mirror of
https://github.com/DeaDvey/mathgenerator.git
synced 2025-11-28 14:35:23 +01:00
Merge branch 'master' into adithya
This commit is contained in:
@@ -35,6 +35,7 @@ We currently just underwent a large reconstruction of the repository. Here is ho
|
||||
* Place `.__init__ import *` at the top of your file and then write your function in the lines beneath it
|
||||
* Add `from .<yourfunc> import *` at the bottom of the `__init__.py` file inside the funcs directory
|
||||
|
||||
If you have issues with checks you can try using yapf to fix linter errors or just go through them line by line.
|
||||
### Provide Ideas
|
||||
If you have an idea for a generator but don't have the time or know-how to create it, you can add it as an issue. If you have a lot of ideas, I would suggest adding them to the table in README.md so that they are easier for our team to manage.
|
||||
|
||||
|
||||
2
Makefile
2
Makefile
@@ -2,7 +2,7 @@ IGNORE_ERRORS = E501,F401,F403,F405
|
||||
PKG = mathgenerator
|
||||
|
||||
format:
|
||||
python -m autopep8 --ignore=$(IGNORE_ERRORS) -i $(PKG)/*
|
||||
python -m autopep8 --ignore=$(IGNORE_ERRORS) -ir $(PKG)/*
|
||||
|
||||
lint:
|
||||
python -m flake8 --ignore=$(IGNORE_ERRORS) $(PKG)
|
||||
|
||||
162
README.md
162
README.md
@@ -31,77 +31,91 @@ problem, solution = mathgen.genById(0)
|
||||
| Id | Skill | Example problem | Example Solution | Function Name |
|
||||
|------|-----------------------------------|--------------------|-----------------------|--------------------------|
|
||||
[//]: # list start
|
||||
| 0 | Addition | 33+23= | 56 | addition |
|
||||
| 1 | Subtraction | 14-1= | 13 | subtraction |
|
||||
| 2 | Multiplication | 52*1= | 52 | multiplication |
|
||||
| 3 | Division | 14/26= | 0.5384615384615384 | division |
|
||||
| 4 | Binary Complement 1s | 0110111= | 1001000 | binaryComplement1s |
|
||||
| 5 | Modulo Division | 23%70= | 23 | moduloDivision |
|
||||
| 6 | Square Root | sqrt(121)= | 11 | squareRoot |
|
||||
| 7 | Power Rule Differentiation | 3x^2 + 3x^5 + 1x^2 + 6x^4 + 6x^3 | 6x^1 + 15x^4 + 2x^1 + 24x^3 + 18x^2 | powerRuleDifferentiation |
|
||||
| 8 | Square | 18^2= | 324 | square |
|
||||
| 9 | LCM (Least Common Multiple) | LCM of 17 and 11 = | 187 | lcm |
|
||||
| 10 | GCD (Greatest Common Denominator) | GCD of 15 and 12 = | 3 | gcd |
|
||||
| 11 | Basic Algebra | 2x + 3 = 10 | 7/2 | basicAlgebra |
|
||||
| 12 | Logarithm | log2(32) | 5 | log |
|
||||
| 13 | Easy Division | 196/14 = | 14 | intDivision |
|
||||
| 14 | Decimal to Binary | Binary of 61= | 111101 | decimalToBinary |
|
||||
| 15 | Binary to Decimal | 1 | 1 | binaryToDecimal |
|
||||
| 16 | Fraction Division | (2/1)/(10/5) | 1 | fractionDivision |
|
||||
| 17 | Integer Multiplication with 2x2 Matrix | 16 * [[4, 1], [1, 2]] = | [[64,16],[16,32]] | intMatrix22Multiplication |
|
||||
| 18 | Area of Triangle | Area of triangle with side lengths: 15 13 11 = | 69.62892717829278 | areaOfTriangle |
|
||||
| 19 | Triangle exists check | Does triangle with sides 35, 14 and 37 exist? | Yes | doesTriangleExist |
|
||||
| 20 | Midpoint of the two point | (15,5),(9,10)= | (12.0,7.5) | midPointOfTwoPoint |
|
||||
| 21 | Factoring Quadratic | x^2-12x+35 | (x-7)(x-5) | factoring |
|
||||
| 22 | Third Angle of Triangle | Third angle of triangle with angles 37 and 54 = | 89 | thirdAngleOfTriangle |
|
||||
| 23 | Solve a System of Equations in R^2 | -4x - 8y = 60, -9x + 10y = 51 | x = -9, y = -3 | systemOfEquations |
|
||||
| 24 | Distance between 2 points | Find the distance between (16, 7) and (19, 14) | sqrt(58) | distance2Point |
|
||||
| 25 | Pythagorean Theorem | The hypotenuse of a right triangle given the other two lengths 18 and 8 = | 19.70 | pythagoreanTheorem |
|
||||
| 26 | Linear Equations | -8x + 15y = -109
|
||||
6x + -14y = 90 | x = 8, y = -3 | linearEquations |
|
||||
| 27 | Prime Factorisation | Find prime factors of 130 | [2, 5, 13] | primeFactors |
|
||||
| 28 | Fraction Multiplication | (8/9)*(3/2) | 4/3 | fractionMultiplication |
|
||||
| 29 | Angle of a Regular Polygon | Find the angle of a regular polygon with 8 sides | 135.0 | angleRegularPolygon |
|
||||
| 30 | Combinations of Objects | Number of combinations from 11 objects picked 9 at a time | 55 | combinations |
|
||||
| 31 | Factorial | 2! = | 2 | factorial |
|
||||
| 32 | Surface Area of Cube | Surface area of cube with side = 17m is | 1734 m^2 | surfaceAreaCubeGen |
|
||||
| 33 | Surface Area of Cuboid | Surface area of cuboid with sides = 8m, 4m, 17m is | 472 m^2 | surfaceAreaCuboidGen |
|
||||
| 34 | Surface Area of Cylinder | Surface area of cylinder with height = 32m and radius = 18m is | 5654 m^2 | surfaceAreaCylinderGen |
|
||||
| 35 | Volum of Cube | Volume of cube with side = 11m is | 1331 m^3 | volumeCubeGen |
|
||||
| 36 | Volume of Cuboid | Volume of cuboid with sides = 14m, 19m, 1m is | 266 m^3 | volumeCuboidGen |
|
||||
| 37 | Volume of cylinder | Volume of cylinder with height = 16m and radius = 18m is | 16286 m^3 | volumeCylinderGen |
|
||||
| 38 | Surface Area of cone | Surface area of cone with height = 48m and radius = 20m is | 4523 m^2 | surfaceAreaConeGen |
|
||||
| 39 | Volume of cone | Volume of cone with height = 29m and radius = 6m is | 1093 m^3 | volumeConeGen |
|
||||
| 40 | Common Factors | Common Factors of 59 and 57 = | [1] | commonFactors |
|
||||
| 41 | Intersection of Two Lines | Find the point of intersection of the two lines: y = -1/4x - 2 and y = 4/5x + 3 | (-100/21, -17/21) | intersectionOfTwoLines |
|
||||
| 42 | Permutations | Number of Permutations from 13 objects picked 8 at a time = | 51891840 | permutations |
|
||||
| 43 | Cross Product of 2 Vectors | [4, -11, 9] X [-8, -19, -5] = | [226, -52, -164] | vectorCross |
|
||||
| 44 | Compare Fractions | Which symbol represents the comparison between 3/7 and 2/4? | < | compareFractions |
|
||||
| 45 | Simple Interest | Simple interest for a principle amount of 2398 dollars, 9% rate of interest and for a time period of 5 years is = | 1079.1 | simpleInterest |
|
||||
| 46 | Multiplication of two matrices | Multiply <table><tr><td>-50</td><td>36</td><td>7</td><td>-26</td><td>-2</td><td>63</td></tr><tr><td>88</td><td>-37</td><td>60</td><td>-19</td><td>61</td><td>-56</td></tr><tr><td>48</td><td>-5</td><td>69</td><td>-87</td><td>-64</td><td>-92</td></tr><tr><td>-84</td><td>-50</td><td>-79</td><td>-19</td><td>86</td><td>-13</td></tr><tr><td>0</td><td>28</td><td>12</td><td>-14</td><td>73</td><td>-49</td></tr><tr><td>94</td><td>-90</td><td>2</td><td>26</td><td>-38</td><td>19</td></tr><tr><td>2</td><td>-11</td><td>79</td><td>-77</td><td>98</td><td>-77</td></tr><tr><td>-87</td><td>70</td><td>72</td><td>-32</td><td>64</td><td>-99</td></tr></table> and <table><tr><td>34</td><td>32</td><td>-6</td><td>-32</td><td>46</td><td>-23</td><td>78</td><td>-81</td><td>-18</td></tr><tr><td>-17</td><td>24</td><td>49</td><td>-62</td><td>-50</td><td>77</td><td>38</td><td>-98</td><td>-64</td></tr><tr><td>-23</td><td>-78</td><td>43</td><td> 5</td><td>-83</td><td>-5</td><td> 4</td><td>-92</td><td>-16</td></tr><tr><td> 46</td><td>-47</td><td>-92</td><td>52</td><td>-25</td><td>-37</td><td>44</td><td>51</td><td>-7</td></tr><tr><td> 20</td><td>26</td><td>70</td><td>37</td><td>96</td><td>-73</td><td>49</td><td>84</td><td>42</td></tr><tr><td>-72</td><td>-15</td><td>-80</td><td>-24</td><td>58</td><td>-47</td><td>-41</td><td>45</td><td>-69</td></tr></table>| <table><tr><td>-8245</td><td>-1057</td><td>-423</td><td>-3535</td><td>-569</td><td>2034</td><td>-6329</td><td>1219</td><td>-5765</td></tr><tr><td>6619</td><td> 567</td><td>10737</td><td>2391</td><td>4001</td><td>-6291</td><td>10147</td><td>-7387</td><td>6383</td></tr><tr><td>1472</td><td>-161</td><td>13318</td><td>-5565<td>-12574</td><td>10381</td><td> 638<td>-23699</td><td>2621</td></tr><tr><td>1593</td><td>5598</td><td>3465</td><td>7899</td><td>13170</td><td>-6487</td><td>-4857</td><td>24642</td><td>10618</td></tr><tr><td>3592</td><td>3027</td><td>12206</td><td>1473</td><td>2120</td><td>-412</td><td>6082</td><td>-635</td><td>4561</td></tr><tr><td>3748</td><td>-1803<td>-11460</td><td>2072</td><td>5462</td><td>-8183</td><td>2423</td><td>11</td><td> 947</td></tr><tr><td>2400</td><td> 960</td><td>22950</td><td>2483</td><td> 952</td><td>-1974</td><td>4625</td><td>-5512</td><td>9372</td></tr><tr><td>1132</td><td>-2067</td><td>22392</td><td>1884<td>-12276</td><td>8196</td><td>1949</td><td>-7148</td><td>5677</td></tr></table> | matrixMultiplication |
|
||||
[ 10584, 13902, 11916, -7446, 4430, 554]
|
||||
[ -1800, 6587, 14343, 6224, 4525, 4853]
|
||||
[-12452, -10675, -8693, 427, 2955, 17691]] | matrixMultiplication |
|
||||
| 47 | Cube Root | cuberoot of 221 upto 2 decimal places is: | 6.05 | CubeRoot |
|
||||
| 48 | Power Rule Integration | 4x^5 + 2x^5 + 9x^8 + 9x^5 | (4/5)x^6 + (2/5)x^6 + (9/8)x^9 + (9/5)x^6 + c | powerRuleIntegration |
|
||||
| 49 | Fourth Angle of Quadrilateral | Fourth angle of quadrilateral with angles 27 , 155, 116 = | 62 | fourthAngleOfQuadrilateral |
|
||||
| 50 | Quadratic Equation | Zeros of the Quadratic Equation 53x^2+200x+78=0 | [-0.44, -3.33] | quadraticEquationSolve |
|
||||
| 51 | HCF (Highest Common Factor) | HCF of 7 and 4 = | 1 | hcf |
|
||||
| 52 | Probability of a certain sum appearing on faces of dice | If 2 dice are rolled at the same time, the probability of getting a sum of 11 = | 2/36 | diceSumProbability |
|
||||
| 53 | Exponentiation | 9^10 = | 3486784401 | exponentiation |
|
||||
| 54 | Confidence interval For sample S | The confidence interval for sample [266, 201, 278, 209, 229, 275, 216, 234, 219, 276, 282, 281, 208, 247, 265, 273, 286, 202, 231, 207, 251, 203, 259, 288, 291, 260, 210, 263, 222] with 99% confidence is | (260.5668079141175, 231.29526105139982) | confidenceInterval |
|
||||
| 55 | Comparing surds | Fill in the blanks 15^(1/9) _ 55^(1/1) | < | surdsComparison |
|
||||
| 56 | Fibonacci Series | The Fibonacci Series of the first 10 numbers is ? | [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] | fibonacciSeries |
|
||||
| 57 | Trigonometric Values | What is tan(30)? | 1/√3 | basicTrigonometry |
|
||||
| 58 | Sum of Angles of Polygon | Sum of angles of polygon with 3 sides = | 180 | sumOfAnglesOfPolygon |
|
||||
| 59 | Mean,Standard Deviation,Variance | Find the mean,standard deviation and variance for the data[36, 13, 31, 23, 38, 34, 24, 20, 41, 14, 19, 31, 11, 49, 49] | The Mean is 28.866666666666667 , Standard Deviation is 143.5822222222222, Variance is 11.982579948501167 | dataSummary |
|
||||
| 59 | Surface Area of Sphere | Surface area of Sphere with radius = 11m is | 1520.5308443374597 m^2 | surfaceAreaSphereGen |
|
||||
| 60 | Volume of Sphere | Volume of sphere with radius 73 m = | 1629510.5990953872 m^3 | volumeSphere |
|
||||
| 61 | nth Fibonacci number | What is the 68th Fibonacci number? | 72723460248141 | nthFibonacciNumberGen |
|
||||
| 62 | Profit or Loss Percent | Profit percent when CP = 825 and SP = 972 is: | 17.81818181818182 | profitLossPercent |
|
||||
| 63 | Binary to Hexidecimal | 100000 | 0x20 | binaryToHex |
|
||||
| 64 | Multiplication of 2 complex numbers | (3+14j) * (-3+16j) = | (-233+6j) | complexNumMultiply |
|
||||
| 65 | Geometric Progression | For the given GP [4, 16, 64, 256, 1024, 4096] ,Find the value of a,common ratio,8th term value, sum upto 7th term | The value of a is 4, common ratio is 4 , 8th term is 65536 , sum upto 7th term is 21844.0 | geometricprogression |
|
||||
| 66 | Geometric Mean of N Numbers | Geometric mean of 3 numbers 81 , 35 and 99 = | (81*35*99)^(1/3) = 65.47307713912309 | geometricMean |
