidecimal", - "samples": [ - { - "problem": "0", - "solution": "0x0" - }, - { - "problem": "100000111", - "solution": "0x107" - }, - { - "problem": "11", - "solution": "0x3" - }, - { - "problem": "0111", - "solution": "0x7" - }, - { - "problem": "1001101001", - "solution": "0x269" - }, - { - "problem": "010001101", - "solution": "0x8d" - }, - { - "problem": "011", - "solution": "0x3" - }, - { - "problem": "10110111", - "solution": "0xb7" - }, - { - "problem": "010000101", - "solution": "0x85" - }, - { - "problem": "100000011", - "solution": "0x103" - } - ], - "subject": "computer_science" - }, - { - "function_name": "multiply_complex_numbers", - "id": 65, - "kwargs": [ - "minRealImaginaryNum=-20", - "maxRealImaginaryNum=20" - ], - "name": "Multiplication of 2 complex numbers", - "samples": [ - { - "problem": "(-10+7j) * (-17-19j) = ", - "solution": "(303+71j)" - }, - { - "problem": "(14+4j) * (1-2j) = ", - "solution": "(22-24j)" - }, - { - "problem": "(14+13j) * (17-14j) = ", - "solution": "(420+25j)" - }, - { - "problem": "(11-12j) * (17+8j) = ", - "solution": "(283-116j)" - }, - { - "problem": "14j * (-8-12j) = ", - "solution": "(168-112j)" - }, - { - "problem": "(-1-6j) * (-4-3j) = ", - "solution": "(-14+27j)" - }, - { - "problem": "(12-9j) * (7-10j) = ", - "solution": "(-6-183j)" - }, - { - "problem": "(-15+15j) * (20+2j) = ", - "solution": "(-330+270j)" - }, - { - "problem": "(15+13j) * (7+6j) = ", - "solution": "(27+181j)" - }, - { - "problem": "(19+5j) * (4+6j) = ", - "solution": "(46+134j)" - } - ], - "subject": "algebra" - }, - { - "function_name": "geometric_progression", - "id": 66, - "kwargs": [ - "number_values=6", - "min_value=2", - "max_value=12", - "n_term=7", - "sum_term=5" - ], - "name": "Geometric Progression", - "samples": [ - { - "problem": "For the given GP [7, 49, 343, 2401, 16807, 117649] ,Find the value of a,common ratio,11th term value, sum upto 7th term", - "solution": "The value of a is 7, common ratio is 7 , 11th term is 1977326743 , sum upto 7th term is 960799.0" - }, - { - "problem": "For the given GP [5, 50, 500, 5000, 50000, 500000] ,Find the value of a,common ratio,10th term value, sum upto 8th term", - "solution": "The value of a is 5, common ratio is 10 , 10th term is 5000000000 , sum upto 8th term is 55555555.0" - }, - { - "problem": "For the given GP [10, 60, 360, 2160, 12960, 77760] ,Find the value of a,common ratio,9th term value, sum upto 11th term", - "solution": "The value of a is 10, common ratio is 6 , 9th term is 16796160 , sum upto 11th term is 725594110.0" - }, - { - "problem": "For the given GP [3, 18, 108, 648, 3888, 23328] ,Find the value of a,common ratio,11th term value, sum upto 6th term", - "solution": "The value of a is 3, common ratio is 6 , 11th term is 181398528 , sum upto 6th term is 27993.0" - }, - { - "problem": "For the given GP [12, 36, 108, 324, 972, 2916] ,Find the value of a,common ratio,6th term value, sum upto 9th term", - "solution": "The value of a is 12, common ratio is 3 , 6th term is 2916 , sum upto 9th term is 118092.0" - }, - { - "problem": "For the given GP [4, 40, 400, 4000, 40000, 400000] ,Find the value of a,common ratio,10th term value, sum upto 8th term", - "solution": "The value of a is 4, common ratio is 10 , 10th term is 4000000000 , sum upto 8th term is 44444444.0" - }, - { - "problem": "For the given GP [10, 60, 360, 2160, 12960, 77760] ,Find the value of a,common ratio,6th term value, sum upto 11th term", - "solution": "The value of a is 10, common ratio is 6 , 6th term is 77760 , sum upto 11th term is 725594110.0" - }, - { - "problem": "For the given GP [11, 55, 275, 1375, 6875, 34375] ,Find the value of a,common ratio,9th term value, sum upto 9th term", - "solution": "The value of a is 11, common ratio is 5 , 9th term is 4296875 , sum upto 9th term is 5371091.0" - }, - { - "problem": "For the given GP [11, 121, 1331, 14641, 161051, 1771561] ,Find the value of a,common ratio,7th term value, sum upto 6th term", - "solution": "The value of a is 11, common ratio is 11 , 7th term is 19487171 , sum upto 6th term is 1948716.0" - }, - { - "problem": "For the given GP [8, 24, 72, 216, 648, 1944] ,Find the value of a,common ratio,6th term value, sum upto 7th term", - "solution": "The value of a is 8, common ratio is 3 , 6th term is 1944 , sum upto 7th term is 8744.0" - } - ], - "subject": "misc" - }, - { - "function_name": "geometric_mean", - "id": 67, - "kwargs": [ - "maxValue=100", - "maxNum=4" - ], - "name": "Geometric Mean of N Numbers", - "samples": [ - { - "problem": "Geometric mean of 3 numbers 39 , 58 and 44 = ", - "solution": "(39*58*44)^(1/3) = 46.34274547271732" - }, - { - "problem": "Geometric mean of 3 numbers 57 , 50 and 4 = ", - "solution": "(57*50*4)^(1/3) = 22.506171146771315" - }, - { - "problem": "Geometric mean of 3 numbers 9 , 25 and 28 = ", - "solution": "(9*25*28)^(1/3) = 18.469147504478332" - }, - { - "problem": "Geometric mean of 4 numbers 5 , 50 , 33 , 47 = ", - "solution": "(5*50*33*47)^(1/4) = 24.953872492144974" - }, - { - "problem": "Geometric mean of 2 numbers 17 and 46 = ", - "solution": "(17*46)^(1/2) = 27.964262908219126" - }, - { - "problem": "Geometric mean of 4 numbers 81 , 100 , 6 , 48 = ", - "solution": "(81*100*6*48)^(1/4) = 39.081333745957835" - }, - { - "problem": "Geometric mean of 3 numbers 91 , 86 and 90 = ", - "solution": "(91*86*90)^(1/3) = 88.97352240183" - }, - { - "problem": "Geometric mean of 3 numbers 65 , 59 and 59 = ", - "solution": "(65*59*59)^(1/3) = 60.935791974918" - }, - { - "problem": "Geometric mean of 2 numbers 85 and 62 = ", - "solution": "(85*62)^(1/2) = 72.59476565152615" - }, - { - "problem": "Geometric mean of 3 numbers 57 , 21 and 70 = ", - "solution": "(57*21*70)^(1/3) = 43.75866495040786" - } - ], - "subject": "misc" - }, - { - "function_name": "harmonic_mean", - "id": 68, - "kwargs": [ - "maxValue=100", - "maxNum=4" - ], - "name": "Harmonic Mean of N Numbers", - "samples": [ - { - "problem": "Harmonic mean of 2 numbers 32 and 64 = ", - "solution": " 2/((1/32) + (1/64)) = 42.666666666666664" - }, - { - "problem": "Harmonic mean of 3 numbers 42 , 31 and 81 = ", - "solution": " 3/((1/42) + (1/31) + (1/81)) = 43.85114345114345" - }, - { - "problem": "Harmonic mean of 2 numbers 48 and 6 = ", - "solution": " 2/((1/48) + (1/6)) = 10.666666666666666" - }, - { - "problem": "Harmonic mean of 4 numbers 93 , 4 , 80 , 13 = ", - "solution": " 4/((1/93) + (1/4) + (1/80) + (1/13)) = 11.422835040892851" - }, - { - "problem": "Harmonic mean of 4 numbers 85 , 25 , 28 , 2 = ", - "solution": " 4/((1/85) + (1/25) + (1/28) + (1/2)) = 6.808754112430268" - }, - { - "problem": "Harmonic mean of 4 numbers 31 , 64 , 97 , 9 = ", - "solution": " 4/((1/31) + (1/64) + (1/97) + (1/9)) = 23.62621615815086" - }, - { - "problem": "Harmonic mean of 3 numbers 31 , 75 and 60 = ", - "solution": " 3/((1/31) + (1/75) + (1/60)) = 48.18652849740933" - }, - { - "problem": "Harmonic mean of 4 numbers 62 , 72 , 22 , 49 = ", - "solution": " 4/((1/62) + (1/72) + (1/22) + (1/49)) = 41.71854112302664" - }, - { - "problem": "Harmonic mean of 4 numbers 15 , 71 , 61 , 54 = ", - "solution": " 4/((1/15) + (1/71) + (1/61) + (1/54)) = 34.58318854295284" - }, - { - "problem": "Harmonic mean of 4 numbers 19 , 34 , 55 , 8 = ", - "solution": " 4/((1/19) + (1/34) + (1/55) + (1/8)) = 17.760004998594145" - } - ], - "subject": "misc" - }, - { - "function_name": "euclidian_norm", - "id": 69, - "kwargs": [ - "maxEltAmt=20" - ], - "name": "Euclidian norm or L2 norm of a vector", - "samples": [ - { - "problem": "Euclidian norm or L2 norm of the vector[85.06416414459395, 366.11518049588057, 564.0354858155122, 19.985517803811526] is:", - "solution": 678.0941583527888 - }, - { - "problem": "Euclidian norm or L2 norm of the vector[244.43098375555329, 444.70188313710236, 823.1064381140793, 280.94677479701954, 800.3703579093169, 105.91750373047404, 941.1823607151185, 180.37826831242597, 264.59854213813094, 502.3761530133334, 363.8622095596028, 907.8541197925456] is:", - "solution": 1965.4776393091163 - }, - { - "problem": "Euclidian norm or L2 norm of the vector[977.2254829426947, 249.6882241654662, 806.6443790808063, 183.82782143020293, 213.9475943015491, 817.0739119435051, 856.3411078519205, 54.93254831545602, 480.4339860530773] is:", - "solution": 1839.1083490475316 - }, - { - "problem": "Euclidian norm or L2 norm of the vector[302.25225652507913, 669.3498145761899, 357.7121898513218, 499.57179016141, 933.9415802171206, 845.9955237479224, 61.79662835820987, 541.7496672070051, 965.1832891058697] is:", - "solution": 1932.294282288681 - }, - { - "problem": "Euclidian norm or L2 norm of the vector[766.1858800257842, 543.330060432399, 429.27463736953575, 863.0792918299801, 732.6040771855223, 706.9842449803324, 374.1233328657568, 912.9061574011972, 319.5327337705635, 796.9564191116914, 931.9379911758097, 700.3214746186051, 239.4735944103894, 488.2885351660526, 