mirror of
https://github.com/DeaDvey/mathgenerator.git
synced 2025-11-28 14:35:23 +01:00
Merge branch 'master' into master
This commit is contained in:
2
.github/ISSUE_TEMPLATE/new-generator-idea.md
vendored
2
.github/ISSUE_TEMPLATE/new-generator-idea.md
vendored
@@ -11,6 +11,6 @@ assignees: ''
|
|||||||
|
|
||||||
**Example Solution:**
|
**Example Solution:**
|
||||||
|
|
||||||
**Further explanation:**
|
**Further explanation (optional):**
|
||||||
|
|
||||||
**Would you like to be assigned to this:**
|
**Would you like to be assigned to this:**
|
||||||
|
|||||||
2
.github/workflows/python-publish.yml
vendored
2
.github/workflows/python-publish.yml
vendored
@@ -1,5 +1,5 @@
|
|||||||
# This workflows will upload a Python Package using Twine when a release is created
|
# This workflows will upload a Python Package using Twine when a release is created
|
||||||
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
|
# For more information see https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
|
||||||
|
|
||||||
name: Upload Python Package
|
name: Upload Python Package
|
||||||
|
|
||||||
|
|||||||
17
.github/workflows/tests.yaml
vendored
17
.github/workflows/tests.yaml
vendored
@@ -9,15 +9,26 @@ jobs:
|
|||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v2
|
- uses: actions/checkout@v2
|
||||||
|
|
||||||
- name: Set up Python
|
- name: Set up Python
|
||||||
uses: actions/setup-python@v2
|
uses: actions/setup-python@v2
|
||||||
with:
|
with:
|
||||||
python-version: '3.x'
|
python-version: '3.x'
|
||||||
- name: Install dependencies
|
|
||||||
|
- uses: actions/cache@v1
|
||||||
|
with:
|
||||||
|
path: ~/.cache/pip
|
||||||
|
key: ${{ runner.os }}-pip-${{ hashFiles('**/dev-requirements.txt') }}
|
||||||
|
restore-keys: |
|
||||||
|
${{ runner.os }}-pip-
|
||||||
|
|
||||||
|
- name: Install Dependencies
|
||||||
|
if: steps.cache.outputs.cache-hit != 'true'
|
||||||
run: |
|
run: |
|
||||||
python -m pip install -U pip
|
pip install -r dev-requirements.txt
|
||||||
python -m pip install -r dev-requirements.txt
|
|
||||||
- name: Linter
|
- name: Linter
|
||||||
run: make lint
|
run: make lint
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
run: make test
|
run: make test
|
||||||
|
|||||||
@@ -35,6 +35,7 @@ We currently just underwent a large reconstruction of the repository. Here is ho
|
|||||||
* Place `.__init__ import *` at the top of your file and then write your function in the lines beneath it
|
* Place `.__init__ import *` at the top of your file and then write your function in the lines beneath it
|
||||||
* Add `from .<yourfunc> import *` at the bottom of the `__init__.py` file inside the funcs directory
|
* Add `from .<yourfunc> import *` at the bottom of the `__init__.py` file inside the funcs directory
|
||||||
|
|
||||||
|
If you have issues with checks you can try using yapf to fix linter errors or just go through them line by line.
|
||||||
### Provide Ideas
|
### Provide Ideas
|
||||||
If you have an idea for a generator but don't have the time or know-how to create it, you can add it as an issue. If you have a lot of ideas, I would suggest adding them to the table in README.md so that they are easier for our team to manage.
|
If you have an idea for a generator but don't have the time or know-how to create it, you can add it as an issue. If you have a lot of ideas, I would suggest adding them to the table in README.md so that they are easier for our team to manage.