|
||||
| 67 | Harmonic Mean of N Numbers | Harmonic mean of 2 numbers 99 and 25 = | 2/((1/99) + (1/25)) = 39.91935483870967 | harmonicMean |
|
||||
| 80 | Set Operations | Given sets A,B | A^B,A-B,B-A,A U B, | set_operation|
|
||||
|
||||
| 0 | Addition | 16+3= | 19 | subtraction |
|
||||
| 1 | Subtraction | 96-17= | 79 | multiplication |
|
||||
| 2 | Multiplication | 48*1= | 48 | multiplicationFunc) |
|
||||
| 3 | Division | 83/97= | 0.8556701030927835 | division |
|
||||
| 4 | Binary Complement 1s | 1110110111= | 0001001000 | binaryComplement1s |
|
||||
| 5 | Modulo Division | 91%53= | 38 | binaryComplement1sFunc) |
|
||||
| 6 | Square Root | sqrt(64)= | 8 | moduloDivision |
|
||||
| 7 | Power Rule Differentiation | 6x^7 | 42x^6 | squareRoot |
|
||||
| 8 | Square | 5^2= | 25 | powerRuleDifferentiation |
|
||||
| 9 | LCM (Least Common Multiple) | LCM of 20 and 10 = | 20 | "(n*m)x^(m-1)", |
|
||||
| 10 | GCD (Greatest Common Denominator) | GCD of 16 and 20 = | 4 | powerRuleDifferentiationFunc) |
|
||||
| 11 | Basic Algebra | 9x + 10 = 10 | 0 | square |
|
||||
| 12 | Logarithm | log3(3) | 1 | lcm |
|
||||
| 13 | Easy Division | 399/19 = | 21 | lcmFunc) |
|
||||
| 14 | Decimal to Binary | Binary of 99= | 1100011 | gcd |
|
||||
| 15 | Binary to Decimal | 011100 | 28 | "c", gcdFunc) |
|
||||
| 16 | Fraction Division | (6/8)/(4/7) | 21/16 | basicAlgebra |
|
||||
| 17 | Integer Multiplication with 2x2 Matrix | 2 * [[3, 3], [6, 3]] = | [[6,6],[12,6]] | basicAlgebraFunc) |
|
||||
| 18 | Area of Triangle | Area of triangle with side lengths: 11 11 17 = | 59.348020186018 | log |
|
||||
| 19 | Triangle exists check | Does triangle with sides 23, 29 and 34 exist? | Yes | intDivision |
|
||||
| 20 | Midpoint of the two point | (0,-20),(14,-16)= | (7.0,-18.0) | decimalToBinary |
|
||||
| 21 | Factoring Quadratic | x^2-5x-36 | (x-9)(x+4) | DecimalToBinaryFunc) |
|
||||
| 22 | Third Angle of Triangle | Third angle of triangle with angles 32 and 60 = | 88 | binaryToDecimal |
|
||||
| 23 | Solve a System of Equations in R^2 | 4x - 6y = 14, -7x - 2y = 88 | x = -10, y = -9 | BinaryToDecimalFunc) |
|
||||
| 24 | Distance between 2 points | Find the distance between (14, -9) and (12, 13) | sqrt(488) | fractionDivision |
|
||||
| 25 | Pythagorean Theorem | The hypotenuse of a right triangle given the other two lengths 13 and 1 = | 13.04 | divideFractionsFunc) |
|
||||
| 26 | Linear Equations | -12x + 13y = -22
|
||||
-1x + -7y = -18 | x = 4, y = 2 | intMatrix22Multiplication |
|
||||
| 27 | Prime Factorisation | Find prime factors of 2 | [2] | 17, "k * [[a,b],[c,d]] |
|
||||
| 28 | Fraction Multiplication | (8/6)*(4/10) | 8/15 | "[[k*a,k*b],[k*c,k*d]]", |
|
||||
| 29 | Angle of a Regular Polygon | Find the angle of a regular polygon with 11 sides | 147.27 | multiplyIntToMatrix22) |
|
||||
| 30 | Combinations of Objects | Number of combinations from 15 objects picked 7 at a time | 6435 | areaOfTriangle |
|
||||
| 31 | Factorial | 3! = | 6 | "Area of Triangle with side lengths a, b, c |
|
||||
| 32 | Surface Area of Cube | Surface area of cube with side = 14m is | 1176 m^2 | "area", areaOfTriangleFunc) |
|
||||
| 33 | Surface Area of Cuboid | Surface area of cuboid with sides = 17m, 7m, 10m is | 718 m^2 | doesTriangleExist |
|
||||
| 34 | Surface Area of Cylinder | Surface area of cylinder with height = 36m and radius = 7m is | 1891 m^2 | "Does triangle with sides a, b and c exist?", |
|
||||
| 35 | Volum of Cube | Volume of cube with side = 10m is | 1000 m^3 | "Yes/No", isTriangleValidFunc) |
|
||||
| 36 | Volume of Cuboid | Volume of cuboid with sides = 20m, 17m, 4m is | 1360 m^3 | midPointOfTwoPoint |
|
||||
| 37 | Volume of cylinder | Volume of cylinder with height = 13m and radius = 1m is | 40 m^3 | "((X1,Y1),(X2,Y2)) |
|
||||
| 38 | Surface Area of cone | Surface area of cone with height = 17m and radius = 9m is | 798 m^2 | MidPointOfTwoPointFunc) |
|
||||
| 39 | Volume of cone | Volume of cone with height = 15m and radius = 5m is | 392 m^3 | factoring |
|
||||
| 40 | Common Factors | Common Factors of 69 and 51 = | [1, 3] | "(x-x1)(x-x2)", factoringFunc) |
|
||||
| 41 | Intersection of Two Lines | Find the point of intersection of the two lines: y = 6/3x + 9 and y = 6x + 2 | (7/4, 25/2) | thirdAngleOfTriangle |
|
||||
| 42 | Permutations | Number of Permutations from 14 objects picked 1 at a time = | 14 | "Third Angle of the triangle |
|
||||
| 43 | Cross Product of 2 Vectors | [19, 17, -9] X [10, -10, -2] = | [-124, -52, -360] | thirdAngleOfTriangleFunc) |
|
||||
| 44 | Compare Fractions | Which symbol represents the comparison between 10/6 and 10/8? | > | systemOfEquations |
|
||||
| 45 | Simple Interest | Simple interest for a principle amount of 7091 dollars, 10% rate of interest and for a time period of 4 years is = | 2836.4 | "2x + 5y |
|
||||
| 46 | Multiplication of two matrices | Multiply<table><tr><td>2</td><td>8</td><td>-4</td><td>5</td></tr><tr><td>6</td><td>-5</td><td>-6</td><td>4</td></tr></table>and<table><tr><td>-5</td><td>1</td><td>-3</td><td>2</td></tr><tr><td>5</td><td>8</td><td>5</td><td>-5</td></tr><tr><td>-6</td><td>-8</td><td>-6</td><td>-7</td></tr><tr><td>-1</td><td>-5</td><td>3</td><td>-7</td></tr></table> | <table><tr><td>49</td><td>73</td><td>73</td><td>-43</td></tr><tr><td>-23</td><td>-6</td><td>5</td><td>51</td></tr></table> | systemOfEquationsFunc) |
|
||||
| 47 | Cube Root | cuberoot of 951 upto 2 decimal places is: | 9.83 | distance2Point |
|
||||
| 48 | Power Rule Integration | 10x^1 + 10x^6 + 1x^4 + 1x^6 | (10/1)x^2 + (10/6)x^7 + (1/4)x^5 + (1/6)x^7 + c | "Find the distance between (x1,y1) and (x2,y2)", |
|
||||
| 49 | Fourth Angle of Quadrilateral | Fourth angle of quadrilateral with angles 15 , 191, 94 = | 60 | "sqrt(distanceSquared)", distanceTwoPointsFunc) |
|
||||
| 50 | Quadratic Equation | Zeros of the Quadratic Equation 48x^2+119x+57=0 | [-0.65, -1.83] | pythagoreanTheorem |
|
||||
| 51 | HCF (Highest Common Factor) | HCF of 5 and 18 = | 1 | "Pythagorean Theorem", 25, |
|
||||
| 52 | Probability of a certain sum appearing on faces of dice | If 1 dice are rolled at the same time, the probability of getting a sum of 2 = | 1/6 | "The hypotenuse of a right triangle given the other two lengths a and b |
|
||||
| 53 | Exponentiation | 17^7 = | 410338673 | "hypotenuse", pythagoreanTheoremFunc) |
|
||||
| 54 | Confidence interval For sample S | The confidence interval for sample [247, 230, 236, 207, 226, 278, 221, 297, 280, 267, 240, 259, 291, 284, 242, 252, 257, 220, 260, 213, 294] with 90% confidence is | (262.13973862175516, 242.71740423538768) | # This has multiple variables whereas #23 has only x and y |
|
||||
| 55 | Comparing surds | Fill in the blanks 17^(1/2) _ 3^(1/6) | > | linearEquations |
|
||||
| 56 | Fibonacci Series | The Fibonacci Series of the first 14 numbers is ? | [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233] | "x |
|
||||
| 57 | Trigonometric Values | What is sin(90)? | 1 | primeFactors |
|
||||
| 58 | Sum of Angles of Polygon | Sum of angles of polygon with 7 sides = | 900 | "[b, c, d, ...]", primeFactorsFunc) |
|
||||
| 59 | Mean,Standard Deviation,Variance | Find the mean,standard deviation and variance for the data[10, 47, 7, 37, 22, 44, 9, 30, 37, 8, 50, 29, 19, 12, 37] | The Mean is 26.533333333333335 , Standard Deviation is 214.38222222222217, Variance is 14.641797096744039 | fractionMultiplication |
|
||||
| 60 | Surface Area of Sphere | Surface area of Sphere with radius = 6m is | 452.3893421169302 m^2 | "(a/b)*(c/d) |
|
||||
| 61 | Volume of Sphere | Volume of sphere with radius 54 m = | 659583.6608064842 m^3 | multiplyFractionsFunc) |
|
||||
| 62 | nth Fibonacci number | What is the 5th Fibonacci number? | 5 | angleRegularPolygon |
|
||||
| 63 | Profit or Loss Percent | Loss percent when CP = 801 and SP = 230 is: | 71.28589263420724 | "Angle of a Regular Polygon", 29, |
|
||||
| 64 | Binary to Hexidecimal | 101111 | 0x2f | "Find the angle of a regular polygon with 6 sides", "120", |
|
||||
| 65 | Multiplication of 2 complex numbers | (1+19j) * (-5+10j) = | (-195-85j) | regularPolygonAngleFunc) |
|
||||
| 66 | Geometric Progression | For the given GP [8, 88, 968, 10648, 117128, 1288408] ,Find the value of a,common ratio,11th term value, sum upto 8th term | The value of a is 8, common ratio is 11 , 11th term is 207499396808 , sum upto 8th term is 171487104.0 | combinations |
|
||||
| 67 | Geometric Mean of N Numbers | Geometric mean of 2 numbers 9 and 18 = | (9*18)^(1/2) = 12.727922061357855 | "Combinations of Objects", 30, |
|
||||
| 68 | Harmonic Mean of N Numbers | Harmonic mean of 2 numbers 59 and 8 = | 2/((1/59) + (1/8)) = 14.08955223880597 | "Combinations available for picking 4 objects at a time from 6 distinct objects |
|
||||
| 69 | Euclidian norm or L2 norm of a vector | Euclidian norm or L2 norm of the vector[868.2223524505417, 443.64852085459694, 828.1090462421802] is: | 1279.217986044348 | " 15", combinationsFunc) |
|
||||
| 70 | Angle between 2 vectors | angle between the vectors [47.34750277983446, 802.0548522330859, 163.10760759590525, 544.7736923139344, 595.2668887448631, 781.8577226989729, 505.92984665962115, 212.21898772758718, 417.09503653850567, 498.8451357914803, 216.11050052884383, 316.85172611004697, 531.4467890864679] and [551.4845648456056, 524.0267675199452, 252.30514761182056, 256.4954536977715, 423.09002486817883, 861.6683390714214, 210.90265341510906, 918.3205871874211, 539.9315722140092, 988.4812675617247, 885.1803007416202, 566.6430154592439, 851.2210274645834] is: | NaN | factorial |
|
||||
| 71 | Absolute difference between two numbers | Absolute difference between numbers 51 and 3 = | 48 | surfaceAreaCubeGen |
|
||||
| 72 | Dot Product of 2 Vectors | [4, 20, 12] . [15, 11, 9] = | 388 | "Surface area of cube with side a units is", |
|
||||
| 73 | Binary 2's Complement | 2's complement of 1 = | 1 | "b units^2", surfaceAreaCube) |
|
||||
| 74 | Inverse of a Matrix | Inverse of Matrix Matrix([[2, 25, 60], [29, 30, 28], [23, 73, 95]]) is: | Matrix([[806/34457, 2005/34457, -1100/34457], [-2111/34457, -1190/34457, 1684/34457], [1427/34457, 429/34457, -665/34457]]) | surfaceAreaCuboidGen |
|
||||
| 75 | Area of a Sector | Given radius, 28 and angle, 317. Find the area of the sector. | Area of sector = 2168.81594 | "Surface Area of Cuboid", 33, |
|
||||
| 76 | Mean and Median | Given the series of numbers [67, 33, 40, 90, 81, 12, 91, 80, 5, 66]. find the arithmatic mean and mdian of the series | Arithmetic mean of the series is 56.5 and Arithmetic median of this series is 66.5 | "Surface area of cuboid with sides |
|
||||
| 77 | Determinant to 2x2 Matrix | Det([[10, 0], [95, 32]]) = | 320 | "d units^2", surfaceAreaCuboid) |
|
||||
| 78 | Compound Interest | Compound Interest for a principle amount of 4156 dollars, 8% rate of interest and for a time period of 7 compounded monthly is = | 4156.0 | surfaceAreaCylinderGen |
|
||||
| 79 | Decimal to Hexadecimal | Binary of 143= | 0x8f | "Surface Area of Cylinder", 34, |
|
||||
| 80 | Percentage of a number | What is 49% of 13? | Required percentage = 6.37% | "Surface area of cylinder with height |
|
||||
| 81 | Celsius To Fahrenheit | Convert 39 degrees Celsius to degrees Fahrenheit = | 102.2 | "c units^2" | surfaceAreaCylinder) |
|
||||
| 82 | AP Term Calculation | Find the term number n of the AP series: a1, a2, a3 ... | a-n | arithmeticProgressionTermFunc|
|
||||
| 83 |"AP Sum Calculation"|"Find the sum of first n terms of the AP series: a1, a2, a3 ..."|"Sum"| arithmeticProgressionSumFunc|