110.82986151223717, 362.7497568201039] is:", - "solution": 2521.3439951666687 - }, - { - "problem": "Euclidian norm or L2 norm of the vector[730.095510100048, 250.22580886847868, 469.7942677312579, 345.56429220308314, 917.5050287973152, 453.36663147537024, 465.49611535404756, 480.086921221349, 208.99775784475693] is:", - "solution": 1572.8892751419044 - }, - { - "problem": "Euclidian norm or L2 norm of the vector[323.51542444613744, 987.5289351376969, 213.04845129798989, 37.694428025290435, 187.0026749577932, 309.9131434529293, 885.5564928843833, 892.3075592010593, 51.52529322441113, 285.99380959933404, 52.33613230222345, 126.48663521642267, 695.9230048878921, 707.1662820992466, 36.41683462410394, 615.0446944467063] is:", - "solution": 2074.924040826976 - }, - { - "problem": "Euclidian norm or L2 norm of the vector[984.8094536524919, 85.84033191510399, 516.542502738468, 468.0082569936496, 737.0788351606426, 687.7523758152641, 41.98246897392899, 216.73543904191993, 635.6587283755173, 41.93807828920748, 711.4454156428567, 403.44556187414616, 329.24819996629293, 106.48820564834749] is:", - "solution": 1929.3986792740172 - }, - { - "problem": "Euclidian norm or L2 norm of the vector[953.6677699930799, 311.7691879143607, 535.6342128703112, 241.4514924091582, 355.79248519271044, 245.848779474372, 321.48698379696805, 532.3847653014718, 644.8461155661232, 23.68727818582228, 654.7311995161649] is:", - "solution": 1664.5608888632541 - }, - { - "problem": "Euclidian norm or L2 norm of the vector[895.9668519847088, 523.9112077462805] is:", - "solution": 1037.9015143343588 - } - ], - "subject": "misc" - }, - { - "function_name": "angle_btw_vectors", - "id": 70, - "kwargs": [ - "maxEltAmt=20" - ], - "name": "Angle between 2 vectors", - "samples": [ - { - "problem": "angle between the vectors [774.16, 508.48, 670.08, 681.21, 344.09, 551.84, 326.58, 53.53, 631.5, 607.17] and [625.45, 880.58, 568.96, 347.48, 787.63, 580.97, 65.75, 253.36, 402.86, 906.47] is:", - "solution": "0.46 radians" - }, - { - "problem": "angle between the vectors [275.75, 258.76, 240.87, 393.58, 829.74, 487.62, 428.65, 323.78, 776.02, 601.54, 944.17, 895.65, 867.95, 15.62, 83.36, 176.6, 274.61, 548.6, 481.07] and [764.9, 447.78, 876.46, 645.86, 699.62, 959.4, 889.33, 312.48, 629.87, 763.59, 970.58, 119.54, 769.77, 92.26, 395.82, 443.63, 742.42, 536.67, 238.83] is:", - "solution": "0.56 radians" - }, - { - "problem": "angle between the vectors [916.44, 47.84, 896.57, 244.38, 392.49] and [784.62, 580.93, 105.63, 547.63, 33.82] is:", - "solution": "0.87 radians" - }, - { - "problem": "angle between the vectors [490.98, 273.58, 607.45, 991.61, 101.29, 846.1, 391.06, 723.43, 7.08, 306.74, 399.48, 327.82, 665.17, 107.06, 326.83, 139.18, 449.91, 873.14, 661.11] and [201.54, 302.91, 16.6, 781.71, 955.81, 589.91, 839.64, 136.59, 349.72, 371.62, 243.52, 278.83, 267.15, 621.26, 6.3, 961.39, 1.11, 485.03, 209.7] is:", - "solution": "0.88 radians" - }, - { - "problem": "angle between the vectors [364.24, 793.27, 650.8, 973.39, 895.31, 632.74, 823.13, 566.65, 375.77, 932.26, 872.28, 864.64, 782.7] and [824.9, 268.19, 616.2, 730.39, 137.51, 317.38, 770.68, 480.81, 234.73, 447.25, 888.84, 802.86, 500.38] is:", - "solution": "0.46 radians" - }, - { - "problem": "angle between the vectors [889.45, 681.66, 441.73, 119.74, 997.89, 663.97, 678.46, 176.03] and [317.92, 402.66, 159.0, 45.92, 333.07, 906.36, 710.75, 319.13] is:", - "solution": "0.56 radians" - }, - { - "problem": "angle between the vectors [306.27, 0.81, 676.14, 641.7, 663.73, 548.21, 468.53, 202.3, 670.2, 543.81, 135.23, 116.05, 192.76, 402.95, 610.0] and [858.38, 643.21, 609.93, 974.0, 595.6, 757.82, 260.48, 186.37, 631.36, 789.36, 352.69, 473.09, 620.09, 508.39, 395.9] is:", - "solution": "0.51 radians" - }, - { - "problem": "angle between the vectors [58.22, 897.43, 713.2, 922.29] and [916.38, 544.91, 259.77, 217.85] is:", - "solution": "0.97 radians" - }, - { - "problem": "angle between the vectors [705.39, 573.98, 139.52, 474.86, 824.51, 777.87, 469.91, 24.13, 457.17, 167.51, 795.36, 393.88, 493.86, 312.9, 970.47, 403.91, 623.84, 716.42] and [899.79, 817.37, 650.27, 245.09, 971.76, 626.48, 945.38, 204.7, 933.8, 147.33, 595.46, 561.66, 686.48, 796.28, 197.91, 170.51, 139.24, 833.49] is:", - "solution": "0.56 radians" - }, - { - "problem": "angle between the vectors [140.75, 879.09, 497.13, 20.09, 906.14, 583.52] and [497.48, 727.72, 430.49, 713.04, 372.45, 794.95] is:", - "solution": "0.67 radians" - } - ], - "subject": "geometry" - }, - { - "function_name": "absolute_difference", - "id": 71, - "kwargs": [ - "maxA=100", - "maxB=100" - ], - "name": "Absolute difference between two numbers", - "samples": [ - { - "problem": "|-69-43|=", - "solution": 112 - }, - { - "problem": "|96--67|=", - "solution": 163 - }, - { - "problem": "|-95-6|=", - "solution": 101 - }, - { - "problem": "|9--31|=", - "solution": 40 - }, - { - "problem": "|97-17|=", - "solution": 80 - }, - { - "problem": "|-29--72|=", - "solution": 43 - }, - { - "problem": "|-94-79|=", - "solution": 173 - }, - { - "problem": "|-4-64|=", - "solution": 68 - }, - { - "problem": "|-79-74|=", - "solution": 153 - }, - { - "problem": "|65--56|=", - "solution": 121 - } - ], - "subject": "basic_math" - }, - { - "function_name": "vector_dot", - "id": 72, - "kwargs": [ - "minVal=-20", - "maxVal=20" - ], - "name": "Dot Product of 2 Vectors", - "samples": [ - { - "problem": "[14, 9, -5] . [-6, 3, -19] = ", - "solution": "38" - }, - { - "problem": "[8, 0, -14] . [8, -1, -14] = ", - "solution": "260" - }, - { - "problem": "[10, 5, 18] . [15, -2, -19] = ", - "solution": "-202" - }, - { - "problem": "[-14, -19, 11] . [6, -6, -4] = ", - "solution": "-14" - }, - { - "problem": "[-18, 19, -16] . [5, 5, 3] = ", - "solution": "-43" - }, - { - "problem": "[-18, 11, -11] . [4, 2, -20] = ", - "solution": "170" - }, - { - "problem": "[7, -9, -3] . [14, -2, 3] = ", - "solution": "107" - }, - { - "problem": "[3, 20, 15] . [20, -3, -10] = ", - "solution": "-150" - }, - { - "problem": "[-3, 4, -20] . [20, -15, -18] = ", - "solution": "240" - }, - { - "problem": "[8, -4, -9] . [14, -4, 14] = ", - "solution": "2" - } - ], - "subject": "algebra" - }, - { - "function_name": "binary_2s_complement", - "id": 73, - "kwargs": [ - "maxDigits=10" - ], - "name": "Binary 2's Complement", - "samples": [ - { - "problem": "2's complement of =", - "solution": "" - }, - { - "problem": "2's complement of 110 =", - "solution": "10" - }, - { - "problem": "2's complement of 10 =", - "solution": "10" - }, - { - "problem": "2's complement of 11111100 =", - "solution": "100" - }, - { - "problem": "2's complement of 1010001 =", - "solution": "101111" - }, - { - "problem": "2's complement of 111001000 =", - "solution": "111000" - }, - { - "problem": "2's complement of 10 =", - "solution": "10" - }, - { - "problem": "2's complement of 100100110 =", - "solution": "11011010" - }, - { - "problem": "2's complement of 111000 =", - "solution": "1000" - }, - { - "problem": "2's complement of =", - "solution": "" - } - ], - "subject": "computer_science" - }, - { - "function_name": "invert_matrix", - "id": 74, - "kwargs": [ - "SquareMatrixDimension=3", - "MaxMatrixElement=99", - "OnlyIntegerElementsInInvertedMatrix=False" - ], - "name": "Inverse of a Matrix", - "samples": [ - { - "problem": "Inverse of Matrix Matrix([[17, 9, 57], [83, 3, 41], [15, 56, 13]]) is:", - "solution": "Matrix([[-2257/219826, 3075/219826, 99/109913], [-232/109913, -317/109913, 2017/109913], [4603/219826, -817/219826, -348/109913]])" - }, - { - "problem": "Inverse of Matrix Matrix([[29, 36, 23], [25, 37, 92], [52, 8, 13]]) is:", - "solution": "Matrix([[-255/113477, -284/113477, 2461/113477], [49/1247, -9/1247, -23/1247], [-1724/113477, 1640/113477, 173/113477]])" - }, - { - "problem": "Inverse of Matrix Matrix([[3, 2, 84], [59, 45, 20], [61, 16, 67]]) is:", - "solution": "Matrix([[-49/2703, -22/2703, 4/159], [911/49555, 1641/49555, -96/2915], [1801/148665, -74/148665, -1/8745]])" - }, - { - "problem": "Inverse of Matrix Matrix([[13, 49, 89], [43, 88, 36], [73, 93, 48]]) is:", - "solution": "Matrix([[-876/176801, -5925/176801, 6068/176801], [-564/176801, 5873/176801, -3359/176801], [2425/176801, -2368/176801, 963/176801]])" - }, - { - "problem": "Inverse of Matrix Matrix([[7, 4, 29], [58, 3, 2], [36, 13, 82]]) is:", - "solution": "Matrix([[110/769, 49/1538, -79/1538], [-2342/769, -235/769, 834/769], [323/769, 53/1538, -211/1538]])" - }, - { - "problem": "Inverse of Matrix Matrix([[5, 86, 12], [15, 93, 11], [13, 81, 17]]) is:", - "solution": "Matrix([[-69/611, 49/611, 17/611], [56/3055, 71/6110, -25/1222], [-3/3055, -713/6110, 165/1222]])" - }, - { - "problem": "Inverse of Matrix Matrix([[59, 9, 96], [10, 99, 5], [19, 27, 31]]) is:", - "solution": "Matrix([[326/1835, 257/1835, -1051/1835], [-43/3303, 1/3303, 133/3303], [-179/1835, -158/1835, 639/1835]])" - }, - { - "problem": "Inverse