|
||||||
|
|
||||||
|
|||||||
2
Makefile
2
Makefile
@@ -2,7 +2,7 @@ IGNORE_ERRORS = E501,F401,F403,F405
|
|||||||
PKG = mathgenerator
|
PKG = mathgenerator
|
||||||
|
|
||||||
format:
|
format:
|
||||||
python -m autopep8 --ignore=$(IGNORE_ERRORS) -i $(PKG)/*
|
python -m autopep8 --ignore=$(IGNORE_ERRORS) -ir $(PKG)/*
|
||||||
|
|
||||||
lint:
|
lint:
|
||||||
python -m flake8 --ignore=$(IGNORE_ERRORS) $(PKG)
|
python -m flake8 --ignore=$(IGNORE_ERRORS) $(PKG)
|
||||||
|
|||||||
163
README.md
163
README.md
@@ -31,76 +31,93 @@ problem, solution = mathgen.genById(0)
|
|||||||
| Id | Skill | Example problem | Example Solution | Function Name |
|
| Id | Skill | Example problem | Example Solution | Function Name |
|
||||||
|------|-----------------------------------|--------------------|-----------------------|--------------------------|
|
|------|-----------------------------------|--------------------|-----------------------|--------------------------|
|
||||||
[//]: # list start
|
[//]: # list start
|
||||||
| 0 | Addition | 33+23= | 56 | addition |
|
| 0 | Addition | 29+29= | 58 | addition |
|
||||||
| 1 | Subtraction | 14-1= | 13 | subtraction |
|
| 1 | Subtraction | 10-8= | 2 | subtraction |
|
||||||
| 2 | Multiplication | 52*1= | 52 | multiplication |
|
| 2 | Multiplication | 96*0= | 0 | multiplication |
|
||||||
| 3 | Division | 14/26= | 0.5384615384615384 | division |
|
| 3 | Division | 25/95= | 0.2631578947368421 | division |
|
||||||
| 4 | Binary Complement 1s | 0110111= | 1001000 | binaryComplement1s |
|
| 4 | Binary Complement 1s | 100101100= | 011010011 | binary_complement_1s |
|
||||||
| 5 | Modulo Division | 23%70= | 23 | moduloDivision |
|
| 5 | Modulo Division | 74%50= | 24 | modulo_division |
|
||||||
| 6 | Square Root | sqrt(121)= | 11 | squareRoot |
|
| 6 | Square Root | sqrt(49)= | 7 | square_root |
|
||||||
| 7 | Power Rule Differentiation | 3x^2 + 3x^5 + 1x^2 + 6x^4 + 6x^3 | 6x^1 + 15x^4 + 2x^1 + 24x^3 + 18x^2 | powerRuleDifferentiation |
|
| 7 | Power Rule Differentiation | 10x^7 + 7x^5 + 5x^8 | 70x^6 + 35x^4 + 40x^7 | power_rule_differentiation |
|
||||||
| 8 | Square | 18^2= | 324 | square |
|
| 8 | Square | 9^2= | 81 | square |
|
||||||
| 9 | LCM (Least Common Multiple) | LCM of 17 and 11 = | 187 | lcm |
|
| 9 | LCM (Least Common Multiple) | LCM of 19 and 7 = | 133 | lcm |
|
||||||
| 10 | GCD (Greatest Common Denominator) | GCD of 15 and 12 = | 3 | gcd |
|
| 10 | GCD (Greatest Common Denominator) | GCD of 1 and 7 = | 1 | gcd |
|
||||||
| 11 | Basic Algebra | 2x + 3 = 10 | 7/2 | basicAlgebra |
|
| 11 | Basic Algebra | 3x + 2 = 8 | 6 | basic_algebra |
|
||||||
| 12 | Logarithm | log2(32) | 5 | log |
|
| 12 | Logarithm | log2(128) | 7 | log |
|
||||||
| 13 | Easy Division | 196/14 = | 14 | intDivision |
|
| 13 | Easy Division | 228/12 = | 19 | int_division |
|
||||||
| 14 | Decimal to Binary | Binary of 61= | 111101 | decimalToBinary |
|
| 14 | Decimal to Binary | Binary of 37= | 100101 | decimal_to_binary |
|
||||||
| 15 | Binary to Decimal | 1 | 1 | binaryToDecimal |
|
| 15 | Binary to Decimal | 10100001 | 161 | binary_to_decimal |
|
||||||
| 16 | Fraction Division | (2/1)/(10/5) | 1 | fractionDivision |
|
| 16 | Fraction Division | (8/2)/(8/2) | 1 | divide_fractions |
|
||||||
| 17 | Integer Multiplication with 2x2 Matrix | 16 * [[4, 1], [1, 2]] = | [[64,16],[16,32]] | intMatrix22Multiplication |