|
||||
| 84 | Set Operations | Given sets A,B | A^B,A-B,B-A,A U B, | set_operation|
|
||||
|
||||
|
||||
@@ -2,13 +2,25 @@
|
||||
# NOTE: not anymore. but still leaving this comment in.
|
||||
from mathgenerator.mathgen import *
|
||||
|
||||
def array2markdown_table(string):
|
||||
string = string.replace("[[", "<table><tr><td>")
|
||||
string = string.replace("[", "<tr><td>")
|
||||
string = string.replace(", ", "</td><td>")
|
||||
string = string.replace("]]", "</td></tr></table>")
|
||||
string = string.replace("]", "</td></tr>")
|
||||
string = string.replace(" ", "")
|
||||
string = string.replace("\n", "")
|
||||
return string
|
||||
|
||||
|
||||
wList = getGenList()
|
||||
lines = []
|
||||
with open('mathgenerator/mathgen.py', 'r') as f:
|
||||
lines=f.readlines()
|
||||
lines = f.readlines()
|
||||
|
||||
allRows = []
|
||||
line = lines.index('# Funcs_start - DO NOT REMOVE!\n')+1 # get the first line of the functions in mathgen.py
|
||||
# get the first line of the functions in mathgen.py
|
||||
line = lines.index('# Funcs_start - DO NOT REMOVE!\n') + 1
|
||||
for item in wList:
|
||||
myGen = item[2]
|
||||
# NOTE: renamed 'sol' to 'solu' to make it look nicer
|
||||
@@ -17,19 +29,17 @@ for item in wList:
|
||||
solu = str(solu).rstrip("\n")
|
||||
# edge case for matrixMultiplication
|
||||
if item[0] == 46:
|
||||
print(prob)
|
||||
|
||||
prob = prob.replace("[[", "<table><tr><td>")
|
||||
prob = prob.replace("[", "<tr><td>")
|
||||
prob = prob.replace(", ", "</td><td>")
|
||||
prob = prob.replace("]]\n", "</td></tr></table>")
|
||||
prob = prob.replace("]\n", "</td></tr>")
|
||||
print(prob)
|
||||
prob, solu = myGen(10, 4)
|
||||
prob = str(prob).rstrip("\n")
|
||||
solu = str(solu).rstrip("\n")
|
||||
prob = array2markdown_table(prob)
|
||||
solu = array2markdown_table(solu)
|
||||
|
||||
instName = lines[line]
|
||||
func_name = instName[:instName.find('=')].strip() # NOTE: renamed 'def_name' to 'func_name' because it suits it more
|
||||
# NOTE: renamed 'def_name' to 'func_name' because it suits it more
|
||||
func_name = instName[:instName.find('=')].strip()
|
||||
row = [myGen.id, myGen.title, prob, solu, func_name]
|
||||
# print(item[1], func_name)
|
||||
print('added', item[1],'-', func_name, 'to the README.md')
|
||||
line += 1
|
||||
if line > len(lines):
|
||||
break
|
||||
@@ -39,10 +49,11 @@ with open('README.md', "r") as g:
|
||||
lines = g.readlines()
|
||||
|
||||
line = lines.index('[//]: # list start\n')
|
||||
lines = lines[:line+1]
|
||||
lines = lines[:line + 1]
|
||||
|
||||
for row in allRows:
|
||||
tableLine = "| " + str(row[0]) + " | " + str(row[1]) + " | " + str(row[2]) + " | " + str(row[3]) + " | " + str(row[4]) + " |\n"
|
||||
tableLine = "| " + str(row[0]) + " | " + str(row[1]) + " | " + str(
|
||||
row[2]) + " | " + str(row[3]) + " | " + str(row[4]) + " |\n"
|
||||
lines.append(tableLine)
|
||||
|
||||
with open('README.md', "w") as g:
|
||||
|
||||
@@ -0,0 +1,23 @@
|
||||
genList = []
|
||||
|
||||
|
||||
class Generator:
|
||||
def __init__(self, title, id, generalProb, generalSol, func):
|
||||
self.title = title
|
||||
self.id = id
|
||||
self.generalProb = generalProb
|
||||
self.generalSol = generalSol
|
||||
self.func = func
|
||||
genList.append([id, title, self])
|
||||
|
||||
def __str__(self):
|
||||
return str(
|
||||
self.id
|
||||
) + " " + self.title + " " + self.generalProb + " " + self.generalSol
|
||||
|
||||
def __call__(self, **kwargs):
|
||||
return self.func(**kwargs)
|
||||
|
||||
|
||||
def getGenList():
|
||||
return genList
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def BinaryToDecimalFunc(max_dig=10):
|
||||
problem = ''
|
||||
|
||||
|
||||
for i in range(random.randint(1, max_dig)):
|
||||
temp = str(random.randint(0, 1))
|
||||
problem += temp
|
||||
|
||||
|
||||
solution = int(problem, 2)
|
||||
return problem, solution
|
||||
|
||||
@@ -7,5 +7,5 @@ def DecimalToBinaryFunc(max_dec=99):
|
||||
|
||||
problem = "Binary of " + str(a) + "="
|
||||
solution = str(b)
|
||||
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -2,24 +2,25 @@ from .__init__ import *
|
||||
|
||||
|
||||
def DiceSumProbFunc(maxDice=3):
|
||||
a = random.randint(1,maxDice)
|
||||
b = random.randint(a,6*a)
|
||||
a = random.randint(1, maxDice)
|
||||
b = random.randint(a, 6 * a)
|
||||
|
||||
count=0
|
||||
for i in [1,2,3,4,5,6]:
|
||||
if a==1:
|
||||
if i==b:
|
||||
count=count+1
|
||||
elif a==2:
|
||||
for j in [1,2,3,4,5,6]:
|
||||
if i+j==b:
|
||||
count=count+1
|
||||
elif a==3:
|
||||
for j in [1,2,3,4,5,6]:
|
||||
for k in [1,2,3,4,5,6]:
|
||||
if i+j+k==b:
|
||||
count=count+1
|
||||
|
||||
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(a,b)
|
||||
solution="{}/{}".format(count, 6**a)
|
||||
count = 0
|
||||
for i in [1, 2, 3, 4, 5, 6]:
|
||||
if a == 1:
|
||||
if i == b:
|
||||
count = count + 1
|
||||
elif a == 2:
|
||||
for j in [1, 2, 3, 4, 5, 6]:
|
||||
if i + j == b:
|
||||
count = count + 1
|
||||
elif a == 3:
|
||||
for j in [1, 2, 3, 4, 5, 6]:
|
||||
for k in [1, 2, 3, 4, 5, 6]:
|
||||
if i + j + k == b:
|
||||
count = count + 1
|
||||
|
||||
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(
|
||||
a, b)
|
||||
solution = "{}/{}".format(count, 6**a)
|
||||
return problem, solution
|
||||
|
||||
@@ -6,7 +6,7 @@ def MidPointOfTwoPointFunc(maxValue=20):
|
||||
y1 = random.randint(-20, maxValue)
|
||||
x2 = random.randint(-20, maxValue)
|
||||
y2 = random.randint(-20, maxValue)
|
||||
|
||||
|
||||
problem = f"({x1},{y1}),({x2},{y2})="
|
||||
solution = f"({(x1+x2)/2},{(y1+y2)/2})"
|
||||
return problem, solution
|
||||
|
||||
@@ -2,7 +2,7 @@ import random
|
||||
import math
|
||||
import fractions
|
||||
|
||||
from .additionFunc import *
|
||||
from .addition import *
|
||||
from .subtractionFunc import *
|
||||
from .multiplicationFunc import *
|
||||
from .divisionFunc import *
|
||||
@@ -77,7 +77,12 @@ from .absoluteDifferenceFunc import *
|
||||
from .vectorDotFunc import *
|
||||
from .binary2sComplement import *
|
||||
from .matrixInversion import *
|
||||
from .sectorAreaFunc import*
|
||||
from .meanMedianFunc import*
|
||||
from .sectorAreaFunc import *
|
||||
from .meanMedianFunc import *
|
||||
from .determinantToMatrix22 import *
|
||||
from .compoundInterestFunc import *
|
||||
from .deciToHexaFunc import *
|
||||
from .percentageFunc import *
|
||||
from .celsiustofahrenheit import *
|
||||
from .arithmeticProgressionSumFunc import *
|
||||
from .arithmeticProgressionTermFunc import *
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
def absoluteDifferenceFunc (maxA = 100, maxB = 100):
|
||||
a = random.randint(-1*maxA, maxA)
|
||||
b = random.randint(-1*maxB, maxB)
|
||||
absDiff = abs(a-b)
|
||||
|
||||
problem = "Absolute difference between numbers " + str(a) + " and " + str(b) + " = "
|
||||
solution = absDiff
|
||||
return problem, solution
|
||||
def absoluteDifferenceFunc(maxA=100, maxB=100):
|
||||
a = random.randint(-1 * maxA, maxA)
|
||||
b = random.randint(-1 * maxB, maxB)
|
||||
absDiff = abs(a - b)
|
||||
|
||||
problem = "Absolute difference between numbers " + \
|
||||
str(a) + " and " + str(b) + " = "
|
||||
solution = absDiff
|
||||
return problem, solution
|
||||
|
||||
15
mathgenerator/funcs/addition.py
Normal file
15
mathgenerator/funcs/addition.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from .__init__ import *
|
||||
from ..__init__ import Generator
|
||||
|
||||
|
||||
def additionFunc(maxSum=99, maxAddend=50):
|
||||
a = random.randint(0, maxAddend)
|
||||
# The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
||||
b = random.randint(0, min((maxSum - a), maxAddend))
|
||||
c = a + b
|
||||
problem = str(a) + "+" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
|
||||
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
||||
@@ -1,10 +0,0 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def additionFunc(maxSum=99, maxAddend=50):
|
||||
a = random.randint(0, maxAddend)
|
||||
b = random.randint(0, min((maxSum - a), maxAddend)) # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
||||
c = a + b
|
||||
problem = str(a) + "+" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
@@ -1,16 +1,21 @@
|
||||
from .euclidianNormFunc import euclidianNormFunc
|
||||
import math
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def angleBtwVectorsFunc(v1: list, v2: list):
|
||||
sum = 0
|
||||
def angleBtwVectorsFunc(maxEltAmt=20):
|
||||
s = 0
|
||||
v1 = [random.uniform(0, 1000) for i in range(random.randint(2, maxEltAmt))]
|
||||
v2 = [random.uniform(0, 1000) for i in v1]
|
||||
for i in v1:
|
||||
for j in v2:
|
||||
sum += i * j
|
||||
s += i * j
|
||||
|
||||
mags = euclidianNormFunc(v1) * euclidianNormFunc(v2)
|
||||
mags = math.sqrt(sum([i**2 for i in v1])) * math.sqrt(sum([i**2 for i in v2]))
|
||||
problem = f"angle between the vectors {v1} and {v2} is:"
|
||||
solution = math.acos(sum / mags)
|
||||
solution = ''
|
||||
try:
|
||||
solution = str(math.acos(s / mags))
|
||||
except MathDomainError:
|
||||
print('angleBtwVectorsFunc has some issues with math module, line 16')
|
||||
solution = 'NaN'
|
||||
# would return the answer in radians
|
||||
return problem, solution
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
||||
@@ -7,8 +7,9 @@ def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
||||
c = random.randint(1, maxC)
|
||||
|
||||
s = (a + b + c) / 2
|
||||
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
|
||||
area = (s * (s - a) * (s - b) * (s - c))**0.5
|
||||
|
||||
problem = "Area of triangle with side lengths: " + str(a) + " " + str(b) + " " + str(c) + " = "
|
||||
problem = "Area of triangle with side lengths: " + \
|
||||
str(a) + " " + str(b) + " " + str(c) + " = "
|
||||
solution = area
|
||||
return problem, solution
|
||||
|
||||
13
mathgenerator/funcs/arithmeticProgressionSumFunc.py
Normal file
13
mathgenerator/funcs/arithmeticProgressionSumFunc.py
Normal file
@@ -0,0 +1,13 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def arithmeticProgressionSumFunc(maxd=100, maxa=100, maxn=100):
|
||||
d = random.randint(-1 * maxd, maxd)
|
||||
a1 = random.randint(-1 * maxa, maxa)
|
||||
a2 = a1 + d
|
||||
a3 = a2 + d
|
||||
n = random.randint(4, maxn)
|
||||
apString = str(a1) + ', ' + str(a2) + ', ' + str(a3) + ' ... '
|
||||
problem = 'Find the sum of first ' + str(n) + ' terms of the AP series: ' + apString
|
||||
solution = n * ((2 * a1) + ((n - 1) * d)) / 2
|
||||
return problem, solution
|
||||
13
mathgenerator/funcs/arithmeticProgressionTermFunc.py
Normal file
13
mathgenerator/funcs/arithmeticProgressionTermFunc.py
Normal file
@@ -0,0 +1,13 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def arithmeticProgressionTermFunc(maxd=100, maxa=100, maxn=100):
|
||||
d = random.randint(-1 * maxd, maxd)
|
||||
a1 = random.randint(-1 * maxa, maxa)
|
||||
a2 = a1 + d
|
||||
a3 = a2 + d
|
||||
n = random.randint(4, maxn)
|
||||
apString = str(a1) + ', ' + str(a2) + ', ' + str(a3) + ' ... '
|
||||
problem = 'Find the term number ' + str(n) + ' of the AP series: ' + apString
|
||||
solution = a1 + ((n - 1) * d)
|
||||
return problem, solution
|
||||
@@ -1,4 +1,4 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def basicAlgebraFunc(maxVariable=10):
|
||||
@@ -8,7 +8,7 @@ def basicAlgebraFunc(maxVariable=10):
|
||||
|
||||
# calculate gcd
|
||||
def calculate_gcd(x, y):
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
return x
|
||||
|
||||
@@ -19,7 +19,7 @@ def basicAlgebraFunc(maxVariable=10):
|
||||
x = "0"
|
||||
elif a == 1 or a == i:
|
||||
x = f"{c - b}"
|
||||
|
||||
|
||||
problem = f"{a}x + {b} = {c}"
|
||||
solution = x
|
||||
return problem, solution
|
||||
|
||||
@@ -1,14 +1,25 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def basicTrigonometryFunc(angles=[0,30,45,60,90],functions=["sin","cos","tan"]): #Handles degrees in quadrant one
|
||||
angle=random.choice(angles)
|
||||
function=random.choice(functions)
|
||||
# Handles degrees in quadrant one
|
||||
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90],
|
||||
functions=["sin", "cos", "tan"]):
|
||||
angle = random.choice(angles)
|
||||
function = random.choice(functions)
|
||||
|
||||
problem=f"What is {function}({angle})?"