of Matrix Matrix([[69, 32, 67], [58, 37, 55], [25, 43, 70]]) is:", - "solution": "Matrix([[75/11576, 641/34728, -719/34728], [-895/11576, 3155/34728, 91/34728], [523/11576, -2167/34728, 697/34728]])" - }, - { - "problem": "Inverse of Matrix Matrix([[37, 3, 11], [22, 77, 23], [80, 67, 57]]) is:", - "solution": "Matrix([[712/13897, 283/27794, -389/27794], [293/27794, 1229/55588, -609/55588], [-2343/27794, -2239/55588, 2783/55588]])" - }, - { - "problem": "Inverse of Matrix Matrix([[61, 38, 58], [7, 31, 46], [37, 89, 76]]) is:", - "solution": "Matrix([[869/45975, -379/15325, 1/1839], [-39/3065, -83/3065, 16/613], [262/45975, 1341/30650, -65/3678]])" - } - ], - "subject": "algebra" - }, - { - "function_name": "sector_area", - "id": 75, - "kwargs": [ - "maxRadius=49", - "maxAngle=359" - ], - "name": "Area of a Sector", - "samples": [ - { - "problem": "Given radius, 18 and angle, 289. Find the area of the sector.", - "solution": "Area of sector = 817.12825" - }, - { - "problem": "Given radius, 18 and angle, 5. Find the area of the sector.", - "solution": "Area of sector = 14.13717" - }, - { - "problem": "Given radius, 29 and angle, 184. Find the area of the sector.", - "solution": "Area of sector = 1350.39615" - }, - { - "problem": "Given radius, 49 and angle, 190. Find the area of the sector.", - "solution": "Area of sector = 3981.00876" - }, - { - "problem": "Given radius, 14 and angle, 3. Find the area of the sector.", - "solution": "Area of sector = 5.13127" - }, - { - "problem": "Given radius, 15 and angle, 309. Find the area of the sector.", - "solution": "Area of sector = 606.72008" - }, - { - "problem": "Given radius, 17 and angle, 14. Find the area of the sector.", - "solution": "Area of sector = 35.30801" - }, - { - "problem": "Given radius, 7 and angle, 84. Find the area of the sector.", - "solution": "Area of sector = 35.91888" - }, - { - "problem": "Given radius, 28 and angle, 264. Find the area of the sector.", - "solution": "Area of sector = 1806.20634" - }, - { - "problem": "Given radius, 33 and angle, 117. Find the area of the sector.", - "solution": "Area of sector = 1111.88818" - } - ], - "subject": "geometry" - }, - { - "function_name": "mean_median", - "id": 76, - "kwargs": [ - "maxlen=10" - ], - "name": "Mean and Median", - "samples": [ - { - "problem": "Given the series of numbers [81, 64, 14, 94, 32, 15, 3, 11, 74, 90]. find the arithmatic mean and mdian of the series", - "solution": "Arithmetic mean of the series is 47.8 and Arithmetic median of this series is 48.0" - }, - { - "problem": "Given the series of numbers [75, 64, 1, 89, 69, 44, 72, 45, 70, 18]. find the arithmatic mean and mdian of the series", - "solution": "Arithmetic mean of the series is 54.7 and Arithmetic median of this series is 66.5" - }, - { - "problem": "Given the series of numbers [68, 96, 78, 73, 90, 26, 98, 15, 20, 81]. find the arithmatic mean and mdian of the series", - "solution": "Arithmetic mean of the series is 64.5 and Arithmetic median of this series is 75.5" - }, - { - "problem": "Given the series of numbers [93, 33, 92, 66, 7, 39, 36, 4, 72, 52]. find the arithmatic mean and mdian of the series", - "solution": "Arithmetic mean of the series is 49.4 and Arithmetic median of this series is 45.5" - }, - { - "problem": "Given the series of numbers [12, 1, 49, 91, 21, 95, 6, 80, 93, 78]. find the arithmatic mean and mdian of the series", - "solution": "Arithmetic mean of the series is 52.6 and Arithmetic median of this series is 63.5" - }, - { - "problem": "Given the series of numbers [19, 66, 46, 12, 64, 2, 73, 11, 68, 48]. find the arithmatic mean and mdian of the series", - "solution": "Arithmetic mean of the series is 40.9 and Arithmetic median of this series is 47.0" - }, - { - "problem": "Given the series of numbers [9, 98, 72, 69, 8, 51, 31, 84, 78, 50]. find the arithmatic mean and mdian of the series", - "solution": "Arithmetic mean of the series is 55.0 and Arithmetic median of this series is 60.0" - }, - { - "problem": "Given the series of numbers [71, 74, 98, 42, 35, 10, 94, 59, 69, 60]. find the arithmatic mean and mdian of the series", - "solution": "Arithmetic mean of the series is 61.2 and Arithmetic median of this series is 64.5" - }, - { - "problem": "Given the series of numbers [92, 39, 57, 59, 51, 2, 61, 62, 34, 74]. find the arithmatic mean and mdian of the series", - "solution": "Arithmetic mean of the series is 53.1 and Arithmetic median of this series is 58.0" - }, - { - "problem": "Given the series of numbers [39, 66, 81, 33, 79, 35, 95, 46, 50, 14]. find the arithmatic mean and mdian of the series", - "solution": "Arithmetic mean of the series is 53.8 and Arithmetic median of this series is 48.0" - } - ], - "subject": "statistics" - }, - { - "function_name": "int_matrix_22_determinant", - "id": 77, - "kwargs": [ - "maxMatrixVal=100" - ], - "name": "Determinant to 2x2 Matrix", - "samples": [ - { - "problem": "Det([[5, 15], [0, 57]]) = ", - "solution": " 285" - }, - { - "problem": "Det([[42, 49], [49, 45]]) = ", - "solution": " -511" - }, - { - "problem": "Det([[3, 97], [95, 92]]) = ", - "solution": " -8939" - }, - { - "problem": "Det([[54, 75], [22, 16]]) = ", - "solution": " -786" - }, - { - "problem": "Det([[98, 73], [26, 4]]) = ", - "solution": " -1506" - }, - { - "problem": "Det([[47, 18], [53, 98]]) = ", - "solution": " 3652" - }, - { - "problem": "Det([[71, 95], [93, 79]]) = ", - "solution": " -3226" - }, - { - "problem": "Det([[17, 3], [6, 12]]) = ", - "solution": " 186" - }, - { - "problem": "Det([[39, 53], [61, 76]]) = ", - "solution": " -269" - }, - { - "problem": "Det([[24, 63], [87, 73]]) = ", - "solution": " -3729" - } - ], - "subject": "algebra" - }, - { - "function_name": "compound_interest", - "id": 78, - "kwargs": [ - "maxPrinciple=10000", - "maxRate=10", - "maxTime=10" - ], - "name": "Compound Interest", - "samples": [ - { - "problem": "Compound interest for a principle amount of 5187 dollars, 9% rate of interest and for a time period of 7 year is = ", - "solution": 9482.04 - }, - { - "problem": "Compound interest for a principle amount of 5793 dollars, 10% rate of interest and for a time period of 7 year is = ", - "solution": 11288.92 - }, - { - "problem": "Compound interest for a principle amount of 2935 dollars, 5% rate of interest and for a time period of 7 year is = ", - "solution": 4129.84 - }, - { - "problem": "Compound interest for a principle amount of 8438 dollars, 3% rate of interest and for a time period of 10 year is = ", - "solution": 11339.97 - }, - { - "problem": "Compound interest for a principle amount of 5957 dollars, 3% rate of interest and for a time period of 1 year is = ", - "solution": 6135.71 - }, - { - "problem": "Compound interest for a principle amount of 9860 dollars, 6% rate of interest and for a time period of 9 year is = ", - "solution": 16658.26 - }, - { - "problem": "Compound interest for a principle amount of 7160 dollars, 8% rate of interest and for a time period of 10 year is = ", - "solution": 15457.9 - }, - { - "problem": "Compound interest for a principle amount of 1862 dollars, 7% rate of interest and for a time period of 5 year is = ", - "solution": 2611.55 - }, - { - "problem": "Compound interest for a principle amount of 9849 dollars, 8% rate of interest and for a time period of 6 year is = ", - "solution": 15629.13 - }, - { - "problem": "Compound interest for a principle amount of 6818 dollars, 6% rate of interest and for a time period of 1 year is = ", - "solution": 7227.08 - } - ], - "subject": "algebra" - }, - { - "function_name": "decimal_to_hexadeci", - "id": 79, - "kwargs": [ - "max_dec=1000" - ], - "name": "Decimal to Hexadecimal", - "samples": [ - { - "problem": "Binary of 21=", - "solution": "0x15" - }, - { - "problem": "Binary of 679=", - "solution": "0x2a7" - }, - { - "problem": "Binary of 886=", - "solution": "0x376" - }, - { - "problem": "Binary of 835=", - "solution": "0x343" - }, - { - "problem": "Binary of 168=", - "solution": "0xa8" - }, - { - "problem": "Binary of 78=", - "solution": "0x4e" - }, - { - "problem": "Binary of 485=", - "solution": "0x1e5" - }, - { - "problem": "Binary of 224=", - "solution": "0xe0" - }, - { - "problem": "Binary of 231=", - "solution": "0xe7" - }, - { - "problem": "Binary of 904=", - "solution": "0x388" - } - ], - "subject": "computer_science" - }, - { - "function_name": "percentage", - "id": 80, - "kwargs": [ - "maxValue=99", - "maxpercentage=99" - ], - "name": "Percentage of a number", - "samples": [ - { - "problem": "What is 70% of 49?", - "solution": "34.30" - }, - { - "problem": "What is 63% of 90?", - "solution": "56.70" - }, - { - "problem": "What is 69% of 81?", - "solution": "55.89" - }, - { - "problem": "What is 43% of 33?", - "solution": "14.19" - }, - { - "problem": "What is 33% of 89?", - "solution": "29.37" - }, - { - "problem": "What is 33% of 93?", - "solution": "30.69" - }, - { - "problem": "What