|
| 17 | Integer Multiplication with 2x2 Matrix | 6 * [[3, 7], [10, 6]] = | [[18,42],[60,36]] | multiply_int_to_22_matrix |
|
||||||
| 18 | Area of Triangle | Area of triangle with side lengths: 15 13 11 = | 69.62892717829278 | areaOfTriangle |
|
| 18 | Area of Triangle | Area of triangle with side lengths: 2 1 19 = | (5.449334243437888e-15+88.99438184514796j) | area_of_triangle |
|
||||||
| 19 | Triangle exists check | Does triangle with sides 35, 14 and 37 exist? | Yes | doesTriangleExist |
|
| 19 | Triangle exists check | Does triangle with sides 48, 16 and 30 exist? | No | valid_triangle |
|
||||||
| 20 | Midpoint of the two point | (15,5),(9,10)= | (12.0,7.5) | midPointOfTwoPoint |
|
| 20 | Midpoint of the two point | (2,-5),(12,-7)= | (7.0,-6.0) | midpoint_of_two_points |
|
||||||
| 21 | Factoring Quadratic | x^2-12x+35 | (x-7)(x-5) | factoring |
|
| 21 | Factoring Quadratic | x^2-18x+81 | (x-9)(x-9) | factoring |
|
||||||
| 22 | Third Angle of Triangle | Third angle of triangle with angles 37 and 54 = | 89 | thirdAngleOfTriangle |
|
| 22 | Third Angle of Triangle | Third angle of triangle with angles 45 and 1 = | 134 | third_angle_of_triangle |
|
||||||
| 23 | Solve a System of Equations in R^2 | -4x - 8y = 60, -9x + 10y = 51 | x = -9, y = -3 | systemOfEquations |
|
| 23 | Solve a System of Equations in R^2 | -7x - 10y = -133, 7x - 2y = 49 | x = 9, y = 7 | system_of_equations |
|
||||||
| 24 | Distance between 2 points | Find the distance between (16, 7) and (19, 14) | sqrt(58) | distance2Point |
|
| 24 | Distance between 2 points | Find the distance between (-10, 7) and (16, 6) | sqrt(677) | distance_two_points |
|
||||||
| 25 | Pythagorean Theorem | The hypotenuse of a right triangle given the other two lengths 18 and 8 = | 19.70 | pythagoreanTheorem |
|
| 25 | Pythagorean Theorem | The hypotenuse of a right triangle given the other two lengths 10 and 8 = | 12.81 | pythagorean_theorem |
|
||||||
| 26 | Linear Equations | -8x + 15y = -109
|
| 26 | Linear Equations | 18x + -2y = -174, -13x + 6y = 194 | x = -8, y = 15 | linear_equations |
|
||||||
6x + -14y = 90 | x = 8, y = -3 | linearEquations |
|
| 27 | Prime Factorisation | Find prime factors of 16 | [2, 2, 2, 2] | prime_factors |
|
||||||
| 27 | Prime Factorisation | Find prime factors of 130 | [2, 5, 13] | primeFactors |
|
| 28 | Fraction Multiplication | (6/8)*(2/5) | 3/10 | fraction_multiplication |
|
||||||
| 28 | Fraction Multiplication | (8/9)*(3/2) | 4/3 | fractionMultiplication |
|
| 29 | Angle of a Regular Polygon | Find the angle of a regular polygon with 17 sides | 158.82 | angle_regular_polygon |
|
||||||
| 29 | Angle of a Regular Polygon | Find the angle of a regular polygon with 8 sides | 135.0 | angleRegularPolygon |
|
| 30 | Combinations of Objects | Number of combinations from 17 objects picked 3 at a time | 680 | combinations |
|
||||||
| 30 | Combinations of Objects | Number of combinations from 11 objects picked 9 at a time | 55 | combinations |
|
| 31 | Factorial | 1! = | 1 | factorial |
|
||||||
| 31 | Factorial | 2! = | 2 | factorial |
|
| 32 | Surface Area of Cube | Surface area of cube with side = 17m is | 1734 m^2 | surface_area_cube |
|
||||||
| 32 | Surface Area of Cube | Surface area of cube with side = 17m is | 1734 m^2 | surfaceAreaCubeGen |
|
| 33 | Surface Area of Cuboid | Surface area of cuboid with sides = 12m, 11m, 1m is | 310 m^2 | surface_area_cuboid |