|
||||
|
||||
expression='math.'+function+'(math.radians(angle))'
|
||||
result_fraction_map={0.0:"0",0.5:"1/2",0.71:"1/√2",0.87:"√3/2",1.0:"1",0.58:"1/√3",1.73:"√3"}
|
||||
problem = f"What is {function}({angle})?"
|
||||
|
||||
solution=result_fraction_map[round(eval(expression),2)] if round(eval(expression),2)<=99999 else "∞" #for handling the ∞ condition
|
||||
return problem,solution
|
||||
expression = 'math.' + function + '(math.radians(angle))'
|
||||
result_fraction_map = {
|
||||
0.0: "0",
|
||||
0.5: "1/2",
|
||||
0.71: "1/√2",
|
||||
0.87: "√3/2",
|
||||
1.0: "1",
|
||||
0.58: "1/√3",
|
||||
1.73: "√3"
|
||||
}
|
||||
|
||||
solution = result_fraction_map[round(eval(expression), 2)] if round(
|
||||
eval(expression), 2) <= 99999 else "∞" # for handling the ∞ condition
|
||||
return problem, solution
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def binary2sComplementFunc(maxDigits=10):
|
||||
digits = random.randint(1, maxDigits)
|
||||
question = ''.join([str(random.randint(0, 1)) for i in range(digits)]).lstrip('0')
|
||||
question = ''.join([str(random.randint(0, 1))
|
||||
for i in range(digits)]).lstrip('0')
|
||||
|
||||
answer = []
|
||||
for i in question:
|
||||
@@ -18,9 +20,9 @@ def binary2sComplementFunc(maxDigits=10):
|
||||
answer[j] = '0'
|
||||
j -= 1
|
||||
|
||||
if j == 0 and carry == True:
|
||||
if j == 0 and carry is True:
|
||||
answer.insert(0, '1')
|
||||
|
||||
problem = "2's complement of " + question + " ="
|
||||
solution = ''.join(answer).lstrip('0')
|
||||
return problem, solution
|
||||
return problem, solution
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def binaryComplement1sFunc(maxDigits=10):
|
||||
@@ -9,7 +9,7 @@ def binaryComplement1sFunc(maxDigits=10):
|
||||
temp = str(random.randint(0, 1))
|
||||
question += temp
|
||||
answer += "0" if temp == "1" else "1"
|
||||
|
||||
problem = question+"="
|
||||
|
||||
problem = question + "="
|
||||
solution = answer
|
||||
return problem, solution
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def binaryToHexFunc(max_dig=10):
|
||||
|
||||
14
mathgenerator/funcs/celsiustofahrenheit.py
Normal file
14
mathgenerator/funcs/celsiustofahrenheit.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from .__init__ import *
|
||||
from ..__init__ import Generator
|
||||
|
||||
|
||||
def celsiustofahrenheitFunc(maxTemp=100):
|
||||
celsius = random.randint(-50, maxTemp)
|
||||
fahrenheit = (celsius * (9 / 5)) + 32
|
||||
problem = "Convert " + str(celsius) + " degrees Celsius to degrees Fahrenheit ="
|
||||
solution = str(fahrenheit)
|
||||
return problem, solution
|
||||
|
||||
|
||||
celsiustofahrenheit = Generator("Celsius To Fahrenheit", 81,
|
||||
"(C +(9/5))+32=", "F", celsiustofahrenheitFunc)
|
||||
@@ -1,8 +1,7 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def combinationsFunc(maxlength=20):
|
||||
|
||||
def factorial(a):
|
||||
d = 1
|
||||
for i in range(a):
|
||||
@@ -14,6 +13,7 @@ def combinationsFunc(maxlength=20):
|
||||
b = random.randint(0, 9)
|
||||
|
||||
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
|
||||
problem = "Number of combinations from {} objects picked {} at a time ".format(a, b)
|
||||
|
||||
problem = "Number of combinations from {} objects picked {} at a time ".format(
|
||||
a, b)
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def commonFactorsFunc(maxVal=100):
|
||||
@@ -18,7 +18,7 @@ def commonFactorsFunc(maxVal=100):
|
||||
if (y % i == 0):
|
||||
count = count + 1
|
||||
arr.append(i)
|
||||
|
||||
|
||||
problem = f"Common Factors of {a} and {b} = "
|
||||
solution = arr
|
||||
return problem, solution
|
||||
|
||||
@@ -15,12 +15,12 @@ def compareFractionsFunc(maxVal=10):
|
||||
first = a / b
|
||||
second = c / d
|
||||
|
||||
if(first > second):
|
||||
if (first > second):
|
||||
solution = ">"
|
||||
elif(first < second):
|
||||
elif (first < second):
|
||||
solution = "<"
|
||||
else:
|
||||
solution = "="
|
||||
|
||||
|
||||
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
|
||||
return problem, solution
|
||||
|
||||
@@ -1,11 +1,19 @@
|
||||
from .__init__ import *
|
||||
|
||||
def compoundInterestFunc(maxPrinciple = 10000, maxRate = 10, maxTime = 10, maxPeriod = 10):
|
||||
|
||||
|
||||
def compoundInterestFunc(maxPrinciple=10000,
|
||||
maxRate=10,
|
||||
maxTime=10,
|
||||
maxPeriod=10):
|
||||
p = random.randint(100, maxPrinciple)
|
||||
r = random.randint(1, maxRate)
|
||||
t = random.randint(1, maxTime)
|
||||
n = random.randint(1, maxPeriod)
|
||||
A = p * ((1 + (r/(100*n))**(n*t)))
|
||||
problem = "Compound Interest for a principle amount of " + str(p) + " dollars, " + str(r) + "% rate of interest and for a time period of " + str(t) + " compounded monthly is = "
|
||||
A = p * ((1 + (r / (100 * n))**(n * t)))
|
||||
problem = "Compound Interest for a principle amount of " + str(
|
||||
p) + " dollars, " + str(
|
||||
r) + "% rate of interest and for a time period of " + str(
|
||||
t) + " compounded monthly is = "
|
||||
solution = round(A, 2)
|
||||
return problem, solution
|
||||
|
||||
@@ -2,29 +2,30 @@ from .__init__ import *
|
||||
|
||||
|
||||
def confidenceIntervalFunc():
|
||||
n=random.randint(20,40)
|
||||
j=random.randint(0,3)
|
||||
n = random.randint(20, 40)
|
||||
j = random.randint(0, 3)
|
||||
|
||||
lst=random.sample(range(200,300),n)
|
||||
lst_per=[80 ,90, 95, 99]
|
||||
lst = random.sample(range(200, 300), n)
|
||||
lst_per = [80, 90, 95, 99]
|
||||
lst_t = [1.282, 1.645, 1.960, 2.576]
|
||||
|
||||
mean=0
|
||||
sd=0
|
||||
mean = 0
|
||||
sd = 0
|
||||
|
||||
for i in lst:
|
||||
count= i + mean
|
||||
mean=count
|
||||
count = i + mean
|
||||
mean = count
|
||||
|
||||
mean = mean/n
|
||||
mean = mean / n
|
||||
|
||||
for i in lst:
|
||||
x=(i-mean)**2+sd
|
||||
sd=x
|
||||
x = (i - mean)**2 + sd
|
||||
sd = x
|
||||
|
||||
sd=sd/n
|
||||
standard_error = lst_t[j]*math.sqrt(sd/n)
|
||||
|
||||
problem= 'The confidence interval for sample {} with {}% confidence is'.format([x for x in lst], lst_per[j])
|
||||
solution= '({}, {})'.format(mean+standard_error, mean-standard_error)
|
||||
sd = sd / n
|
||||
standard_error = lst_t[j] * math.sqrt(sd / n)
|
||||
|
||||
problem = 'The confidence interval for sample {} with {}% confidence is'.format(
|
||||
[x for x in lst], lst_per[j])
|
||||
solution = '({}, {})'.format(mean + standard_error, mean - standard_error)
|
||||
return problem, solution
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def cubeRootFunc(minNo=1, maxNo=1000):
|
||||
b = random.randint(minNo, maxNo)
|
||||
a = b**(1 / 3)
|
||||
|
||||
|
||||
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
|
||||
solution = str(round(a, 2))
|
||||
return problem, solution
|
||||
|
||||
@@ -1,26 +1,28 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def dataSummaryFunc(number_values=15,minval=5,maxval=50):
|
||||
random_list=[]
|
||||
def dataSummaryFunc(number_values=15, minval=5, maxval=50):
|
||||
random_list = []
|
||||
|
||||
for i in range(number_values):
|
||||
n=random.randint(minval,maxval)
|
||||
n = random.randint(minval, maxval)
|
||||
random_list.append(n)
|
||||
|
||||
a=sum(random_list)
|
||||
mean=a/number_values
|
||||
a = sum(random_list)
|
||||
mean = a / number_values
|
||||
|
||||
var=0
|
||||
var = 0
|
||||
for i in range(number_values):
|
||||
var+=(random_list[i]-mean)**2
|
||||
var += (random_list[i] - mean)**2
|
||||
|
||||
# we're printing stuff here?
|
||||
print(random_list)
|
||||
print(mean)
|
||||
print(var/number_values)
|
||||
print((var/number_values)**0.5)
|
||||
print(var / number_values)
|
||||
print((var / number_values)**0.5)
|
||||
|
||||
problem="Find the mean,standard deviation and variance for the data"+str(random_list)
|
||||
solution="The Mean is {} , Standard Deviation is {}, Variance is {}".format(mean,var/number_values,(var/number_values)**0.5)
|
||||
return problem,solution
|
||||
problem = "Find the mean,standard deviation and variance for the data" + \
|
||||
str(random_list)
|
||||
solution = "The Mean is {} , Standard Deviation is {}, Variance is {}".format(
|
||||
mean, var / number_values, (var / number_values)**0.5)
|
||||
return problem, solution
|
||||
|
||||
@@ -5,6 +5,6 @@ def deciToHexaFunc(max_dec=1000):
|
||||
a = random.randint(0, max_dec)
|
||||
b = hex(a)
|
||||
problem = "Binary of " + str(a) + "="
|
||||
solution = str(b)
|
||||
solution = str(b)
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
def determinantToMatrix22(maxMatrixVal = 100):
|
||||
|
||||
def determinantToMatrix22(maxMatrixVal=100):
|
||||
a = random.randint(0, maxMatrixVal)
|
||||
b = random.randint(0, maxMatrixVal)
|
||||
c = random.randint(0, maxMatrixVal)
|
||||
d = random.randint(0, maxMatrixVal)
|
||||
|
||||
determinant = a*d - b*c
|
||||
determinant = a * d - b * c
|
||||
problem = f"Det([[{a}, {b}], [{c}, {d}]]) = "
|
||||
solution = f" {determinant}"
|
||||
return problem, solution
|
||||
|
||||
@@ -7,8 +7,8 @@ def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
|
||||
point2X = random.randint(minValXY, maxValXY + 1)
|
||||
point2Y = random.randint(minValXY, maxValXY + 1)
|
||||
|
||||
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
|
||||
|
||||
distanceSq = (point1X - point2X)**2 + (point1Y - point2Y)**2
|
||||
|
||||
solution = f"sqrt({distanceSq})"
|
||||
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
|
||||
return problem, solution
|
||||
|
||||
@@ -14,13 +14,13 @@ def divideFractionsFunc(maxVal=10):
|
||||
d = random.randint(1, maxVal)
|
||||
|
||||
def calculate_gcd(x, y):
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
return x
|
||||
|
||||
tmp_n = a * d
|
||||
tmp_d = b * c
|
||||
|
||||
|
||||
gcd = calculate_gcd(tmp_n, tmp_d)
|
||||
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ def divisionFunc(maxRes=99, maxDivid=99):
|
||||
a = random.randint(0, maxDivid)
|
||||
b = random.randint(0, min(maxRes, maxDivid))
|
||||
c = a / b
|
||||
|
||||
|
||||
problem = str(a) + "/" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -7,7 +7,7 @@ def divisionToIntFunc(maxA=25, maxB=25):
|
||||
|
||||
divisor = a * b
|
||||
dividend = random.choice([a, b])
|
||||
|
||||
|
||||
problem = f"{divisor}/{dividend} = "
|
||||
solution = int(divisor / dividend)
|
||||
return problem, solution
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def euclidianNormFunc(v1: list):
|
||||
problem = f"Euclidian norm or L2 norm of the vector{v1} is:"
|
||||
solution = sqrt(sum([i**2 for i in v1]))
|
||||
def euclidianNormFunc(maxEltAmt=20):
|
||||
vec = [random.uniform(0, 1000) for i in range(random.randint(2, maxEltAmt))]
|
||||
problem = f"Euclidian norm or L2 norm of the vector{vec} is:"
|
||||
solution = math.sqrt(sum([i**2 for i in vec]))
|
||||
return problem, solution
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def exponentiationFunc(maxBase = 20,maxExpo = 10):
|
||||
def exponentiationFunc(maxBase=20, maxExpo=10):
|
||||
base = random.randint(1, maxBase)
|
||||
expo = random.randint(1, maxExpo)
|
||||
|
||||
|
||||
problem = f"{base}^{expo} ="
|
||||
solution = str(base ** expo)
|
||||
solution = str(base**expo)
|
||||
return problem, solution
|
||||
|
||||
@@ -4,12 +4,12 @@ from .__init__ import *
|
||||
def factorialFunc(maxInput=6):
|
||||
a = random.randint(0, maxInput)
|
||||
n = a
|
||||
|
||||
|
||||
problem = str(a) + "! = "
|
||||
b = 1
|
||||
|
||||
while a != 1 and n > 0:
|
||||
b *= n
|
||||
n -= 1
|
||||
b *= n
|
||||
n -= 1
|
||||
solution = str(b)
|
||||
return problem, solution
|
||||
|
||||
@@ -26,4 +26,4 @@ def factoringFunc(range_x1=10, range_x2=10):
|
||||
x1 = intParser(x1)
|
||||
x2 = intParser(x2)
|
||||
solution = f"(x{x1})(x{x2})"
|
||||
return problem, solution
|
||||
return problem, solution
|
||||
|
||||
@@ -2,20 +2,20 @@ from .__init__ import *
|
||||
|
||||
|
||||
def fibonacciSeriesFunc(minNo=1):
|
||||
n = random.randint(minNo,20)
|
||||
n = random.randint(minNo, 20)
|
||||
|
||||
def createFibList(n):
|
||||
l=[]
|
||||
list = []
|
||||
for i in range(n):
|
||||
if i<2:
|
||||
l.append(i)
|
||||
if i < 2:
|
||||
list.append(i)
|
||||
else:
|
||||
val = l[i-1]+l[i-2]
|
||||
l.append(val)
|
||||
return l
|
||||
val = list[i - 1] + list[i - 2]
|
||||
list.append(val)
|
||||
return list
|
||||
|
||||
fibList=createFibList(n)
|
||||
|
||||
problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?"