is 24% of 8?", - "solution": "1.92" - }, - { - "problem": "What is 59% of 49?", - "solution": "28.91" - }, - { - "problem": "What is 2% of 36?", - "solution": "0.72" - }, - { - "problem": "What is 80% of 13?", - "solution": "10.40" - } - ], - "subject": "basic_math" - }, - { - "function_name": "celsius_to_fahrenheit", - "id": 81, - "kwargs": [ - "maxTemp=100" - ], - "name": "Celsius To Fahrenheit", - "samples": [ - { - "problem": "Convert 47 degrees Celsius to degrees Fahrenheit =", - "solution": "116.60000000000001" - }, - { - "problem": "Convert 72 degrees Celsius to degrees Fahrenheit =", - "solution": "161.6" - }, - { - "problem": "Convert 46 degrees Celsius to degrees Fahrenheit =", - "solution": "114.8" - }, - { - "problem": "Convert 47 degrees Celsius to degrees Fahrenheit =", - "solution": "116.60000000000001" - }, - { - "problem": "Convert 11 degrees Celsius to degrees Fahrenheit =", - "solution": "51.8" - }, - { - "problem": "Convert 23 degrees Celsius to degrees Fahrenheit =", - "solution": "73.4" - }, - { - "problem": "Convert 51 degrees Celsius to degrees Fahrenheit =", - "solution": "123.8" - }, - { - "problem": "Convert 98 degrees Celsius to degrees Fahrenheit =", - "solution": "208.4" - }, - { - "problem": "Convert 41 degrees Celsius to degrees Fahrenheit =", - "solution": "105.8" - }, - { - "problem": "Convert -50 degrees Celsius to degrees Fahrenheit =", - "solution": "-58.0" - } - ], - "subject": "misc" - }, - { - "function_name": "arithmetic_progression_term", - "id": 82, - "kwargs": [ - "maxd=100", - "maxa=100", - "maxn=100" - ], - "name": "AP Term Calculation", - "samples": [ - { - "problem": "Find the term number 47 of the AP series: -91, -85, -79 ... ", - "solution": 185 - }, - { - "problem": "Find the term number 77 of the AP series: 20, 24, 28 ... ", - "solution": 324 - }, - { - "problem": "Find the term number 64 of the AP series: 68, 71, 74 ... ", - "solution": 257 - }, - { - "problem": "Find the term number 40 of the AP series: -23, -83, -143 ... ", - "solution": -2363 - }, - { - "problem": "Find the term number 27 of the AP series: 57, 83, 109 ... ", - "solution": 733 - }, - { - "problem": "Find the term number 94 of the AP series: 39, 119, 199 ... ", - "solution": 7479 - }, - { - "problem": "Find the term number 8 of the AP series: 57, -42, -141 ... ", - "solution": -636 - }, - { - "problem": "Find the term number 60 of the AP series: -56, -12, 32 ... ", - "solution": 2540 - }, - { - "problem": "Find the term number 35 of the AP series: 94, 61, 28 ... ", - "solution": -1028 - }, - { - "problem": "Find the term number 7 of the AP series: 64, -33, -130 ... ", - "solution": -518 - } - ], - "subject": "misc" - }, - { - "function_name": "arithmetic_progression_sum", - "id": 83, - "kwargs": [ - "maxd=100", - "maxa=100", - "maxn=100" - ], - "name": "AP Sum Calculation", - "samples": [ - { - "problem": "Find the sum of first 37 terms of the AP series: -81, -114, -147 ... ", - "solution": -24975.0 - }, - { - "problem": "Find the sum of first 59 terms of the AP series: 8, 16, 24 ... ", - "solution": 14160.0 - }, - { - "problem": "Find the sum of first 64 terms of the AP series: 34, 26, 18 ... ", - "solution": -13952.0 - }, - { - "problem": "Find the sum of first 36 terms of the AP series: -21, 17, 55 ... ", - "solution": 23184.0 - }, - { - "problem": "Find the sum of first 28 terms of the AP series: -76, -49, -22 ... ", - "solution": 8078.0 - }, - { - "problem": "Find the sum of first 33 terms of the AP series: 37, -28, -93 ... ", - "solution": -33099.0 - }, - { - "problem": "Find the sum of first 63 terms of the AP series: -82, -129, -176 ... ", - "solution": -96957.0 - }, - { - "problem": "Find the sum of first 44 terms of the AP series: 65, 40, 15 ... ", - "solution": -20790.0 - }, - { - "problem": "Find the sum of first 25 terms of the AP series: -90, -134, -178 ... ", - "solution": -15450.0 - }, - { - "problem": "Find the sum of first 11 terms of the AP series: 72, 39, 6 ... ", - "solution": -1023.0 - } - ], - "subject": "misc" - }, - { - "function_name": "decimal_to_octal", - "id": 84, - "kwargs": [ - "maxDecimal=4096" - ], - "name": "Converts decimal to octal", - "samples": [ - { - "problem": "The decimal number 2900 in Octal is: ", - "solution": "0o5524" - }, - { - "problem": "The decimal number 1307 in Octal is: ", - "solution": "0o2433" - }, - { - "problem": "The decimal number 1305 in Octal is: ", - "solution": "0o2431" - }, - { - "problem": "The decimal number 1233 in Octal is: ", - "solution": "0o2321" - }, - { - "problem": "The decimal number 1038 in Octal is: ", - "solution": "0o2016" - }, - { - "problem": "The decimal number 1737 in Octal is: ", - "solution": "0o3311" - }, - { - "problem": "The decimal number 2112 in Octal is: ", - "solution": "0o4100" - }, - { - "problem": "The decimal number 7 in Octal is: ", - "solution": "0o7" - }, - { - "problem": "The decimal number 2305 in Octal is: ", - "solution": "0o4401" - }, - { - "problem": "The decimal number 3986 in Octal is: ", - "solution": "0o7622" - } - ], - "subject": "computer_science" - }, - { - "function_name": "decimal_to_roman_numerals", - "id": 85, - "kwargs": [ - "maxDecimal=4000" - ], - "name": "Converts decimal to Roman Numerals", - "samples": [ - { - "problem": "The number 3878 in Roman Numerals is: ", - "solution": "MMMDCCCLXXVIII" - }, - { - "problem": "The number 188 in Roman Numerals is: ", - "solution": "CLXXXVIII" - }, - { - "problem": "The number 1542 in Roman Numerals is: ", - "solution": "MDXLII" - }, - { - "problem": "The number 988 in Roman Numerals is: ", - "solution": "CMLXXXVIII" - }, - { - "problem": "The number 2645 in Roman Numerals is: ", - "solution": "MMDCXLV" - }, - { - "problem": "The number 3103 in Roman Numerals is: ", - "solution": "MMMCIII" - }, - { - "problem": "The number 2601 in Roman Numerals is: ", - "solution": "MMDCI" - }, - { - "problem": "The number 608 in Roman Numerals is: ", - "solution": "DCVIII" - }, - { - "problem": "The number 3590 in Roman Numerals is: ", - "solution": "MMMDXC" - }, - { - "problem": "The number 1222 in Roman Numerals is: ", - "solution": "MCCXXII" - } - ], - "subject": "misc" - }, - { - "function_name": "degree_to_rad", - "id": 86, - "kwargs": [ - "max_deg=360" - ], - "name": "Degrees to Radians", - "samples": [ - { - "problem": "Angle 174 in radians is = ", - "solution": "3.04" - }, - { - "problem": "Angle 83 in radians is = ", - "solution": "1.45" - }, - { - "problem": "Angle 57 in radians is = ", - "solution": "0.99" - }, - { - "problem": "Angle 172 in radians is = ", - "solution": "3.0" - }, - { - "problem": "Angle 74 in radians is = ", - "solution": "1.29" - }, - { - "problem": "Angle 41 in radians is = ", - "solution": "0.72" - }, - { - "problem": "Angle 147 in radians is = ", - "solution": "2.57" - }, - { - "problem": "Angle 295 in radians is = ", - "solution": "5.15" - }, - { - "problem": "Angle 217 in radians is = ", - "solution": "3.79" - }, - { - "problem": "Angle 325 in radians is = ", - "solution": "5.67" - } - ], - "subject": "geometry" - }, - { - "function_name": "radian_to_deg", - "id": 87, - "kwargs": [ - "max_rad=3" - ], - "name": "Radians to Degrees", - "samples": [ - { - "problem": "Angle 1 in degrees is = ", - "solution": "57.3" - }, - { - "problem": "Angle 3 in degrees is = ", - "solution": "171.89" - }, - { - "problem": "Angle 0 in degrees is = ", - "solution": "0.0" - }, - { - "problem": "Angle 1 in degrees is = ", - "solution": "57.3" - }, - { - "problem": "Angle 0 in degrees is = ", - "solution": "0.0" - }, - { - "problem": "Angle 2 in degrees is = ", - "solution": "114.59" - }, - { - "problem": "Angle 2 in degrees is = ", - "solution": "114.59" - }, - { - "problem": "Angle 0 in degrees is = ", - "solution": "0.0" - }, - { - "problem": "Angle 1 in degrees is = ", - "solution": "57.3" - }, - { - "problem": "Angle 3 in degrees is = ", - "solution": "171.89" - } - ], - "subject": "geometry" - }, - { - "function_name": "differentiation", - "id": 88, - "kwargs": [ - "diff_lvl=2" - ], - "name": "Differentiation", - "samples": [ - { - "problem": "differentiate w.r.t x : d(cos(x)+3*x^4)/dx", - "solution": "12*x^3 - sin(x)" - }, - { - "problem": "differentiate w.r.t x : d(tan(x)+6*x^(-2))/dx", - "solution": "tan(x)^2 + 1 - 12/x^3" - }, - { - "problem": "differentiate w.r.t x : d(ln(x)+5*x^3)/dx", - "solution": "15*x^2 + 1/x" - }, - { - "problem": "differentiate w.r.t x : d(exp(x)+7*x^2)/dx", - "solution": "14*x + exp(x)" - }, - { - "problem": "differentiate w.r.t x : d(sin(x)+7*x^(-2))/dx", - "solution": "cos(x) - 14/x^3" - }, - { - "problem": "differentiate w.r.t x : d(ln(x)+5*x^(-4))/dx", - "solution": "1/x - 20/x^5" - }, - { - "problem": "differentiate w.r.t x : d(exp(x)+9*x^4)/dx", - "solution": "36*x^3 + exp(x)" - }, - { - "problem": "differentiate w.r.t x : d(cot(x)+8*x^(-3))/dx", - "solution": "-cot(x)^2 - 1 - 24/x^4" - }, - { - "problem": "differentiate