|
||||||
| 33 | Surface Area of Cuboid | Surface area of cuboid with sides = 8m, 4m, 17m is | 472 m^2 | surfaceAreaCuboidGen |
|
| 34 | Surface Area of Cylinder | Surface area of cylinder with height = 38m and radius = 16m is | 5428 m^2 | surface_area_cylinder |
|
||||||
| 34 | Surface Area of Cylinder | Surface area of cylinder with height = 32m and radius = 18m is | 5654 m^2 | surfaceAreaCylinderGen |
|
| 35 | Volum of Cube | Volume of cube with side = 11m is | 1331 m^3 | volume_cube |
|
||||||
| 35 | Volum of Cube | Volume of cube with side = 11m is | 1331 m^3 | volumeCubeGen |
|
| 36 | Volume of Cuboid | Volume of cuboid with sides = 17m, 19m, 8m is | 2584 m^3 | volume_cuboid |
|
||||||
| 36 | Volume of Cuboid | Volume of cuboid with sides = 14m, 19m, 1m is | 266 m^3 | volumeCuboidGen |
|
| 37 | Volume of cylinder | Volume of cylinder with height = 35m and radius = 19m is | 39694 m^3 | volume_cylinder |
|
||||||
| 37 | Volume of cylinder | Volume of cylinder with height = 16m and radius = 18m is | 16286 m^3 | volumeCylinderGen |
|
| 38 | Surface Area of cone | Surface area of cone with height = 8m and radius = 19m is | 2364 m^2 | surface_area_cone |
|
||||||
| 38 | Surface Area of cone | Surface area of cone with height = 48m and radius = 20m is | 4523 m^2 | surfaceAreaConeGen |
|
| 39 | Volume of cone | Volume of cone with height = 43m and radius = 13m is | 7609 m^3 | volume_cone |
|
||||||
| 39 | Volume of cone | Volume of cone with height = 29m and radius = 6m is | 1093 m^3 | volumeConeGen |
|
| 40 | Common Factors | Common Factors of 21 and 65 = | [1] | common_factors |
|
||||||
| 40 | Common Factors | Common Factors of 59 and 57 = | [1] | commonFactors |
|
| 41 | Intersection of Two Lines | Find the point of intersection of the two lines: y = 5/4x - 1 and y = 0/4x - 5 | (-16/5, -5) | intersection_of_two_lines |
|
||||||
| 41 | Intersection of Two Lines | Find the point of intersection of the two lines: y = -1/4x - 2 and y = 4/5x + 3 | (-100/21, -17/21) | intersectionOfTwoLines |
|
| 42 | Permutations | Number of Permutations from 10 objects picked 5 at a time = | 30240 | permutation |
|
||||||
| 42 | Permutations | Number of Permutations from 13 objects picked 8 at a time = | 51891840 | permutations |
|
| 43 | Cross Product of 2 Vectors | [12, -16, 4] X [-14, 10, -9] = | [104, 52, -104] | vector_cross |
|
||||||
| 43 | Cross Product of 2 Vectors | [4, -11, 9] X [-8, -19, -5] = | [226, -52, -164] | vectorCross |
|
| 44 | Compare Fractions | Which symbol represents the comparison between 7/10 and 7/5? | < | compare_fractions |
|
||||||
| 44 | Compare Fractions | Which symbol represents the comparison between 3/7 and 2/4? | < | compareFractions |
|
| 45 | Simple Interest | Simple interest for a principle amount of 6138 dollars, 9% rate of interest and for a time period of 8 years is = | 4419.36 | simple_interest |
|
||||||
| 45 | Simple Interest | Simple interest for a principle amount of 2398 dollars, 9% rate of interest and for a time period of 5 years is = | 1079.1 | simpleInterest |
|
| 46 | Multiplication of two matrices | Multiply<table><tr><td>-8</td><td>-8</td></tr><tr><td>-2</td><td>-9</td></tr></table>and<table><tr><td>-10</td><td>-8</td></tr><tr><td>9</td><td>-9</td></tr></table> | <table><tr><td>8</td><td>136</td></tr><tr><td>-61</td><td>97</td></tr></table> | matrix_multiplication |