|
||||
fibList = createFibList(n)
|
||||
|
||||
problem = "The Fibonacci Series of the first " + str(n) + " numbers is ?"
|
||||
solution = fibList
|
||||
return problem,solution
|
||||
return problem, solution
|
||||
|
||||
@@ -8,7 +8,7 @@ def fourthAngleOfQuadriFunc(maxAngle=180):
|
||||
|
||||
sum_ = angle1 + angle2 + angle3
|
||||
angle4 = 360 - sum_
|
||||
|
||||
|
||||
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
|
||||
solution = angle4
|
||||
return problem, solution
|
||||
|
||||
@@ -1,15 +1,23 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term=5):
|
||||
r=random.randint(min_value,max_value)
|
||||
a=random.randint(min_value,max_value)
|
||||
n_term=random.randint(number_values,number_values+5)
|
||||
sum_term=random.randint(number_values,number_values+5)
|
||||
GP=[]
|
||||
|
||||
def geomProgrFunc(number_values=6,
|
||||
min_value=2,
|
||||
max_value=12,
|
||||
n_term=7,
|
||||
sum_term=5):
|
||||
r = random.randint(min_value, max_value)
|
||||
a = random.randint(min_value, max_value)
|
||||
n_term = random.randint(number_values, number_values + 5)
|
||||
sum_term = random.randint(number_values, number_values + 5)
|
||||
GP = []
|
||||
for i in range(number_values):
|
||||
GP.append(a*(r**i))
|
||||
problem="For the given GP "+str(GP)+" ,Find the value of a,common ratio,"+str(n_term)+"th term value, sum upto "+str(sum_term)+"th term"
|
||||
value_nth_term=a*(r**(n_term-1))
|
||||
sum_till_nth_term=a*((r**sum_term-1)/(r-1))
|
||||
solution="The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(a,r,n_term,value_nth_term,sum_term,sum_till_nth_term)
|
||||
return problem,solution
|
||||
GP.append(a * (r**i))
|
||||
problem = "For the given GP " + str(
|
||||
GP) + " ,Find the value of a,common ratio," + str(
|
||||
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
|
||||
value_nth_term = a * (r**(n_term - 1))
|
||||
sum_till_nth_term = a * ((r**sum_term - 1) / (r - 1))
|
||||
solution = "The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(
|
||||
a, r, n_term, value_nth_term, sum_term, sum_till_nth_term)
|
||||
return problem, solution
|
||||
|
||||
@@ -1,27 +1,27 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def geometricMeanFunc(maxValue=100, maxNum=4):
|
||||
a=random.randint(1,maxValue)
|
||||
b=random.randint(1,maxValue)
|
||||
c=random.randint(1,maxValue)
|
||||
d=random.randint(1,maxValue)
|
||||
num=random.randint(2,4)
|
||||
if num==2:
|
||||
product=a*b
|
||||
elif num==3:
|
||||
product=a*b*c
|
||||
elif num==4:
|
||||
product=a*b*c*d
|
||||
a = random.randint(1, maxValue)
|
||||
b = random.randint(1, maxValue)
|
||||
c = random.randint(1, maxValue)
|
||||
d = random.randint(1, maxValue)
|
||||
num = random.randint(2, 4)
|
||||
if num == 2:
|
||||
product = a * b
|
||||
elif num == 3:
|
||||
product = a * b * c
|
||||
elif num == 4:
|
||||
product = a * b * c * d
|
||||
|
||||
ans=product**(1/num)
|
||||
if num==2:
|
||||
problem=f"Geometric mean of {num} numbers {a} and {b} = "
|
||||
solution = f"({a}*{b})^(1/{num}) = {ans}"
|
||||
elif num==3:
|
||||
problem=f"Geometric mean of {num} numbers {a} , {b} and {c} = "
|
||||
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
|
||||
elif num==4:
|
||||
problem=f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
|
||||
return problem,solution
|
||||
ans = product**(1 / num)
|
||||
if num == 2:
|
||||
problem = f"Geometric mean of {num} numbers {a} and {b} = "
|
||||
solution = f"({a}*{b})^(1/{num}) = {ans}"
|
||||
elif num == 3:
|
||||
problem = f"Geometric mean of {num} numbers {a} , {b} and {c} = "
|
||||
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
|
||||
elif num == 4:
|
||||
problem = f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
|
||||
return problem, solution
|
||||
|
||||
@@ -1,28 +1,28 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def harmonicMeanFunc(maxValue=100, maxNum=4):
|
||||
|
||||
a=random.randint(1,maxValue)
|
||||
b=random.randint(1,maxValue)
|
||||
c=random.randint(1,maxValue)
|
||||
d=random.randint(1,maxValue)
|
||||
num=random.randint(2,4)
|
||||
if num==2:
|
||||
sum=(1/a)+(1/b)
|
||||
elif num==3:
|
||||
sum=(1/a)+(1/b)+(1/c)
|
||||
elif num==4:
|
||||
sum=(1/a)+(1/b)+(1/c)+(1/d)
|
||||
a = random.randint(1, maxValue)
|
||||
b = random.randint(1, maxValue)
|
||||
c = random.randint(1, maxValue)
|
||||
d = random.randint(1, maxValue)
|
||||
num = random.randint(2, 4)
|
||||
if num == 2:
|
||||
sum = (1 / a) + (1 / b)
|
||||
elif num == 3:
|
||||
sum = (1 / a) + (1 / b) + (1 / c)
|
||||
elif num == 4:
|
||||
sum = (1 / a) + (1 / b) + (1 / c) + (1 / d)
|
||||
|
||||
ans=num/sum
|
||||
if num==2:
|
||||
problem=f"Harmonic mean of {num} numbers {a} and {b} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
|
||||
elif num==3:
|
||||
problem=f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
|
||||
elif num==4:
|
||||
problem=f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
|
||||
return problem,solution
|
||||
ans = num / sum
|
||||
if num == 2:
|
||||
problem = f"Harmonic mean of {num} numbers {a} and {b} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
|
||||
elif num == 3:
|
||||
problem = f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
|
||||
elif num == 4:
|
||||
problem = f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
|
||||
return problem, solution
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def hcfFunc(maxVal=20):
|
||||
a = random.randint(1, maxVal)
|
||||
b = random.randint(1, maxVal)
|
||||
x, y = a, b
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
problem = f"HCF of {a} and {b} = "
|
||||
solution = str(x)
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def intersectionOfTwoLinesFunc(
|
||||
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
|
||||
):
|
||||
|
||||
def intersectionOfTwoLinesFunc(minM=-10,
|
||||
maxM=10,
|
||||
minB=-10,
|
||||
maxB=10,
|
||||
minDenominator=1,
|
||||
maxDenominator=6):
|
||||
def generateEquationString(m, b):
|
||||
"""
|
||||
Generates an equation given the slope and intercept.
|
||||
@@ -33,8 +35,10 @@ def intersectionOfTwoLinesFunc(
|
||||
x = f"{x.numerator}/{x.denominator}"
|
||||
return x
|
||||
|
||||
m1 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator))
|
||||
m2 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator))
|
||||
m1 = (random.randint(minM,
|
||||
maxM), random.randint(minDenominator, maxDenominator))
|
||||
m2 = (random.randint(minM,
|
||||
maxM), random.randint(minDenominator, maxDenominator))
|
||||
|
||||
b1 = random.randint(minB, maxB)
|
||||
b2 = random.randint(minB, maxB)
|
||||
@@ -58,5 +62,5 @@ def intersectionOfTwoLinesFunc(
|
||||
intersection_x = (b1 - b2) / (m2 - m1)
|
||||
intersection_y = ((m2 * b1) - (m1 * b2)) / (m2 - m1)
|
||||
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
|
||||
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -9,7 +9,8 @@ def isTriangleValidFunc(maxSideLength=50):
|
||||
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
|
||||
sides = [sideC, sideA, sideB]
|
||||
|
||||
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (sides[2] < sideSums[2])
|
||||
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (
|
||||
sides[2] < sideSums[2])
|
||||
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
|
||||
|
||||
if exists:
|
||||
|
||||
@@ -13,5 +13,5 @@ def lcmFunc(maxVal=20):
|
||||
|
||||
problem = f"LCM of {a} and {b} ="
|
||||
solution = str(d)
|
||||
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -9,13 +9,17 @@ def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
|
||||
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
||||
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
||||
problem = list()
|
||||
solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
||||
solution = ", ".join(
|
||||
["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
||||
|
||||
for _ in range(n):
|
||||
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
||||
res = sum([coeff[i] * soln[i] for i in range(n)])
|
||||
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)]
|
||||
|
||||
prob = [
|
||||
"{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else ""
|
||||
for i in range(n)
|
||||
]
|
||||
|
||||
while "" in prob:
|
||||
prob.remove("")
|
||||
prob = " + ".join(prob) + " = " + str(res)
|
||||
|
||||
@@ -8,5 +8,5 @@ def logFunc(maxBase=3, maxVal=8):
|
||||
|
||||
problem = "log" + str(b) + "(" + str(c) + ")"
|
||||
solution = str(a)
|
||||
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
from .__init__ import *
|
||||
import sympy
|
||||
|
||||
def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerElementsInInvertedMatrix=False):
|
||||
|
||||
def matrixInversion(SquareMatrixDimension=3,
|
||||
MaxMatrixElement=99,
|
||||
OnlyIntegerElementsInInvertedMatrix=False):
|
||||
if OnlyIntegerElementsInInvertedMatrix is True:
|
||||
isItOk = False
|
||||
Mat = list()
|
||||
@@ -15,20 +18,25 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
||||
Mat.append(z)
|
||||
MaxAllowedMatrixElement = math.ceil(
|
||||
pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
|
||||
randomlist = random.sample(
|
||||
range(0, MaxAllowedMatrixElement + 1), SquareMatrixDimension)
|
||||
randomlist = random.sample(range(0, MaxAllowedMatrixElement + 1),
|
||||
SquareMatrixDimension)
|
||||
|
||||
for i in range(0, SquareMatrixDimension):
|
||||
if i == SquareMatrixDimension - 1:
|
||||
Mat[0] = [j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[0], Mat[i])]
|
||||
Mat[0] = [
|
||||
j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[0], Mat[i])
|
||||
]
|
||||
else:
|
||||
Mat[i + 1] = [j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[i + 1], Mat[i])]
|
||||
Mat[i + 1] = [
|
||||
j + (k * randomlist[i])
|
||||
for j, k in zip(Mat[i + 1], Mat[i])
|
||||
]
|
||||
|
||||
for i in range(1, SquareMatrixDimension - 1):
|
||||
Mat[i] = [sum(i)
|
||||
for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])]
|
||||
Mat[i] = [
|
||||
sum(i) for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])
|
||||
]
|
||||
|
||||
isItOk = True
|
||||
for i in Mat:
|
||||
@@ -51,7 +59,8 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
||||
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
|
||||
plist = random.sample(randomlist, SquareMatrixDimension)
|
||||
randomlist = random.sample(
|
||||
range(0, MaxMatrixElement + 1), SquareMatrixDimension * SquareMatrixDimension)
|
||||
range(0, MaxMatrixElement + 1),
|
||||
SquareMatrixDimension * SquareMatrixDimension)
|
||||
randomlist = list(set(randomlist) - set(plist))
|
||||
n_list = random.sample(
|
||||
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def matrixMultiplicationFunc(maxVal=100):
|
||||
m = random.randint(2, 10)
|
||||
n = random.randint(2, 10)
|
||||
k = random.randint(2, 10)
|
||||
def matrixMultiplicationFunc(maxVal=100, max_dim=10):
|
||||
m = random.randint(2, max_dim)
|
||||
n = random.randint(2, max_dim)
|
||||
k = random.randint(2, max_dim)
|
||||
|
||||
# generate matrices a and b
|
||||
a = []
|
||||
@@ -32,10 +32,12 @@ def matrixMultiplicationFunc(maxVal=100):
|
||||
temp += a[r][t] * b[t][c]
|
||||
res[r].append(temp)
|
||||
|
||||
problem = f"Multiply \n{a_string}\n and \n\n{b_string}" # consider using a, b instead of a_string, b_string if the problem doesn't look right
|
||||
# consider using a, b instead of a_string, b_string if the problem doesn't look right
|
||||
problem = f"Multiply \n{a_string}\n and \n\n{b_string}"
|
||||
solution = matrixMultiplicationFuncHelper(res)
|
||||
return problem, solution
|
||||
|
||||
|
||||
def matrixMultiplicationFuncHelper(inp):
|
||||
m = len(inp)
|
||||
n = len(inp[0])
|
||||
@@ -44,8 +46,8 @@ def matrixMultiplicationFuncHelper(inp):
|
||||
for i in range(m):
|
||||
for j in range(n):
|
||||
string += f"{inp[i][j]: 6d}"
|
||||
string += ", "if j < n-1 else ""
|
||||
string += "]\n [" if i < m-1 else ""
|
||||
string += ", " if j < n - 1 else ""
|
||||
string += "]\n [" if i < m - 1 else ""
|
||||
string += "]]"
|
||||
|
||||
return string
|
||||
|
||||
return string
|
||||
|
||||
@@ -1,13 +1,14 @@
|
||||
from .__init__ import *
|
||||
|
||||
def meanMedianFunc(maxlen = 10):
|
||||
|
||||
def meanMedianFunc(maxlen=10):
|
||||
randomlist = random.sample(range(1, 99), maxlen)
|
||||
total = 0
|
||||
for n in randomlist:
|
||||
total = total + n
|
||||
mean = total/10
|
||||
mean = total / 10
|
||||
problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series"
|
||||
randomlist.sort()
|
||||
median = (randomlist[4]+randomlist[5])/2
|
||||
median = (randomlist[4] + randomlist[5]) / 2
|
||||
solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}"
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def moduloFunc(maxRes=99, maxModulo=99):
|
||||
a = random.randint(0, maxModulo)
|
||||
b = random.randint(0, min(maxRes, maxModulo))
|
||||
c = a % b if b != 0 else 0
|
||||
|
||||
|
||||
problem = str(a) + "%" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def multiplicationFunc(maxRes=99, maxMulti=99):
|
||||
a = random.randint(0, maxMulti)
|
||||
b = random.randint(0, min(int(maxMulti / a), maxRes))
|
||||
c = a * b
|
||||
|
||||
|
||||
problem = str(a) + "*" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -1,9 +1,12 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def multiplyComplexNumbersFunc(minRealImaginaryNum = -20, maxRealImaginaryNum = 20):
|
||||
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20,
|
||||
maxRealImaginaryNum=20):
|
||||
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||
problem = f"{num1} * {num2} = "
|
||||
solution = num1 * num2
|
||||
return problem, solution
|
||||
|
||||
@@ -14,13 +14,13 @@ def multiplyFractionsFunc(maxVal=10):
|
||||
d = random.randint(1, maxVal)
|
||||
|
||||
def calculate_gcd(x, y):
|
||||
while(y):
|
||||
while (y):
|
||||
x, y = y, x % y
|
||||
return x
|
||||
|
||||
tmp_n = a * c
|
||||
tmp_d = b * d
|
||||
|
||||
|
||||
gcd = calculate_gcd(tmp_n, tmp_d)
|
||||
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100):
|
||||
b = random.randint(0, maxMatrixVal)
|
||||
c = random.randint(0, maxMatrixVal)
|
||||
d = random.randint(0, maxMatrixVal)
|
||||
|
||||
|
||||
constant = random.randint(0, int(maxRes / max(a, b, c, d)))
|
||||
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
|
||||
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def nthFibonacciNumberFunc(maxN = 100):
|
||||
golden_ratio = (1 + math.sqrt(5))/2
|
||||
n = random.randint(1,maxN)
|
||||
def nthFibonacciNumberFunc(maxN=100):
|
||||
golden_ratio = (1 + math.sqrt(5)) / 2
|
||||
n = random.randint(1, maxN)
|
||||
problem = f"What is the {n}th Fibonacci number?"