w.r.t x : d(sin(x)+5*x^(-3))/dx", - "solution": "cos(x) - 15/x^4" - }, - { - "problem": "differentiate w.r.t x : d(tan(x)+4*x^3)/dx", - "solution": "12*x^2 + tan(x)^2 + 1" - } - ], - "subject": "calculus" - }, - { - "function_name": "definite_integral", - "id": 89, - "kwargs": [ - "max_coeff=100" - ], - "name": "Definite Integral of Quadratic Equation", - "samples": [ - { - "problem": "The definite integral within limits 0 to 1 of the equation 12x^2 + 50x + 4 is = ", - "solution": "33.0" - }, - { - "problem": "The definite integral within limits 0 to 1 of the equation 89x^2 + 14x + 61 is = ", - "solution": "97.6667" - }, - { - "problem": "The definite integral within limits 0 to 1 of the equation 88x^2 + 96x + 0 is = ", - "solution": "77.3333" - }, - { - "problem": "The definite integral within limits 0 to 1 of the equation 99x^2 + 81x + 20 is = ", - "solution": "93.5" - }, - { - "problem": "The definite integral within limits 0 to 1 of the equation 75x^2 + 27x + 47 is = ", - "solution": "85.5" - }, - { - "problem": "The definite integral within limits 0 to 1 of the equation 50x^2 + 75x + 71 is = ", - "solution": "125.1667" - }, - { - "problem": "The definite integral within limits 0 to 1 of the equation 3x^2 + 75x + 55 is = ", - "solution": "93.5" - }, - { - "problem": "The definite integral within limits 0 to 1 of the equation 24x^2 + 65x + 90 is = ", - "solution": "130.5" - }, - { - "problem": "The definite integral within limits 0 to 1 of the equation 30x^2 + 52x + 94 is = ", - "solution": "130.0" - }, - { - "problem": "The definite integral within limits 0 to 1 of the equation 55x^2 + 34x + 86 is = ", - "solution": "121.3333" - } - ], - "subject": "calculus" - }, - { - "function_name": "is_prime", - "id": 90, - "kwargs": [ - "max_num=100" - ], - "name": "isprime", - "samples": [ - { - "problem": "Is 7 prime?", - "solution": "Yes" - }, - { - "problem": "Is 37 prime?", - "solution": "Yes" - }, - { - "problem": "Is 31 prime?", - "solution": "Yes" - }, - { - "problem": "Is 46 prime?", - "solution": "No" - }, - { - "problem": "Is 40 prime?", - "solution": "No" - }, - { - "problem": "Is 32 prime?", - "solution": "No" - }, - { - "problem": "Is 33 prime?", - "solution": "No" - }, - { - "problem": "Is 52 prime?", - "solution": "No" - }, - { - "problem": "Is 95 prime?", - "solution": "No" - }, - { - "problem": "Is 29 prime?", - "solution": "Yes" - } - ], - "subject": "basic_math" - }, - { - "function_name": "bcd_to_decimal", - "id": 91, - "kwargs": [ - "maxNumber=10000" - ], - "name": "Binary Coded Decimal to Integer", - "samples": [ - { - "problem": "Integer of Binary Coded Decimal 6 is = ", - "solution": 26902 - }, - { - "problem": "Integer of Binary Coded Decimal 2 is = ", - "solution": 8599 - }, - { - "problem": "Integer of Binary Coded Decimal 7 is = ", - "solution": 30775 - }, - { - "problem": "Integer of Binary Coded Decimal 3 is = ", - "solution": 13364 - }, - { - "problem": "Integer of Binary Coded Decimal 4 is = ", - "solution": 18049 - }, - { - "problem": "Integer of Binary Coded Decimal 6 is = ", - "solution": 26132 - }, - { - "problem": "Integer of Binary Coded Decimal 1 is = ", - "solution": 6032 - }, - { - "problem": "Integer of Binary Coded Decimal 7 is = ", - "solution": 28755 - }, - { - "problem": "Integer of Binary Coded Decimal 6 is = ", - "solution": 27033 - }, - { - "problem": "Integer of Binary Coded Decimal 5 is = ", - "solution": 21785 - } - ], - "subject": "computer_science" - }, - { - "function_name": "complex_to_polar", - "id": 92, - "kwargs": [ - "minRealImaginaryNum=-20, maxRealImaginaryNum=20" - ], - "name": "Complex To Polar Form", - "samples": [ - { - "problem": "rexp(itheta) = ", - "solution": "12.53exp(i1.07)" - }, - { - "problem": "rexp(itheta) = ", - "solution": "6.71exp(i0.46)" - }, - { - "problem": "rexp(itheta) = ", - "solution": "8.06exp(i-1.45)" - }, - { - "problem": "rexp(itheta) = ", - "solution": "5.83exp(i1.03)" - }, - { - "problem": "rexp(itheta) = ", - "solution": "17.49exp(i0.54)" - }, - { - "problem": "rexp(itheta) = ", - "solution": "2.0exp(i3.14)" - }, - { - "problem": "rexp(itheta) = ", - "solution": "6.0exp(i1.57)" - }, - { - "problem": "rexp(itheta) = ", - "solution": "11.4exp(i-0.27)" - }, - { - "problem": "rexp(itheta) = ", - "solution": "5.0exp(i1.57)" - }, - { - "problem": "rexp(itheta) = ", - "solution": "17.46exp(i-2.91)" - } - ], - "subject": "misc" - }, - { - "function_name": "set_operation", - "id": 93, - "kwargs": [ - "minval=3", - "maxval=7", - "n_a=4", - "n_b=5" - ], - "name": "Union,Intersection,Difference of Two Sets", - "samples": [ - { - "problem": "Given the two sets a={3, 4, 5, 6, 7, 9} ,b={8, 10, 2}.Find the Union,intersection,a-b,b-a and symmetric difference", - "solution": "Union is {2, 3, 4, 5, 6, 7, 8, 9, 10},Intersection is set(), a-b is {3, 4, 5, 6, 7, 9},b-a is {8, 10, 2}, Symmetric difference is {2, 3, 4, 5, 6, 7, 8, 9, 10}" - }, - { - "problem": "Given the two sets a={4, 5, 6, 8, 10} ,b={10, 2, 5}.Find the Union,intersection,a-b,b-a and symmetric difference", - "solution": "Union is {2, 4, 5, 6, 8, 10},Intersection is {10, 5}, a-b is {8, 4, 6},b-a is {2}, Symmetric difference is {2, 4, 6, 8}" - }, - { - "problem": "Given the two sets a={2, 3, 5, 6, 8} ,b={1, 10, 7}.Find the Union,intersection,a-b,b-a and symmetric difference", - "solution": "Union is {1, 2, 3, 5, 6, 7, 8, 10},Intersection is set(), a-b is {2, 3, 5, 6, 8},b-a is {1, 10, 7}, Symmetric difference is {1, 2, 3, 5, 6, 7, 8, 10}" - }, - { - "problem": "Given the two sets a={1, 3, 6, 7, 10} ,b={8, 10, 4}.Find the Union,intersection,a-b,b-a and symmetric difference", - "solution": "Union is {1, 3, 4, 6, 7, 8, 10},Intersection is {10}, a-b is {1, 3, 6, 7},b-a is {8, 4}, Symmetric difference is {1, 3, 4, 6, 7, 8}" - }, - { - "problem": "Given the two sets a={1, 2, 3, 4, 5} ,b={8, 7}.Find the Union,intersection,a-b,b-a and symmetric difference", - "solution": "Union is {1, 2, 3, 4, 5, 7, 8},Intersection is set(), a-b is {1, 2, 3, 4, 5},b-a is {8, 7}, Symmetric difference is {1, 2, 3, 4, 5, 7, 8}" - }, - { - "problem": "Given the two sets a={1, 2, 3, 5, 8, 9} ,b={8, 1, 5}.Find the Union,intersection,a-b,b-a and symmetric difference", - "solution": "Union is {1, 2, 3, 5, 8, 9},Intersection is {8, 1, 5}, a-b is {9, 2, 3},b-a is set(), Symmetric difference is {2, 3, 9}" - }, - { - "problem": "Given the two sets a={8, 9, 3} ,b={1, 2, 4, 5, 6, 9}.Find the Union,intersection,a-b,b-a and symmetric difference", - "solution": "Union is {1, 2, 3, 4, 5, 6, 8, 9},Intersection is {9}, a-b is {8, 3},b-a is {1, 2, 4, 5, 6}, Symmetric difference is {1, 2, 3, 4, 5, 6, 8}" - }, - { - "problem": "Given the two sets a={1, 3, 4, 6, 7, 8} ,b={2, 3, 5, 6, 7, 8, 10}.Find the Union,intersection,a-b,b-a and symmetric difference", - "solution": "Union is {1, 2, 3, 4, 5, 6, 7, 8, 10},Intersection is {8, 3, 6, 7}, a-b is {1, 4},b-a is {2, 10, 5}, Symmetric difference is {1, 2, 4, 5, 10}" - }, - { - "problem": "Given the two sets a={1, 10, 4} ,b={9, 3, 4}.Find the Union,intersection,a-b,b-a and symmetric difference", - "solution": "Union is {1, 3, 4, 9, 10},Intersection is {4}, a-b is {1, 10},b-a is {9, 3}, Symmetric difference is {1, 3, 9, 10}" - }, - { - "problem": "Given the two sets a={8, 5, 7} ,b={1, 2, 3, 5, 6, 9, 10}.Find the Union,intersection,a-b,b-a and symmetric difference", - "solution": "Union is {1, 2, 3, 5, 6, 7, 8, 9, 10},Intersection is {5}, a-b is {8, 7},b-a is {1, 2, 3, 6, 9, 10}, Symmetric difference is {1, 2, 3, 6, 7, 8, 9, 10}" - } - ], - "subject": "misc" - }, - { - "function_name": "base_conversion", - "id": 94, - "kwargs": [ - "maxNum=60000", - "maxBase=16" - ], - "name": "Base Conversion", - "samples": [ - { - "problem": "Convert 4273 from base 14 to base 4.", - "solution": "2303031" - }, - { - "problem": "Convert 151432 from base 6 to base 12.", - "solution": "8578" - }, - { - "problem": "Convert 13203 from base 4 to base 16.", - "solution": "1E3" - }, - { - "problem": "Convert 92C4 from base 16 to base 11.", - "solution": "26257" - }, - { - "problem": "Convert E05C from base 16 to base 2.", - "solution": "1110000001011100" - }, - { - "problem": "Convert 32798 from base 10 to base 2.", - "solution": "1000000000011110" - }, - { - "problem": "Convert 4EB6 from base 16 to base 2.", - "solution": "100111010110110" - }, - { - "problem": "Convert 5765 from base 13 to base 16.", - "solution": "2FDB" - }, - { - "problem": "Convert 18112 from base 9 to base 14.", - "solution": "479B" - }, - { - "problem": "Convert AAED from base 16 to base 13.", - "solution": "16BBC" - } - ], - "subject": "misc" - }, - { - "function_name": "curved_surface_area_cylinder", - "id": 95, - "kwargs": [ - "maxRadius=49", - "maxHeight=99" - ], - "name": "Curved surface area of a cylinder", - "samples": [ - { - "problem": "What is the curved surface area of a cylinder of radius, 32 and height, 56?", - "solution": "CSA of cylinder = 