|
||||
ans = round((math.pow(golden_ratio,n) - math.pow(-golden_ratio,-n))/(math.sqrt(5)))
|
||||
ans = round((math.pow(golden_ratio, n) - math.pow(-golden_ratio, -n)) / (math.sqrt(5)))
|
||||
solution = f"{ans}"
|
||||
return problem, solution
|
||||
|
||||
11
mathgenerator/funcs/percentageFunc.py
Normal file
11
mathgenerator/funcs/percentageFunc.py
Normal file
@@ -0,0 +1,11 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def percentageFunc(maxValue=99, maxpercentage=99):
|
||||
a = random.randint(1, maxpercentage)
|
||||
b = random.randint(1, maxValue)
|
||||
problem = f"What is {a}% of {b}?"
|
||||
percentage = a / 100 * b
|
||||
formatted_float = "{:.2f}".format(percentage)
|
||||
solution = f"Required percentage = {formatted_float}%"
|
||||
return problem, solution
|
||||
@@ -6,5 +6,6 @@ def permutationFunc(maxlength=20):
|
||||
b = random.randint(0, 9)
|
||||
|
||||
solution = int(math.factorial(a) / (math.factorial(a - b)))
|
||||
problem = "Number of Permutations from {} objects picked {} at a time = ".format(a, b)
|
||||
problem = "Number of Permutations from {} objects picked {} at a time = ".format(
|
||||
a, b)
|
||||
return problem, solution
|
||||
|
||||
@@ -12,7 +12,7 @@ def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
||||
solution += " + "
|
||||
coefficient = random.randint(1, maxCoef)
|
||||
exponent = random.randint(1, maxExp)
|
||||
|
||||
|
||||
problem += str(coefficient) + "x^" + str(exponent)
|
||||
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
|
||||
return problem, solution
|
||||
|
||||
@@ -14,7 +14,8 @@ def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
||||
exponent = random.randint(1, maxExp)
|
||||
|
||||
problem += str(coefficient) + "x^" + str(exponent)
|
||||
solution += "(" + str(coefficient) + "/" + str(exponent) + ")x^" + str(exponent + 1)
|
||||
solution += "(" + str(coefficient) + "/" + \
|
||||
str(exponent) + ")x^" + str(exponent + 1)
|
||||
|
||||
solution += " + c"
|
||||
return problem, solution
|
||||
|
||||
@@ -16,7 +16,7 @@ def primeFactorsFunc(minVal=1, maxVal=200):
|
||||
|
||||
if n > 1:
|
||||
factors.append(n)
|
||||
|
||||
|
||||
problem = f"Find prime factors of {a}"
|
||||
solution = f"{factors}"
|
||||
return problem, solution
|
||||
|
||||
@@ -1,16 +1,16 @@
|
||||
from .__init__ import *
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def profitLossPercentFunc(maxCP = 1000, maxSP = 1000):
|
||||
def profitLossPercentFunc(maxCP=1000, maxSP=1000):
|
||||
cP = random.randint(1, maxCP)
|
||||
sP = random.randint(1, maxSP)
|
||||
diff = abs(sP-cP)
|
||||
if (sP-cP >= 0):
|
||||
diff = abs(sP - cP)
|
||||
if (sP - cP >= 0):
|
||||
profitOrLoss = "Profit"
|
||||
else:
|
||||
profitOrLoss = "Loss"
|
||||
percent = diff/cP * 100
|
||||
percent = diff / cP * 100
|
||||
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
|
||||
solution = percent
|
||||
|
||||
return problem, solution
|
||||
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def pythagoreanTheoremFunc(maxLength=20):
|
||||
a = random.randint(1, maxLength)
|
||||
b = random.randint(1, maxLength)
|
||||
c = (a**2 + b**2)**0.5
|
||||
|
||||
|
||||
problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = "
|
||||
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
|
||||
return problem, solution
|
||||
|
||||
@@ -4,9 +4,12 @@ from .__init__ import *
|
||||
def quadraticEquation(maxVal=100):
|
||||
a = random.randint(1, maxVal)
|
||||
c = random.randint(1, maxVal)
|
||||
b = random.randint(round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
|
||||
|
||||
b = random.randint(
|
||||
round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
|
||||
|
||||
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
||||
D = math.sqrt(b * b - 4 * a * c)
|
||||
solution = str([round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)])
|
||||
solution = str(
|
||||
[round((-b + D) / (2 * a), 2),
|
||||
round((-b - D) / (2 * a), 2)])
|
||||
return problem, solution
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def regularPolygonAngleFunc(minVal=3, maxVal=20):
|
||||
sideNum = random.randint(minVal, maxVal)
|
||||
problem = f"Find the angle of a regular polygon with {sideNum} sides"
|
||||
|
||||
|
||||
exteriorAngle = round((360 / sideNum), 2)
|
||||
solution = 180 - exteriorAngle
|
||||
return problem, solution
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
from .__init__ import *
|
||||
|
||||
def sectorAreaFunc(maxRadius = 49,maxAngle = 359):
|
||||
|
||||
def sectorAreaFunc(maxRadius=49, maxAngle=359):
|
||||
Radius = random.randint(1, maxRadius)
|
||||
Angle = random.randint(1, maxAngle)
|
||||
problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector."
|
||||
secArea = float((Angle / 360) * math.pi*Radius*Radius)
|
||||
secArea = float((Angle / 360) * math.pi * Radius * Radius)
|
||||
formatted_float = "{:.5f}".format(secArea)
|
||||
solution = f"Area of sector = {formatted_float}"
|
||||
solution = f"Area of sector = {formatted_float}"
|
||||
return problem, solution
|
||||
|
||||
@@ -6,7 +6,10 @@ def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
|
||||
b = random.randint(1, maxRate)
|
||||
c = random.randint(1, maxTime)
|
||||
d = (a * b * c) / 100
|
||||
|
||||
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(b) + "% rate of interest and for a time period of " + str(c) + " years is = "
|
||||
|
||||
problem = "Simple interest for a principle amount of " + str(
|
||||
a) + " dollars, " + str(
|
||||
b) + "% rate of interest and for a time period of " + str(
|
||||
c) + " years is = "
|
||||
solution = round(d, 2)
|
||||
return problem, solution
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def squareFunc(maxSquareNum=20):
|
||||
a = random.randint(1, maxSquareNum)
|
||||
b = a * a
|
||||
|
||||
|
||||
problem = str(a) + "^2" + "="
|
||||
solution = str(b)
|
||||
return problem, solution
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def squareRootFunc(minNo=1, maxNo=12):
|
||||
b = random.randint(minNo, maxNo)
|
||||
a = b * b
|
||||
|
||||
|
||||
problem = "sqrt(" + str(a) + ")="
|
||||
solution = str(b)
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def subtractionFunc(maxMinuend=99, maxDiff=99):
|
||||
a = random.randint(0, maxMinuend)
|
||||
b = random.randint(max(0, (a - maxDiff)), a)
|
||||
c = a - b
|
||||
|
||||
|
||||
problem = str(a) + "-" + str(b) + "="
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def sumOfAnglesOfPolygonFunc(maxSides = 12):
|
||||
def sumOfAnglesOfPolygonFunc(maxSides=12):
|
||||
side = random.randint(3, maxSides)
|
||||
sum = (side - 2) * 180
|
||||
|
||||
|
||||
problem = f"Sum of angles of polygon with {side} sides = "
|
||||
solution = sum
|
||||
return problem, solution
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def surdsComparisonFunc(maxValue = 100, maxRoot = 10):
|
||||
radicand1,radicand2 = tuple(random.sample(range(1,maxValue),2))
|
||||
degree1, degree2 = tuple(random.sample(range(1,maxRoot),2))
|
||||
|
||||
def surdsComparisonFunc(maxValue=100, maxRoot=10):
|
||||
radicand1, radicand2 = tuple(random.sample(range(1, maxValue), 2))
|
||||
degree1, degree2 = tuple(random.sample(range(1, maxRoot), 2))
|
||||
|
||||
problem = f"Fill in the blanks {radicand1}^(1/{degree1}) _ {radicand2}^(1/{degree2})"
|
||||
first = math.pow(radicand1, 1/degree1)
|
||||
second = math.pow(radicand2, 1/degree2)
|
||||
first = math.pow(radicand1, 1 / degree1)
|
||||
second = math.pow(radicand2, 1 / degree2)
|
||||
|
||||
solution = "="
|
||||
if first > second:
|
||||
|
||||
@@ -8,6 +8,6 @@ def surfaceAreaCone(maxRadius=20, maxHeight=50, unit='m'):
|
||||
slopingHeight = math.sqrt(a**2 + b**2)
|
||||
problem = f"Surface area of cone with height = {a}{unit} and radius = {b}{unit} is"
|
||||
ans = int(math.pi * b * slopingHeight + math.pi * b * b)
|
||||
|
||||
|
||||
solution = f"{ans} {unit}^2"
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def surfaceAreaCuboid(maxSide=20, unit='m'):
|
||||
a = random.randint(1, maxSide)
|
||||
b = random.randint(1, maxSide)
|
||||
c = random.randint(1, maxSide)
|
||||
|
||||
|
||||
problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
||||
ans = 2 * (a * b + b * c + c * a)
|
||||
solution = f"{ans} {unit}^2"
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def surfaceAreaCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
||||
a = random.randint(1, maxHeight)
|
||||
b = random.randint(1, maxRadius)
|
||||
|
||||
|
||||
problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
||||
ans = int(2 * math.pi * a * b + 2 * math.pi * b * b)
|
||||
solution = f"{ans} {unit}^2"
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def surfaceAreaSphere(maxSide = 20, unit = 'm'):
|
||||
def surfaceAreaSphere(maxSide=20, unit='m'):
|
||||
r = random.randint(1, maxSide)
|
||||
|
||||
|
||||
problem = f"Surface area of Sphere with radius = {r}{unit} is"
|
||||
ans = 4 * math.pi * r * r
|
||||
solution = f"{ans} {unit}^2"
|
||||
|
||||
@@ -10,8 +10,9 @@ def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
|
||||
c2 = [0, 1, y]
|
||||
|
||||
def randNonZero():
|
||||
return random.choice([i for i in range(-coeff_mult_range, coeff_mult_range)
|
||||
if i != 0])
|
||||
return random.choice(
|
||||
[i for i in range(-coeff_mult_range, coeff_mult_range) if i != 0])
|
||||
|
||||
# Add random (non-zero) multiple of equations (rows) to each other
|
||||
c1_mult = randNonZero()
|
||||
c2_mult = randNonZero()
|
||||
@@ -36,9 +37,10 @@ def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
|
||||
# No redundant 1s
|
||||
y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else ''
|
||||
# Don't include if 0, unless x is also 0 (probably never happens)
|
||||
y_str = f'{y_coeff}y' if coeffs[1] != 0 else ('' if x_str != '' else '0')
|
||||
y_str = f'{y_coeff}y' if coeffs[1] != 0 else (
|
||||
'' if x_str != '' else '0')
|
||||
return f'{x_str}{op}{y_str} = {coeffs[2]}'
|
||||
|
||||
|
||||
problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}"
|
||||
solution = f"x = {x}, y = {y}"
|
||||
return problem, solution
|
||||
|
||||
@@ -5,7 +5,7 @@ def thirdAngleOfTriangleFunc(maxAngle=89):
|
||||
angle1 = random.randint(1, maxAngle)
|
||||
angle2 = random.randint(1, maxAngle)
|
||||
angle3 = 180 - (angle1 + angle2)
|
||||
|
||||
|
||||
problem = f"Third angle of triangle with angles {angle1} and {angle2} = "
|
||||
solution = angle3
|
||||
return problem, solution
|
||||
|
||||
@@ -2,12 +2,13 @@ from .__init__ import *
|
||||
|
||||
|
||||
def vectorCrossFunc(minVal=-20, maxVal=20):
|
||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
c = [a[1] * b[2] - a[2] * b[1],
|
||||
a[2] * b[0] - a[0] * b[2],
|
||||
a[0] * b[1] - a[1] * b[0]]
|
||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
c = [
|
||||
a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2],
|
||||
a[0] * b[1] - a[1] * b[0]
|
||||
]
|
||||
|
||||
problem = str(a) + " X " + str(b) + " = "
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
problem = str(a) + " X " + str(b) + " = "
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -2,10 +2,10 @@ from .__init__ import *
|
||||
|
||||
|
||||
def vectorDotFunc(minVal=-20, maxVal=20):
|
||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
c = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
|
||||
a = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
b = [random.randint(minVal, maxVal) for i in range(3)]
|
||||
c = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
|
||||
|
||||
problem = str(a) + " . " + str(b) + " = "
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
problem = str(a) + " . " + str(b) + " = "
|
||||
solution = str(c)
|
||||
return problem, solution
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def volumeCone(maxRadius=20, maxHeight=50, unit='m'):
|
||||
a = random.randint(1, maxHeight)
|
||||
b = random.randint(1, maxRadius)
|
||||
|
||||
|
||||
problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is"
|
||||
ans = int(math.pi * b * b * a * (1 / 3))
|
||||
solution = f"{ans} {unit}^3"
|
||||
|
||||
@@ -3,7 +3,7 @@ from .__init__ import *
|
||||
|
||||
def volumeCube(maxSide=20, unit='m'):
|
||||
a = random.randint(1, maxSide)
|
||||
|
||||
|
||||
problem = f"Volume of cube with side = {a}{unit} is"
|
||||
ans = a * a * a
|
||||
solution = f"{ans} {unit}^3"
|
||||
|
||||
@@ -5,7 +5,7 @@ def volumeCuboid(maxSide=20, unit='m'):
|
||||
a = random.randint(1, maxSide)
|
||||
b = random.randint(1, maxSide)
|
||||
c = random.randint(1, maxSide)
|
||||
|
||||
|
||||
problem = f"Volume of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
||||
ans = a * b * c
|
||||
solution = f"{ans} {unit}^3"
|
||||
|
||||
@@ -4,7 +4,7 @@ from .__init__ import *
|
||||
def volumeCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
||||
a = random.randint(1, maxHeight)
|
||||
b = random.randint(1, maxRadius)
|
||||
|
||||
|
||||
problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
||||
ans = int(math.pi * b * b * a)
|
||||
solution = f"{ans} {unit}^3"
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
from .__init__ import *
|
||||
|
||||
|
||||
def volumeSphereFunc(maxRadius = 100):
|
||||
r=random.randint(1,maxRadius)
|
||||
|
||||
problem=f"Volume of sphere with radius {r} m = "
|
||||
ans=(4*math.pi/3)*r*r*r
|
||||
def volumeSphereFunc(maxRadius=100):
|
||||
r = random.randint(1, maxRadius)
|
||||
|
||||
problem = f"Volume of sphere with radius {r} m = "
|
||||
ans = (4 * math.pi / 3) * r * r * r
|
||||
solution = f"{ans} m^3"
|
||||
return problem,solution
|
||||
return problem, solution
|
||||
|
||||
@@ -2,10 +2,13 @@ import random
|
||||
import math
|
||||
import fractions
|
||||
from .funcs import *
|
||||
from .__init__ import getGenList
|
||||
|
||||
genList = []
|
||||
genList = getGenList()
|
||||
|
||||
# || Generator class
|
||||
|
||||
|
||||
class Generator:
|
||||
def __init__(self, title, id, generalProb, generalSol, func):
|
||||
self.title = title
|
||||
@@ -16,102 +19,265 @@ class Generator:
|
||||
genList.append([id, title, self])
|
||||
|
||||
def __str__(self):
|
||||
return str(self.id) + " " + self.title + " " + self.generalProb + " " + self.generalSol
|
||||
return str(
|
||||
self.id
|
||||
) + " " + self.title + " " + self.generalProb + " " + self.generalSol
|
||||
|
||||
def __call__(self, **kwargs):
|
||||
return self.func(**kwargs)
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.func(*args, **kwargs)
|
||||
|
||||
|
||||
# || Non-generator Functions
|
||||
def genById(id):
|
||||
generator = genList[id][2]
|
||||
return(generator())
|
||||
return (generator())
|
||||
|
||||
|
||||
#
|
||||
def getGenList():
|
||||
return(genList)
|
||||
# def getGenList():
|
||||
# return(genList)
|
||||
|
||||
# Format is:
|
||||
# <title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>)
|
||||
# Funcs_start - DO NOT REMOVE!
|
||||
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
||||
# addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
||||
subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc)
|
||||
multiplication = Generator("Multiplication", 2, "a*b=", "c", multiplicationFunc)
|
||||
multiplication = Generator("Multiplication", 2, "a*b=", "c",
|
||||
multiplicationFunc)
|
||||
division = Generator("Division", 3, "a/b=", "c", divisionFunc)
|
||||
binaryComplement1s = Generator("Binary Complement 1s", 4, "1010=", "0101", binaryComplement1sFunc)
|
||||
binaryComplement1s = Generator("Binary Complement 1s", 4, "1010=", "0101",
|
||||
binaryComplement1sFunc)
|
||||
moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
|
||||
squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc)
|
||||
powerRuleDifferentiation = Generator("Power Rule Differentiation", 7, "nx^m=", "(n*m)x^(m-1)", powerRuleDifferentiationFunc)
|
||||
powerRuleDifferentiation = Generator("Power Rule Differentiation", 7, "nx^m=",
|
||||
"(n*m)x^(m-1)",
|
||||
powerRuleDifferentiationFunc)
|
||||
square = Generator("Square", 8, "a^2", "b", squareFunc)
|
||||
lcm = Generator("LCM (Least Common Multiple)", 9,"LCM of a and b = ", "c", lcmFunc)
|
||||
gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ", "c", gcdFunc)
|
||||
basicAlgebra = Generator("Basic Algebra", 11, "ax + b = c", "d", basicAlgebraFunc)
|
||||
lcm = Generator("LCM (Least Common Multiple)", 9, "LCM of a and b = ", "c",
|
||||
lcmFunc)
|
||||
gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ",
|
||||
"c", gcdFunc)
|
||||
basicAlgebra = Generator("Basic Algebra", 11, "ax + b = c", "d",
|
||||
basicAlgebraFunc)
|
||||
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
|
||||
intDivision = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)
|
||||
decimalToBinary = Generator("Decimal to Binary", 14,"Binary of a=", "b", DecimalToBinaryFunc)
|
||||
binaryToDecimal = Generator("Binary to Decimal", 15,"Decimal of a=", "b", BinaryToDecimalFunc)
|
||||
fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc)
|
||||
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix",17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22)
|
||||
areaOfTriangle = Generator("Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc)
|
||||
doesTriangleExist = Generator("Triangle exists check", 19,"Does triangle with sides a, b and c exist?", "Yes/No", isTriangleValidFunc)
|
||||
midPointOfTwoPoint = Generator("Midpoint of the two point", 20,"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)", MidPointOfTwoPointFunc)
|
||||
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc)
|
||||
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22, "Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc)
|
||||
systemOfEquations = Generator("Solve a System of Equations in R^2", 23, "2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3", systemOfEquationsFunc)
|
||||
distance2Point = Generator("Distance between 2 points", 24, "Find the distance between (x1,y1) and (x2,y2)", "sqrt(distanceSquared)", distanceTwoPointsFunc)
|
||||
pythagoreanTheorem = Generator("Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc)
|
||||
linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc)# This has multiple variables whereas #23 has only x and y
|
||||
primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc)
|
||||
fractionMultiplication = Generator("Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc)
|
||||
angleRegularPolygon = Generator("Angle of a Regular Polygon", 29,"Find the angle of a regular polygon with 6 sides", "120", regularPolygonAngleFunc)
|
||||
combinations = Generator("Combinations of Objects", 30, "Combinations available for picking 4 objects at a time from 6 distinct objects =", " 15", combinationsFunc)
|
||||
decimalToBinary = Generator("Decimal to Binary", 14, "Binary of a=", "b",
|
||||
DecimalToBinaryFunc)
|
||||
binaryToDecimal = Generator("Binary to Decimal", 15, "Decimal of a=", "b",
|
||||
BinaryToDecimalFunc)
|
||||
fractionDivision = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y",
|
||||
divideFractionsFunc)
|
||||
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix",
|
||||
17, "k * [[a,b],[c,d]]=",
|
||||
"[[k*a,k*b],[k*c,k*d]]",
|
||||
multiplyIntToMatrix22)
|
||||
areaOfTriangle = Generator("Area of Triangle", 18,
|
||||
"Area of Triangle with side lengths a, b, c = ",
|
||||
"area", areaOfTriangleFunc)
|
||||
doesTriangleExist = Generator("Triangle exists check", 19,
|
||||
"Does triangle with sides a, b and c exist?",
|
||||
"Yes/No", isTriangleValidFunc)
|
||||
midPointOfTwoPoint = Generator("Midpoint of the two point", 20,
|
||||
"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)",
|
||||
MidPointOfTwoPointFunc)
|
||||
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2",
|
||||
"(x-x1)(x-x2)", factoringFunc)
|
||||
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22,
|
||||
"Third Angle of the triangle = ", "angle3",
|
||||
thirdAngleOfTriangleFunc)
|
||||
systemOfEquations = Generator("Solve a System of Equations in R^2", 23,
|
||||
"2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3",
|
||||
systemOfEquationsFunc)
|
||||
distance2Point = Generator("Distance between 2 points", 24,
|
||||
"Find the distance between (x1,y1) and (x2,y2)",
|
||||
"sqrt(distanceSquared)", distanceTwoPointsFunc)
|
||||
pythagoreanTheorem = Generator(
|
||||
"Pythagorean Theorem", 25,
|
||||
"The hypotenuse of a right triangle given the other two lengths a and b = ",
|
||||
"hypotenuse", pythagoreanTheoremFunc)
|
||||
# This has multiple variables whereas #23 has only x and y
|
||||
linearEquations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12",
|
||||
"x=-20 & y=12", linearEquationsFunc)
|
||||
primeFactors = Generator("Prime Factorisation", 27, "Prime Factors of a =",
|
||||
"[b, c, d, ...]", primeFactorsFunc)
|
||||
fractionMultiplication = Generator("Fraction Multiplication", 28,
|
||||
"(a/b)*(c/d)=", "x/y",
|
||||
multiplyFractionsFunc)
|
||||
angleRegularPolygon = Generator(
|
||||
"Angle of a Regular Polygon", 29,
|
||||
"Find the angle of a regular polygon with 6 sides", "120",
|
||||
regularPolygonAngleFunc)
|
||||
combinations = Generator(
|
||||
"Combinations of Objects", 30,
|
||||
"Combinations available for picking 4 objects at a time from 6 distinct objects =",
|
||||
" 15", combinationsFunc)
|
||||
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
|
||||
surfaceAreaCubeGen = Generator("Surface Area of Cube", 32, "Surface area of cube with side a units is", "b units^2", surfaceAreaCube)
|
||||
surfaceAreaCuboidGen = Generator("Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is", "d units^2", surfaceAreaCuboid)
|
||||
surfaceAreaCylinderGen = Generator("Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is", "c units^2", surfaceAreaCylinder)
|
||||
volumeCubeGen = Generator("Volum of Cube", 35, "Volume of cube with side a units is", "b units^3", volumeCube)
|
||||
volumeCuboidGen = Generator("Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is", "d units^3", volumeCuboid)
|
||||
volumeCylinderGen = Generator( "Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is", "c units^3", volumeCylinder)
|
||||
surfaceAreaConeGen = Generator( "Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is", "c units^2", surfaceAreaCone)
|
||||
volumeConeGen = Generator( "Volume of cone", 39, "Volume of cone with height = a units and radius = b units is", "c units^3", volumeCone)
|
||||
commonFactors = Generator("Common Factors", 40, "Common Factors of {a} and {b} = ", "[c, d, ...]", commonFactorsFunc)
|
||||
intersectionOfTwoLines = Generator("Intersection of Two Lines", 41,"Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc)
|
||||
permutations = Generator("Permutations", 42, "Total permutations of 4 objects at a time from 10 objects is", "5040", permutationFunc)
|
||||
vectorCross = Generator("Cross Product of 2 Vectors",43, "a X b = ", "c", vectorCrossFunc)
|
||||
compareFractions = Generator("Compare Fractions", 44, "Which symbol represents the comparison between a/b and c/d?", ">/</=", compareFractionsFunc)
|
||||
simpleInterest = Generator("Simple Interest", 45, "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", simpleInterestFunc)
|
||||
matrixMultiplication = Generator("Multiplication of two matrices",46, "Multiply two matrices A and B", "C", matrixMultiplicationFunc)
|
||||
CubeRoot = Generator("Cube Root", 47, "Cuberoot of a upto 2 decimal places is", "b", cubeRootFunc)
|
||||
powerRuleIntegration = Generator("Power Rule Integration", 48, "nx^m=", "(n/m)x^(m+1)", powerRuleIntegrationFunc)
|
||||
fourthAngleOfQuadrilateral = Generator("Fourth Angle of Quadrilateral", 49,"Fourth angle of Quadrilateral with angles a,b,c =", "angle4", fourthAngleOfQuadriFunc)
|
||||
quadraticEquationSolve = Generator("Quadratic Equation", 50, "Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2", quadraticEquation)
|
||||
hcf = Generator("HCF (Highest Common Factor)", 51,"HCF of a and b = ", "c", hcfFunc)
|
||||
diceSumProbability = Generator("Probability of a certain sum appearing on faces of dice",52, "If n dices are rolled then probabilty of getting sum of x is =", "z", DiceSumProbFunc)
|
||||
exponentiation = Generator("Exponentiation", 53, "a^b = ", "c", exponentiationFunc)
|
||||
confidenceInterval = Generator("Confidence interval For sample S",54, "With X% confidence", "is (A,B)", confidenceIntervalFunc)
|
||||
surdsComparison = Generator("Comparing surds", 55, "Fill in the blanks a^(1/b) _ c^(1/d)", "</>/=", surdsComparisonFunc)
|
||||
fibonacciSeries = Generator("Fibonacci Series", 56, "fibonacci series of first a numbers","prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc)
|
||||
basicTrigonometry = Generator("Trigonometric Values", 57, "What is sin(X)?", "ans", basicTrigonometryFunc)
|
||||
sumOfAnglesOfPolygon = Generator("Sum of Angles of Polygon", 58,"Sum of angles of polygon with n sides = ", "sum", sumOfAnglesOfPolygonFunc)
|
||||
dataSummary = Generator("Mean,Standard Deviation,Variance",59, "a,b,c", "Mean:a+b+c/3,Std,Var", dataSummaryFunc)
|
||||
surfaceAreaSphereGen = Generator("Surface Area of Sphere", 60, "Surface area of sphere with radius = a units is", "d units^2", surfaceAreaSphere)
|
||||
volumeSphere = Generator("Volume of Sphere", 61, "Volume of sphere with radius r m = ", "(4*pi/3)*r*r*r", volumeSphereFunc)
|
||||
nthFibonacciNumberGen = Generator("nth Fibonacci number", 62, "What is the nth Fibonacci number", "Fn", nthFibonacciNumberFunc)
|
||||
profitLossPercent = Generator("Profit or Loss Percent", 63, "Profit/ Loss percent when CP = cp and SP = sp is: ", "percent", profitLossPercentFunc)
|
||||
binaryToHex = Generator("Binary to Hexidecimal", 64, "Hexidecimal of a=", "b", binaryToHexFunc)
|
||||
complexNumMultiply = Generator("Multiplication of 2 complex numbers", 65, "(x + j) (y + j) = ", "xy + xj + yj -1", multiplyComplexNumbersFunc)
|
||||
geometricprogression=Generator("Geometric Progression", 66, "Initial value,Common Ratio,nth Term,Sum till nth term =", "a,r,ar^n-1,sum(ar^n-1", geomProgrFunc)
|
||||
geometricMean=Generator("Geometric Mean of N Numbers",67,"Geometric mean of n numbers A1 , A2 , ... , An = ","(A1*A2*...An)^(1/n) = ans",geometricMeanFunc)
|
||||
harmonicMean=Generator("Harmonic Mean of N Numbers",68,"Harmonic mean of n numbers A1 , A2 , ... , An = "," n/((1/A1) + (1/A2) + ... + (1/An)) = ans",harmonicMeanFunc)
|
||||
eucldianNorm=Generator("Euclidian norm or L2 norm of a vector", 69, "Euclidian Norm of a vector V:[v1, v2, ......., vn]", "sqrt(v1^2 + v2^2 ........ +vn^2)", euclidianNormFunc)