11259.47" - }, - { - "problem": "What is the curved surface area of a cylinder of radius, 36 and height, 68?", - "solution": "CSA of cylinder = 15381.24" - }, - { - "problem": "What is the curved surface area of a cylinder of radius, 40 and height, 22?", - "solution": "CSA of cylinder = 5529.2" - }, - { - "problem": "What is the curved surface area of a cylinder of radius, 38 and height, 50?", - "solution": "CSA of cylinder = 11938.05" - }, - { - "problem": "What is the curved surface area of a cylinder of radius, 7 and height, 92?", - "solution": "CSA of cylinder = 4046.37" - }, - { - "problem": "What is the curved surface area of a cylinder of radius, 43 and height, 48?", - "solution": "CSA of cylinder = 12968.49" - }, - { - "problem": "What is the curved surface area of a cylinder of radius, 3 and height, 54?", - "solution": "CSA of cylinder = 1017.88" - }, - { - "problem": "What is the curved surface area of a cylinder of radius, 10 and height, 98?", - "solution": "CSA of cylinder = 6157.52" - }, - { - "problem": "What is the curved surface area of a cylinder of radius, 46 and height, 31?", - "solution": "CSA of cylinder = 8959.82" - }, - { - "problem": "What is the curved surface area of a cylinder of radius, 5 and height, 46?", - "solution": "CSA of cylinder = 1445.13" - } - ], - "subject": "geometry" - }, - { - "function_name": "perimeter_of_polygons", - "id": 96, - "kwargs": [ - "maxSides=12", - "maxLength=120" - ], - "name": "Perimeter of Polygons", - "samples": [ - { - "problem": "The perimeter of a 9 sided polygon with lengths of [7, 83, 90, 33, 29, 81, 20, 90, 39]cm is: ", - "solution": 472 - }, - { - "problem": "The perimeter of a 9 sided polygon with lengths of [100, 90, 109, 5, 35, 112, 31, 73, 92]cm is: ", - "solution": 647 - }, - { - "problem": "The perimeter of a 9 sided polygon with lengths of [56, 6, 104, 72, 2, 79, 62, 82, 79]cm is: ", - "solution": 542 - }, - { - "problem": "The perimeter of a 9 sided polygon with lengths of [49, 54, 14, 22, 84, 20, 12, 108, 97]cm is: ", - "solution": 460 - }, - { - "problem": "The perimeter of a 6 sided polygon with lengths of [46, 64, 1, 35, 22, 40]cm is: ", - "solution": 208 - }, - { - "problem": "The perimeter of a 7 sided polygon with lengths of [110, 64, 40, 41, 101, 41, 41]cm is: ", - "solution": 438 - }, - { - "problem": "The perimeter of a 5 sided polygon with lengths of [30, 94, 41, 16, 71]cm is: ", - "solution": 252 - }, - { - "problem": "The perimeter of a 11 sided polygon with lengths of [49, 72, 78, 6, 59, 104, 14, 5, 46, 102, 46]cm is: ", - "solution": 581 - }, - { - "problem": "The perimeter of a 5 sided polygon with lengths of [87, 36, 107, 68, 74]cm is: ", - "solution": 372 - }, - { - "problem": "The perimeter of a 3 sided polygon with lengths of [2, 65, 114]cm is: ", - "solution": 181 - } - ], - "subject": "geometry" - }, - { - "function_name": "power_of_powers", - "id": 97, - "kwargs": [ - "maxBase=50", - "maxPower=10" - ], - "name": "Power of Powers", - "samples": [ - { - "problem": "Simplify 4^3^10=", - "solution": "4^30" - }, - { - "problem": "Simplify 45^9^6=", - "solution": "45^54" - }, - { - "problem": "Simplify 29^2^3=", - "solution": "29^6" - }, - { - "problem": "Simplify 1^6^2=", - "solution": "1^12" - }, - { - "problem": "Simplify 48^5^5=", - "solution": "48^25" - }, - { - "problem": "Simplify 37^4^1=", - "solution": "37^4" - }, - { - "problem": "Simplify 14^7^6=", - "solution": "14^42" - }, - { - "problem": "Simplify 11^3^10=", - "solution": "11^30" - }, - { - "problem": "Simplify 50^4^9=", - "solution": "50^36" - }, - { - "problem": "Simplify 15^5^9=", - "solution": "15^45" - } - ], - "subject": "basic_math" - }, - { - "function_name": "quotient_of_power_same_base", - "id": 98, - "kwargs": [ - "maxBase=50", - "maxPower=10" - ], - "name": "Quotient of Powers with Same Base", - "samples": [ - { - "problem": "The Quotient of 5^7 and 5^2 = 5^(7-2) = 5^5", - "solution": "3125" - }, - { - "problem": "The Quotient of 50^10 and 50^10 = 50^(10-10) = 50^0", - "solution": "1" - }, - { - "problem": "The Quotient of 1^7 and 1^5 = 1^(7-5) = 1^2", - "solution": "1" - }, - { - "problem": "The Quotient of 37^10 and 37^5 = 37^(10-5) = 37^5", - "solution": "69343957" - }, - { - "problem": "The Quotient of 5^7 and 5^5 = 5^(7-5) = 5^2", - "solution": "25" - }, - { - "problem": "The Quotient of 44^5 and 44^9 = 44^(5-9) = 44^-4", - "solution": "2.668021310019807e-07" - }, - { - "problem": "The Quotient of 47^1 and 47^6 = 47^(1-6) = 47^-5", - "solution": "4.360243168494181e-09" - }, - { - "problem": "The Quotient of 15^8 and 15^5 = 15^(8-5) = 15^3", - "solution": "3375" - }, - { - "problem": "The Quotient of 39^2 and 39^6 = 39^(2-6) = 39^-4", - "solution": "4.322565390688589e-07" - }, - { - "problem": "The Quotient of 30^4 and 30^4 = 30^(4-4) = 30^0", - "solution": "1" - } - ], - "subject": "misc" - }, - { - "function_name": "quotient_of_power_same_power", - "id": 99, - "kwargs": [ - "maxBase=50", - "maxPower=10" - ], - "name": "Quotient of Powers with Same Power", - "samples": [ - { - "problem": "The Quotient of 19^10 and 2^10 = (19/2)^10 = 9.5^10", - "solution": "5987369392.383789" - }, - { - "problem": "The Quotient of 10^10 and 42^10 = (10/42)^10 = 0.23809523809523808^10", - "solution": "5.854733024032202e-07" - }, - { - "problem": "The Quotient of 35^3 and 31^3 = (35/31)^3 = 1.1290322580645162^3", - "solution": "1.4391930448793264" - }, - { - "problem": "The Quotient of 18^5 and 20^5 = (18/20)^5 = 0.9^5", - "solution": "0.5904900000000001" - }, - { - "problem": "The Quotient of 11^1 and 5^1 = (11/5)^1 = 2.2^1", - "solution": "2.2" - }, - { - "problem": "The Quotient of 46^8 and 11^8 = (46/11)^8 = 4.181818181818182^8", - "solution": "93523.59061781067" - }, - { - "problem": "The Quotient of 36^9 and 6^9 = (36/6)^9 = 6.0^9", - "solution": "10077696.0" - }, - { - "problem": "The Quotient of 44^5 and 40^5 = (44/40)^5 = 1.1^5", - "solution": "1.6105100000000006" - }, - { - "problem": "The Quotient of 7^1 and 18^1 = (7/18)^1 = 0.3888888888888889^1", - "solution": "0.3888888888888889" - }, - { - "problem": "The Quotient of 4^3 and 14^3 = (4/14)^3 = 0.2857142857142857^3", - "solution": "0.02332361516034985" - } - ], - "subject": "misc" - }, - { - "function_name": "complex_quadratic", - "id": 100, - "kwargs": [ - "prob_type=0", - "max_range=10" - ], - "name": "complex Quadratic Equation", - "samples": [ - { - "problem": "Find the roots of given Quadratic Equation x^2 + 9x + 9 = 0", - "solution": "simplified solution : ((-1.146, -7.854)), generalized solution : ((-9 + sqrt(45))/2*1, (-9 - sqrt(45))/2*1)" - }, - { - "problem": "Find the roots of given Quadratic Equation 5x^2 + 7x + 1 = 0", - "solution": "simplified solution : ((-0.161, -1.239)), generalized solution : ((-7 + sqrt(29))/2*5, (-7 - sqrt(29))/2*5)" - }, - { - "problem": "Find the roots of given Quadratic Equation 3x^2 + 9x + 1 = 0", - "solution": "simplified solution : ((-0.116, -2.884)), generalized solution : ((-9 + sqrt(69))/2*3, (-9 - sqrt(69))/2*3)" - }, - { - "problem": "Find the roots of given Quadratic Equation x^2 + 6x + 9 = 0", - "solution": "simplified solution : ((-3.0, -3.0)), generalized solution : ((-6 + 0)/2*1, (-6 - 0)/2*1)" - }, - { - "problem": "Find the roots of given Quadratic Equation 7x^2 + 7x + 1 = 0", - "solution": "simplified solution : ((-0.173, -0.827)), generalized solution : ((-7 + sqrt(21))/2*7, (-7 - sqrt(21))/2*7)" - }, - { - "problem": "Find the roots of given Quadratic Equation 2x^2 + 9x + 1 = 0", - "solution": "simplified solution : ((-0.114, -4.386)), generalized solution : ((-9 + sqrt(73))/2*2, (-9 - sqrt(73))/2*2)" - }, - { - "problem": "Find the roots of given Quadratic Equation 3x^2 + 7x + 3 = 0", - "solution": "simplified solution : ((-0.566, -1.768)), generalized solution : ((-7 + sqrt(13))/2*3, (-7 - sqrt(13))/2*3)" - }, - { - "problem": "Find the roots of given Quadratic Equation 3x^2 + 6x + 3 = 0", - "solution": "simplified solution : ((-1.0, -1.0)), generalized solution : ((-6 + 0)/2*3, (-6 - 0)/2*3)" - }, - { - "problem": "Find the roots of given Quadratic Equation 2x^2 + 9x + 1 = 0", - "solution": "simplified solution : ((-0.114, -4.386)), generalized solution : ((-9 + sqrt(73))/2*2, (-9 - sqrt(73))/2*2)" - }, - { - "problem": "Find the roots of given Quadratic Equation 2x^2 + 6x + 1 = 0", - "solution": "simplified solution : ((-0.177, -2.823)), generalized solution : ((-6 + sqrt(28))/2*2, (-6 - sqrt(28))/2*2)" - } - ], - "subject": "algebra" - }, - { - "function_name": "is_leap_year", - "id": 101, - "kwargs": [ - "minNumber=1900", - "maxNumber=2099" - ], - "name": "Leap Year or Not", - "samples": [ - { - "problem": "Year 2058 ", - "solution": "is not a leap year" - }, - { - "problem": "Year 2094 ", - "solution": "is not a leap year" - }, - { - "problem": "Year 1902 ", - "solution": "is not a leap year" - }, - { - "problem": "Year 1942 ", - "solution": "is not a leap year" - }, - { - "problem": "Year 2079 ", - "solution": "is not a leap year" - }, - { - "problem": "Year 1946 ", - "solution": "is not a leap year" - }, - { - "problem": "Year 2010 ", - "solution": "is not a leap year" - }, - { - "problem": "Year 2073 ", - "solution": "is not a leap year" - }, - { - "problem": "Year 2068 ", - "solution": "is a leap year" - }, - { - "problem": "Year 2052 ", - "solution": "is a leap year" - } - ], - "subject": "misc" - }, - { - "function_name": "minutes_to_hours", - "id": 102, - "kwargs": [ - "maxMinutes=999" - ], - "name": "Minute to Hour conversion", - "samples": [ - { - "problem": "Convert 403 minutes to Hours & Minutes", - "solution": "6 hours and 43 minutes" - }, - { - "problem": "Convert 411 minutes to Hours & Minutes", - "solution": "6 hours and 51 minutes" - }, - { - "problem": "Convert 55 minutes to Hours & Minutes", - "solution": "0 hours and 55 minutes" - }, - { - "problem": "Convert 266 minutes to Hours & Minutes", - "solution": "4 hours and 26 minutes" - }, - { - "problem": "Convert 788 minutes to Hours & Minutes", - "solution": "13 hours and 8 minutes" - }, - { - "problem": "Convert 635 minutes to Hours & Minutes", - "solution": "10 hours and 35 minutes" - }, - { - "problem": "Convert 166 minutes to Hours & Minutes", - "solution": "2 hours and 46 minutes" - }, - { - "problem": "Convert 282 minutes to Hours & Minutes", - "solution": "4 hours and 42 minutes" - }, - { - "problem": "Convert 644 minutes to Hours & Minutes", - "solution": "10 hours and 44 minutes" - }, - { - "problem": "Convert 482 minutes to Hours & Minutes", - "solution": "8 hours and 2 minutes" - } - ], - "subject": "misc" - }, - { - "function_name": "decimal_to_bcd", - "id": 103, - "kwargs": [ - "maxNumber=10000" - ], - "name": "Decimal to Binary Coded Decimal", - "samples": [ - { - "problem": "BCD of Decimal Number 7839 is = ", - "solution": 114915 - }, - { - "problem": "BCD of Decimal Number 8720 is = ", - "solution": 2210 - }, - { - "problem": "BCD of Decimal Number 3927 is = ", - "solution": 1557 - }, - { - "problem": "BCD of Decimal Number 9669 is = ", - "solution": 25125 - }, - { - "problem": "BCD of Decimal Number 2166 is = ", - "solution": 876 - }, - { - "problem": "BCD of Decimal Number 7203 is = ", - "solution": 11223 - }, - { - "problem": "BCD of Decimal Number 9170 is = ", - "solution": 23132 - }, - { - "problem": "BCD of Decimal Number 2337 is = ", - "solution": 921 - }, - { - "problem": "BCD of Decimal Number 6899 is = ", - "solution": 110153 - }, - { - "problem": "BCD of Decimal Number 1884 is = ", - "solution": 7512 - } - ], - "subject": "computer_science" - }, - { - "function_name": "circumference", - "id": 104, - "kwargs": [ - "maxRadius=100" - ], - "name": "Circumference", - "samples": [ - { - "problem": "Circumference of circle with radius 73", - "solution": 458.6725274241098 - }, - { - "problem": "Circumference of circle with radius 78", - "solution": 490.0884539600077 - }, - { - "problem": "Circumference of circle with radius 65", - "solution": 408.4070449666731 - }, - { - "problem": "Circumference of circle with radius 38", - "solution": 238.76104167282426 - }, - { - "problem": "Circumference of circle with radius 85", - "solution": 534.0707511102648 - }, - { - "problem": "Circumference of circle with radius 6", - "solution": 37.69911184307752 - }, - { - "problem": "Circumference of circle with radius 46", - "solution": 289.02652413026095 - }, - { - "problem": "Circumference of circle with radius 92", - "solution": 578.0530482605219 - }, - { - "problem": "Circumference of circle with radius 94", - "solution": 590.6194188748811 - }, - { - "problem": "Circumference of circle with radius 82", - "solution": 515.221195188726 - } - ], - "subject": "geometry" - }, - { - "function_name": "combine_like_terms", - "id": 105, - "kwargs": [ - "maxCoef=10", - "maxExp=20", - "maxTerms=10" - ], - "name": "Combine Like terms", - "samples": [ - { - "problem": "4x^2 + 6x^1", - "solution": "6x^1 + 4x^2 " - }, - { - "problem": "4x^1 + 8x^1", - "solution": "12x^1 " - }, - { - "problem": "10x^6 + 9x^8 + 8x^1 + 9x^4 + 2x^2 + 2x^4 + 6x^5 + 9x^3 + 8x^4 + 3x^7", - "solution": "8x^1 + 2x^2 + 9x^3 + 19x^4 + 6x^5 + 10x^6 + 3x^7 + 9x^8 " - }, - { - "problem": "1x^2 + 5x^1", - "solution": "5x^1 + 1x^2 " - }, - { - "problem": "3x^8 + 7x^7 + 9x^2 + 3x^8 + 3x^1 + 10x^7 + 5x^6 + 3x^2 + 10x^7 + 4x^8", - "solution": "3x^1 + 12x^2 + 5x^6 + 27x^7 + 10x^8 " - }, - { - "problem": "3x^1 + 7x^1 + 10x^1 + 8x^1", - "solution": "28x^1 " - }, - { - "problem": "5x^7 + 1x^4 + 6x^1 + 7x^4 + 3x^6 + 9x^4 + 4x^4 + 2x^4 + 5x^4", - "solution": "6x^1 + 28x^4 + 3x^6 + 5x^7 " - }, - { - "problem": "8x^6 + 10x^6 + 6x^6 + 8x^4 + 5x^3 + 7x^3 + 1x^3 + 6x^2", - "solution": "6x^2 + 13x^3 + 8x^4 + 24x^6 " - }, - { - "problem": "2x^3 + 5x^3 + 3x^3 + 9x^4 + 4x^6 + 5x^4 + 9x^3 + 2x^6", - "solution": "19x^3 + 14x^4 + 6x^6 " - }, - { - "problem": "8x^2 + 7x^6 + 1x^5 + 8x^1 + 3x^6 + 4x^1 + 4x^7 + 5x^4 + 3x^9 + 8x^2", - "solution": "12x^1 + 16x^2 + 5x^4 + 1x^5 + 10x^6 + 4x^7 + 3x^9 " - } - ], - "subject": "algebra" - }, - { - "function_name": "signum_function", - "id": 106, - "kwargs": [ - "min=-999", - "max=999" - ], - "name": "signum function", - "samples": [ - { - "problem": "signum of -219 is =", - "solution": "-1" - }, - { - "problem": "signum of -901 is =", - "solution": "-1" - }, - { - "problem": "signum of 335 is =", - "solution": "1" - }, - { - "problem": "signum of 885 is =", - "solution": "1" - }, - { - "problem": "signum of -385 is =", - "solution": "-1" - }, - { - "problem": "signum of -360 is =", - "solution": "-1" - }, - { - "problem": "signum of -291 is =", - "solution": "-1" - }, - { - "problem": "signum of -448 is =", - "solution": "-1" - }, - { - "problem": "signum of 590 is =", - "solution": "1" - }, - { - "problem": "signum of 36 is =", - "solution": "1" - } - ], - "subject": "misc" - }, - { - "function_name": "conditional_probability", - "id": 107, - "kwargs": [ - "" - ], - "name": "Conditional Probability", - "samples": [ - { - "problem": "Someone tested positive for a nasty disease which only 1.86% of population have. Test sensitivity (true positive) is equal to SN= 92.68% whereas test specificity (true negative) SP= 96.53%. What is the probability that this guy really has that disease?", - "solution": "33.61%" - }, - { - "problem": "Someone tested positive for a nasty disease which only 1.34% of population have. Test sensitivity (true positive) is equal to SN= 91.88% whereas test specificity (true negative) SP= 95.48%. What is the probability that this guy really has that disease?", - "solution": "21.64%" - }, - { - "problem": "Someone tested positive for a nasty disease which only 1.55% of population have. Test sensitivity (true positive) is equal to SN= 90.40% whereas test specificity (true negative) SP= 94.66%. What is the probability that this guy really has that disease?", - "solution": "21.04%" - }, - { - "problem": "Someone tested positive for a nasty disease which only 1.39% of population have. Test sensitivity (true positive) is equal to SN= 96.20% whereas test specificity (true negative) SP= 93.60%. What is the probability that this guy really has that disease?", - "solution": "17.48%" - }, - { - "problem": "Someone tested positive for a nasty disease which only 0.96% of population have. Test sensitivity (true positive) is equal to SN= 99.55% whereas test specificity (true negative) SP= 97.49%. What is the probability that this guy really has that disease?", - "solution": "27.77%" - }, - { - "problem": "Someone tested positive for a nasty disease which only 0.77% of population have. Test sensitivity (true positive) is equal to SN= 90.82% whereas test specificity (true negative) SP= 96.11%. What is the probability that this guy really has that disease?", - "solution": "15.34%" - }, - { - "problem": "Someone tested positive for a nasty disease which only 0.90% of population have. Test sensitivity (true positive) is equal to SN= 99.41% whereas test specificity (true negative) SP= 97.85%. What is the probability that this guy really has that disease?", - "solution": "29.57%" - }, - { - "problem": "Someone tested positive for a nasty disease which only 0.55% of population have. Test sensitivity (true positive) is equal to SN= 91.66% whereas test specificity (true negative) SP= 98.07%. What is the probability that this guy really has that disease?", - "solution": "20.8%" - }, - { - "problem": "Someone tested positive for a nasty disease which only 1.77% of population have. Test sensitivity (true positive) is equal to SN= 90.43% whereas test specificity (true negative) SP= 96.85%. What is the probability that this guy really has that disease?", - "solution": "34.09%" - }, - { - "problem": "Someone tested positive for a nasty disease which only 1.37% of population have. Test sensitivity (true positive) is equal to SN= 93.11% whereas test specificity (true negative) SP= 