|
||||
angleBtwVectors=Generator("Angle between 2 vectors", 70, "Angle Between 2 vectors V1=[v11, v12, ..., v1n] and V2=[v21, v22, ....., v2n]", "V1.V2 / (euclidNorm(V1)*euclidNorm(V2))", angleBtwVectorsFunc)
|
||||
absoluteDifference=Generator("Absolute difference between two numbers", 71, "Absolute difference betweeen two numbers a and b =", "|a-b|", absoluteDifferenceFunc)
|
||||
vectorDot = Generator("Dot Product of 2 Vectors", 72, "a . b = ", "c", vectorDotFunc)
|
||||
binary2sComplement = Generator("Binary 2's Complement", 73, "2's complement of 11010110 =", "101010", binary2sComplementFunc)
|
||||
invertmatrix = Generator("Inverse of a Matrix", 74, "Inverse of a matrix A is", "A^(-1)", matrixInversion)
|
||||
sectorArea=Generator("Area of a Sector", 75,"Area of a sector with radius, r and angle, a ","Area",sectorAreaFunc)
|
||||
meanMedian=Generator("Mean and Median", 76,"Mean and median of given set of numbers","Mean, Median",meanMedianFunc)
|
||||
intMatrix22determinant = Generator("Determinant to 2x2 Matrix", 77, "Det([[a,b],[c,d]]) =", " a * d - b * c", determinantToMatrix22)
|
||||
compoundInterest = Generator("Compound Interest", 78, "Compound interest for a principle amount of p dollars, r% rate of interest and for a time period of t years with n times compounded annually is = ", "A dollars", compoundInterestFunc)
|
||||
decimalToHexadeci = Generator("Decimal to Hexadecimal", 79,"Binary of a=", "b", deciToHexaFunc)
|
||||
setoperations = Generator("Union,Intersection,Difference of Two Sets", 80, "Union,intersection,difference", "aUb,a^b,a-b,b-a,", set_operation)
|
||||
|
||||
surfaceAreaCubeGen = Generator("Surface Area of Cube", 32,
|
||||
"Surface area of cube with side a units is",
|
||||
"b units^2", surfaceAreaCube)
|
||||
surfaceAreaCuboidGen = Generator(
|
||||
"Surface Area of Cuboid", 33,
|
||||
"Surface area of cuboid with sides = a units, b units, c units is",
|
||||
"d units^2", surfaceAreaCuboid)
|
||||
surfaceAreaCylinderGen = Generator(
|
||||
"Surface Area of Cylinder", 34,
|
||||
"Surface area of cylinder with height = a units and radius = b units is",
|
||||
"c units^2", surfaceAreaCylinder)
|
||||
volumeCubeGen = Generator("Volum of Cube", 35,
|
||||
"Volume of cube with side a units is", "b units^3",
|
||||
volumeCube)
|
||||
volumeCuboidGen = Generator(
|
||||
"Volume of Cuboid", 36,
|
||||
"Volume of cuboid with sides = a units, b units, c units is", "d units^3",
|
||||
volumeCuboid)
|
||||
volumeCylinderGen = Generator(
|
||||
"Volume of cylinder", 37,
|
||||
"Volume of cylinder with height = a units and radius = b units is",
|
||||
"c units^3", volumeCylinder)
|
||||
surfaceAreaConeGen = Generator(
|
||||
"Surface Area of cone", 38,
|
||||
"Surface area of cone with height = a units and radius = b units is",
|
||||
"c units^2", surfaceAreaCone)
|
||||
volumeConeGen = Generator(
|
||||
"Volume of cone", 39,
|
||||
"Volume of cone with height = a units and radius = b units is",
|
||||
"c units^3", volumeCone)
|
||||
commonFactors = Generator("Common Factors", 40,
|
||||
"Common Factors of {a} and {b} = ", "[c, d, ...]",
|
||||
commonFactorsFunc)
|
||||
intersectionOfTwoLines = Generator(
|
||||
"Intersection of Two Lines", 41,
|
||||
"Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2",
|
||||
"(x, y)", intersectionOfTwoLinesFunc)
|
||||
permutations = Generator(
|
||||
"Permutations", 42,
|
||||
"Total permutations of 4 objects at a time from 10 objects is", "5040",
|
||||
permutationFunc)
|
||||
vectorCross = Generator("Cross Product of 2 Vectors", 43, "a X b = ", "c",
|
||||
vectorCrossFunc)
|
||||
compareFractions = Generator(
|
||||
"Compare Fractions", 44,
|
||||
"Which symbol represents the comparison between a/b and c/d?", ">/</=",
|
||||
compareFractionsFunc)
|
||||
simpleInterest = Generator(
|
||||
"Simple Interest", 45,
|
||||
"Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ",
|
||||
"d dollars", simpleInterestFunc)
|
||||
matrixMultiplication = Generator("Multiplication of two matrices", 46,
|
||||
"Multiply two matrices A and B", "C",
|
||||
matrixMultiplicationFunc)
|
||||
CubeRoot = Generator("Cube Root", 47, "Cuberoot of a upto 2 decimal places is",
|
||||
"b", cubeRootFunc)
|
||||
powerRuleIntegration = Generator("Power Rule Integration", 48, "nx^m=",
|
||||
"(n/m)x^(m+1)", powerRuleIntegrationFunc)
|
||||
fourthAngleOfQuadrilateral = Generator(
|
||||
"Fourth Angle of Quadrilateral", 49,
|
||||
"Fourth angle of Quadrilateral with angles a,b,c =", "angle4",
|
||||
fourthAngleOfQuadriFunc)
|
||||
quadraticEquationSolve = Generator(
|
||||
"Quadratic Equation", 50,
|
||||
"Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2",
|
||||
quadraticEquation)
|
||||
hcf = Generator("HCF (Highest Common Factor)", 51, "HCF of a and b = ", "c",
|
||||
hcfFunc)
|
||||
diceSumProbability = Generator(
|
||||
"Probability of a certain sum appearing on faces of dice", 52,
|
||||
"If n dices are rolled then probabilty of getting sum of x is =", "z",
|
||||
DiceSumProbFunc)
|
||||
exponentiation = Generator("Exponentiation", 53, "a^b = ", "c",
|
||||
exponentiationFunc)
|
||||
confidenceInterval = Generator("Confidence interval For sample S", 54,
|
||||
"With X% confidence", "is (A,B)",
|
||||
confidenceIntervalFunc)
|
||||
surdsComparison = Generator("Comparing surds", 55,
|
||||
"Fill in the blanks a^(1/b) _ c^(1/d)", "</>/=",
|
||||
surdsComparisonFunc)
|
||||
fibonacciSeries = Generator(
|
||||
"Fibonacci Series", 56, "fibonacci series of first a numbers",
|
||||
"prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc)
|
||||
basicTrigonometry = Generator("Trigonometric Values", 57, "What is sin(X)?",
|
||||
"ans", basicTrigonometryFunc)
|
||||
sumOfAnglesOfPolygon = Generator("Sum of Angles of Polygon", 58,
|
||||
"Sum of angles of polygon with n sides = ",
|
||||
"sum", sumOfAnglesOfPolygonFunc)
|
||||
dataSummary = Generator("Mean,Standard Deviation,Variance", 59, "a,b,c",
|
||||
"Mean:a+b+c/3,Std,Var", dataSummaryFunc)
|
||||
surfaceAreaSphereGen = Generator(
|
||||
"Surface Area of Sphere", 60,
|
||||
"Surface area of sphere with radius = a units is", "d units^2",
|
||||
surfaceAreaSphere)
|
||||
volumeSphere = Generator("Volume of Sphere", 61,
|
||||
"Volume of sphere with radius r m = ",
|
||||
"(4*pi/3)*r*r*r", volumeSphereFunc)
|
||||
nthFibonacciNumberGen = Generator("nth Fibonacci number", 62,
|
||||
"What is the nth Fibonacci number", "Fn",
|
||||
nthFibonacciNumberFunc)
|
||||
profitLossPercent = Generator(
|
||||
"Profit or Loss Percent", 63,
|
||||
"Profit/ Loss percent when CP = cp and SP = sp is: ", "percent",
|
||||
profitLossPercentFunc)
|
||||
binaryToHex = Generator("Binary to Hexidecimal", 64, "Hexidecimal of a=", "b",
|
||||
binaryToHexFunc)
|
||||
complexNumMultiply = Generator("Multiplication of 2 complex numbers", 65,
|
||||
"(x + j) (y + j) = ", "xy + xj + yj -1",
|
||||
multiplyComplexNumbersFunc)
|
||||
geometricprogression = Generator(
|
||||
"Geometric Progression", 66,
|
||||
"Initial value,Common Ratio,nth Term,Sum till nth term =",
|
||||
"a,r,ar^n-1,sum(ar^n-1", geomProgrFunc)
|
||||
geometricMean = Generator("Geometric Mean of N Numbers", 67,
|
||||
"Geometric mean of n numbers A1 , A2 , ... , An = ",
|
||||
"(A1*A2*...An)^(1/n) = ans", geometricMeanFunc)
|
||||
harmonicMean = Generator("Harmonic Mean of N Numbers", 68,
|
||||
"Harmonic mean of n numbers A1 , A2 , ... , An = ",
|
||||
" n/((1/A1) + (1/A2) + ... + (1/An)) = ans",
|
||||
harmonicMeanFunc)
|
||||
eucldianNorm = Generator("Euclidian norm or L2 norm of a vector", 69,
|
||||
"Euclidian Norm of a vector V:[v1, v2, ......., vn]",
|
||||
"sqrt(v1^2 + v2^2 ........ +vn^2)", euclidianNormFunc)
|
||||
angleBtwVectors = Generator(
|
||||
"Angle between 2 vectors", 70,
|
||||
"Angle Between 2 vectors V1=[v11, v12, ..., v1n] and V2=[v21, v22, ....., v2n]",
|
||||
"V1.V2 / (euclidNorm(V1)*euclidNorm(V2))", angleBtwVectorsFunc)
|
||||
absoluteDifference = Generator(
|
||||
"Absolute difference between two numbers", 71,
|
||||
"Absolute difference betweeen two numbers a and b =", "|a-b|",
|
||||
absoluteDifferenceFunc)
|
||||
vectorDot = Generator("Dot Product of 2 Vectors", 72, "a . b = ", "c",
|
||||
vectorDotFunc)
|
||||
binary2sComplement = Generator("Binary 2's Complement", 73,
|
||||
"2's complement of 11010110 =", "101010",
|
||||
binary2sComplementFunc)
|
||||
invertmatrix = Generator("Inverse of a Matrix", 74, "Inverse of a matrix A is",
|
||||
"A^(-1)", matrixInversion)
|
||||
sectorArea = Generator("Area of a Sector", 75,
|
||||
"Area of a sector with radius, r and angle, a ", "Area",
|
||||
sectorAreaFunc)
|
||||
meanMedian = Generator("Mean and Median", 76,
|
||||
"Mean and median of given set of numbers",
|
||||
"Mean, Median", meanMedianFunc)
|
||||
intMatrix22determinant = Generator("Determinant to 2x2 Matrix", 77,
|
||||
"Det([[a,b],[c,d]]) =", " a * d - b * c",
|
||||
determinantToMatrix22)
|
||||
compoundInterest = Generator(
|
||||
"Compound Interest", 78,
|
||||
"Compound interest for a principle amount of p dollars, r% rate of interest and for a time period of t years with n times compounded annually is = ",
|
||||
"A dollars", compoundInterestFunc)
|
||||
decimalToHexadeci = Generator("Decimal to Hexadecimal", 79, "Binary of a=",
|
||||
"b", deciToHexaFunc)
|
||||
percentage = Generator("Percentage of a number", 80, "What is a% of b?",
|
||||
"percentage", percentageFunc)
|
||||
celsiustofahrenheit = Generator("Celsius To Fahrenheit", 81, "(C +(9/5))+32=", "F", celsiustofahrenheitFunc)
|
||||
|
||||
arithmeticProgressionTerm = Generator("AP Term Calculation", 82,
|
||||
"Find the term number n of the AP series: a1, a2, a3 ...",
|
||||
"a-n", arithmeticProgressionTermFunc)
|
||||
|
||||
arithmeticProgressionSum = Generator("AP Sum Calculation", 83,
|
||||
"Find the sum of first n terms of the AP series: a1, a2, a3 ...",
|
||||
"Sum", arithmeticProgressionSumFunc)
|
||||
|
||||
setoperations = Generator("Union,Intersection,Difference of Two Sets", 84,
|
||||
"Union,intersection,difference",
|
||||
"aUb,a^b,a-b,b-a,", set_operation)
|
||||
|
||||
25
setup.py
25
setup.py
@@ -1,17 +1,12 @@
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='mathgenerator',
|
||||
version='1.1.3',
|
||||
description='An open source solution for generating math problems',
|
||||
url='https://github.com/todarith/mathgenerator',
|
||||
author='Luke Weiler',
|
||||
author_email='lukew25073@gmail.com',
|
||||
license='MIT',
|
||||
packages=find_packages(),
|
||||
install_requires=[
|
||||
|
||||
],
|
||||
entry_points={
|
||||
}
|
||||
)
|
||||
setup(name='mathgenerator',
|
||||
version='1.1.3',
|
||||
description='An open source solution for generating math problems',
|
||||
url='https://github.com/todarith/mathgenerator',
|
||||
author='Luke Weiler',
|
||||
author_email='lukew25073@gmail.com',
|
||||
license='MIT',
|
||||
packages=find_packages(),
|
||||
install_requires=[],
|
||||
entry_points={})
|
||||
|
||||
4
test.py
4
test.py
@@ -1,6 +1,6 @@
|
||||
from mathgenerator import mathgen
|
||||
|
||||
#test your generators here
|
||||
# test your generators here
|
||||
|
||||
print(mathgen.addition())
|
||||
print(mathgen.genById(74))
|
||||
print(mathgen.genById(79))
|
||||
|
||||
@@ -39,7 +39,8 @@ def test_moduloDivision(maxRes, maxModulo):
|
||||
assert eval(problem[:-1]) == int(solution)
|
||||
|
||||
|
||||
@given(minNo=st.integers(min_value=1), maxNo=st.integers(min_value=1, max_value=2 ** 50))
|
||||
@given(minNo=st.integers(min_value=1),
|
||||
maxNo=st.integers(min_value=1, max_value=2**50))
|
||||
def test_squareRoot(minNo, maxNo):
|
||||
assume(maxNo > minNo)
|
||||
problem, solution = squareRoot.func(minNo, maxNo)
|
||||
|
||||
Reference in New Issue
Block a user