90.50%. What is the probability that this guy really has that disease?", - "solution": "11.98%" - } - ], - "subject": "statistics" - }, - { - "function_name": "arc_length", - "id": 108, - "kwargs": [ - "maxRadius=49", - "maxAngle=359" - ], - "name": "Arc length of Angle", - "samples": [ - { - "problem": "Given radius, 2 and angle, 296. Find the arc length of the angle.", - "solution": "Arc length of the angle = 10.33235" - }, - { - "problem": "Given radius, 45 and angle, 338. Find the arc length of the angle.", - "solution": "Arc length of the angle = 265.46458" - }, - { - "problem": "Given radius, 15 and angle, 206. Find the arc length of the angle.", - "solution": "Arc length of the angle = 53.93067" - }, - { - "problem": "Given radius, 47 and angle, 202. Find the arc length of the angle.", - "solution": "Arc length of the angle = 165.70156" - }, - { - "problem": "Given radius, 39 and angle, 332. Find the arc length of the angle.", - "solution": "Arc length of the angle = 225.98523" - }, - { - "problem": "Given radius, 6 and angle, 198. Find the arc length of the angle.", - "solution": "Arc length of the angle = 20.73451" - }, - { - "problem": "Given radius, 24 and angle, 251. Find the arc length of the angle.", - "solution": "Arc length of the angle = 105.13863" - }, - { - "problem": "Given radius, 30 and angle, 287. Find the arc length of the angle.", - "solution": "Arc length of the angle = 150.27285" - }, - { - "problem": "Given radius, 36 and angle, 341. Find the arc length of the angle.", - "solution": "Arc length of the angle = 214.25662" - }, - { - "problem": "Given radius, 14 and angle, 272. Find the arc length of the angle.", - "solution": "Arc length of the angle = 66.46214" - } - ], - "subject": "geometry" - }, - { - "function_name": "binomial_distribution", - "id": 109, - "kwargs": [ - "" - ], - "name": "Binomial distribution", - "samples": [ - { - "problem": "A manufacturer of metal pistons finds that, on average, 30.8% of the pistons they manufacture are rejected because they are incorrectly sized. What is the probability that a batch of 12 pistons will contain no more than 1 rejected pistons?", - "solution": 7.65 - }, - { - "problem": "A manufacturer of metal pistons finds that, on average, 39.79% of the pistons they manufacture are rejected because they are incorrectly sized. What is the probability that a batch of 14 pistons will contain no more than 2 rejected pistons?", - "solution": 4.11 - }, - { - "problem": "A manufacturer of metal pistons finds that, on average, 38.65% of the pistons they manufacture are rejected because they are incorrectly sized. What is the probability that a batch of 20 pistons will contain no more than 8 rejected pistons?", - "solution": 64.35 - }, - { - "problem": "A manufacturer of metal pistons finds that, on average, 40.37% of the pistons they manufacture are rejected because they are incorrectly sized. What is the probability that a batch of 16 pistons will contain no more than 9 rejected pistons?", - "solution": 93.8 - }, - { - "problem": "A manufacturer of metal pistons finds that, on average, 34.01% of the pistons they manufacture are rejected because they are incorrectly sized. What is the probability that a batch of 13 pistons will contain no more than 7 rejected pistons?", - "solution": 96.1 - }, - { - "problem": "A manufacturer of metal pistons finds that, on average, 32.47% of the pistons they manufacture are rejected because they are incorrectly sized. What is the probability that a batch of 11 pistons will contain no more than 3 rejected pistons?", - "solution": 49.74 - }, - { - "problem": "A manufacturer of metal pistons finds that, on average, 39.73% of the pistons they manufacture are rejected because they are incorrectly sized. What is the probability that a batch of 12 pistons will contain no more than 3 rejected pistons?", - "solution": 23.11 - }, - { - "problem": "A manufacturer of metal pistons finds that, on average, 39.2% of the pistons they manufacture are rejected because they are incorrectly sized. What is the probability that a batch of 10 pistons will contain no more than 6 rejected pistons?", - "solution": 95.09 - }, - { - "problem": "A manufacturer of metal pistons finds that, on average, 34.84% of the pistons they manufacture are rejected because they are incorrectly sized. What is the probability that a batch of 17 pistons will contain no more than 5 rejected pistons?", - "solution": 42.52 - }, - { - "problem": "A manufacturer of metal pistons finds that, on average, 33.81% of the pistons they manufacture are rejected because they are incorrectly sized. What is the probability that a batch of 15 pistons will contain no more than 4 rejected pistons?", - "solution": 38.89 - } - ], - "subject": "misc" - }, - { - "function_name": "stationary_points", - "id": 110, - "kwargs": [ - "maxExp=3", - "maxCoef=10" - ], - "name": "Stationary Points", - "samples": [ - { - "problem": "f(x)=x^3 + 4*x^2 + 4*x + 5", - "solution": "(-2,5),(-2/3,103/27)" - }, - { - "problem": "f(x)=2*x^3 + 10*x^2 + 4*x + 8", - "solution": "(-5/3 - sqrt(19)/3,2*(-5/3 - sqrt(19)/3)**3 - 4*sqrt(19)/3 + 4/3 + 10*(-5/3 - sqrt(19)/3)**2),(-5/3 + sqrt(19)/3,2*(-5/3 + sqrt(19)/3)**3 + 10*(-5/3 + sqrt(19)/3)**2 + 4/3 + 4*sqrt(19)/3)" - }, - { - "problem": "f(x)=3*x^3 + 3*x^2", - "solution": "(-2/3,4/9),(0,0)" - }, - { - "problem": "f(x)=4*x^3 + 8*x^2 + 5*x + 3", - "solution": "(-5/6,56/27),(-1/2,2)" - }, - { - "problem": "f(x)=6*x^3 + 7*x^2 + 1", - "solution": "(-7/9,586/243),(0,1)" - }, - { - "problem": "f(x)=x^2 + 3", - "solution": "(0,3)" - }, - { - "problem": "f(x)=4*x^3 + 7*x^2 + x + 4", - "solution": "(-7/12 - sqrt(37)/12,4*(-7/12 - sqrt(37)/12)**3 - sqrt(37)/12 + 41/12 + 7*(-7/12 - sqrt(37)/12)**2),(-7/12 + sqrt(37)/12,4*(-7/12 + sqrt(37)/12)**3 + 7*(-7/12 + sqrt(37)/12)**2 + sqrt(37)/12 + 41/12)" - }, - { - "problem": "f(x)=x^3 + 10*x^2 + 2*x + 8", - "solution": "(-10/3 - sqrt(94)/3,(-10/3 - sqrt(94)/3)**3 - 2*sqrt(94)/3 + 4/3 + 10*(-10/3 - sqrt(94)/3)**2),(-10/3 + sqrt(94)/3,(-10/3 + sqrt(94)/3)**3 + 10*(-10/3 + sqrt(94)/3)**2 + 4/3 + 2*sqrt(94)/3)" - }, - { - "problem": "f(x)=3*x^3 + 5*x^2 + x + 4", - "solution": "(-1,5),(-1/9,959/243)" - }, - { - "problem": "f(x)=3*x^3 + 8*x^2 + 6*x + 9", - "solution": "(-8/9 - sqrt(10)/9,3*(-8/9 - sqrt(10)/9)**3 - 2*sqrt(10)/3 + 11/3 + 8*(-8/9 - sqrt(10)/9)**2),(-8/9 + sqrt(10)/9,3*(-8/9 + sqrt(10)/9)**3 + 2*sqrt(10)/3 + 8*(-8/9 + sqrt(10)/9)**2 + 11/3)" - } - ], - "subject": "calculus" - }, - { - "function_name": "expanding", - "id": 111, - "kwargs": [ - "range_x1=10", - "range_x2=10", - "range_a=10", - "range_b=10" - ], - "name": "Expanding Factored Binomial", - "samples": [ - { - "problem": "(-1x-7)(+4x-8)", - "solution": "-4*x^2-20*x+56" - }, - { - "problem": "(-5x-2)(+9x+7)", - "solution": "-45*x^2-53*x-14" - }, - { - "problem": "(-7x-10)(-1x-10)", - "solution": "7*x^2+80*x+100" - }, - { - "problem": "(x-4)(+2x-7)", - "solution": "2*x^2-15*x+28" - }, - { - "problem": "(7x+2)(+7x+1)", - "solution": "49*x^2+21*x+2" - }, - { - "problem": "(4x+6)(+2x+7)", - "solution": "8*x^2+40*x+42" - }, - { - "problem": "(7x-2)(+4x-8)", - "solution": "28*x^2-64*x+16" - }, - { - "problem": "(2x+9)(-2x-9)", - "solution": "-4*x^2-36*x-81" - }, - { - "problem": "(4x)(-6x+5)", - "solution": "-24*x^2+20*x" - }, - { - "problem": "(-7x+9)(-6x-4)", - "solution": "42*x^2-26*x-36" - } - ], - "subject": "algebra" - }, - { - "function_name": "area_of_circle", - "id": 112, - "kwargs": [ - "maxRadius=100" - ], - "name": "Area of Circle", - "samples": [ - { - "problem": "Area of circle with radius 45", - "solution": 6364.285714285714 - }, - { - "problem": "Area of circle with radius 98", - "solution": 30184.0 - }, - { - "problem": "Area of circle with radius 77", - "solution": 18634.0 - }, - { - "problem": "Area of circle with radius 19", - "solution": 1134.5714285714287 - }, - { - "problem": "Area of circle with radius 38", - "solution": 4538.285714285715 - }, - { - "problem": "Area of circle with radius 49", - "solution": 7546.0 - }, - { - "problem": "Area of circle with radius 32", - "solution": 3218.285714285714 - }, - { - "problem": "Area of circle with radius 34", - "solution": 3633.1428571428573 - }, - { - "problem": "Area of circle with radius 58", - "solution": 10572.571428571428 - }, - { - "problem": "Area of circle with radius 51", - "solution": 8174.571428571428 - } - ], - "subject": "geometry" - } -] diff --git a/docs/index.html b/docs/index.html deleted file mode 100644 index 378fca8..0000000 --- a/docs/index.html +++ /dev/null @@ -1,75 +0,0 @@ - - -
- - - - - - - -mathgenerator is a python package that enables users to easily generate a variety of math problems, with customizable settings.
-Addition
-function name:
-addition
-subject:
-basic_math
-kwargs:
-maxSum=99, maxAddend=50
-id:
-0
-Problem:
-2+2=
-Solution:
-4
-Click a generator to show a sample problem and more info
-