|
||||||
| 46 | Multiplication of two matrices | Multiply <table><tr><td>-50</td><td>36</td><td>7</td><td>-26</td><td>-2</td><td>63</td></tr><tr><td>88</td><td>-37</td><td>60</td><td>-19</td><td>61</td><td>-56</td></tr><tr><td>48</td><td>-5</td><td>69</td><td>-87</td><td>-64</td><td>-92</td></tr><tr><td>-84</td><td>-50</td><td>-79</td><td>-19</td><td>86</td><td>-13</td></tr><tr><td>0</td><td>28</td><td>12</td><td>-14</td><td>73</td><td>-49</td></tr><tr><td>94</td><td>-90</td><td>2</td><td>26</td><td>-38</td><td>19</td></tr><tr><td>2</td><td>-11</td><td>79</td><td>-77</td><td>98</td><td>-77</td></tr><tr><td>-87</td><td>70</td><td>72</td><td>-32</td><td>64</td><td>-99</td></tr></table> and <table><tr><td>34</td><td>32</td><td>-6</td><td>-32</td><td>46</td><td>-23</td><td>78</td><td>-81</td><td>-18</td></tr><tr><td>-17</td><td>24</td><td>49</td><td>-62</td><td>-50</td><td>77</td><td>38</td><td>-98</td><td>-64</td></tr><tr><td>-23</td><td>-78</td><td>43</td><td> 5</td><td>-83</td><td>-5</td><td> 4</td><td>-92</td><td>-16</td></tr><tr><td> 46</td><td>-47</td><td>-92</td><td>52</td><td>-25</td><td>-37</td><td>44</td><td>51</td><td>-7</td></tr><tr><td> 20</td><td>26</td><td>70</td><td>37</td><td>96</td><td>-73</td><td>49</td><td>84</td><td>42</td></tr><tr><td>-72</td><td>-15</td><td>-80</td><td>-24</td><td>58</td><td>-47</td><td>-41</td><td>45</td><td>-69</td></tr></table>| <table><tr><td>-8245</td><td>-1057</td><td>-423</td><td>-3535</td><td>-569</td><td>2034</td><td>-6329</td><td>1219</td><td>-5765</td></tr><tr><td>6619</td><td> 567</td><td>10737</td><td>2391</td><td>4001</td><td>-6291</td><td>10147</td><td>-7387</td><td>6383</td></tr><tr><td>1472</td><td>-161</td><td>13318</td><td>-5565<td>-12574</td><td>10381</td><td> 638<td>-23699</td><td>2621</td></tr><tr><td>1593</td><td>5598</td><td>3465</td><td>7899</td><td>13170</td><td>-6487</td><td>-4857</td><td>24642</td><td>10618</td></tr><tr><td>3592</td><td>3027</td><td>12206</td><td>1473</td><td>2120</td><td>-412</td><td>6082</td><td>-635</td><td>4561</td></tr><tr><td>3748</td><td>-1803<td>-11460</td><td>2072</td><td>5462</td><td>-8183</td><td>2423</td><td>11</td><td> 947</td></tr><tr><td>2400</td><td> 960</td><td>22950</td><td>2483</td><td> 952</td><td>-1974</td><td>4625</td><td>-5512</td><td>9372</td></tr><tr><td>1132</td><td>-2067</td><td>22392</td><td>1884<td>-12276</td><td>8196</td><td>1949</td><td>-7148</td><td>5677</td></tr></table> | matrixMultiplication |
|
| 47 | Cube Root | cuberoot of 633 upto 2 decimal places is: | 8.59 | cube_root |
|
||||||
[ 10584, 13902, 11916, -7446, 4430, 554]
|
| 48 | Power Rule Integration | 2x^5 + 3x^3 + 4x^7 + 9x^1 + 6x^9 | (2/5)x^6 + (3/3)x^4 + (4/7)x^8 + (9/1)x^2 + (6/9)x^10 + c | power_rule_integration |
|
||||||
[ -1800, 6587, 14343, 6224, 4525, 4853]
|
| 49 | Fourth Angle of Quadrilateral | Fourth angle of quadrilateral with angles 79 , 44, 37 = | 200 | fourth_angle_of_quadrilateral |
|
||||||
[-12452, -10675, -8693, 427, 2955, 17691]] | matrixMultiplication |
|
| 50 | Quadratic Equation | Zeros of the Quadratic Equation 79x^2+182x+98=0 | [-0.86, -1.45] | quadratic_equation |
|
||||||
| 47 | Cube Root | cuberoot of 221 upto 2 decimal places is: | 6.05 | CubeRoot |
|
| 51 | HCF (Highest Common Factor) | HCF of 1 and 20 = | 1 | hcf |
|
||||||
| 48 | Power Rule Integration | 4x^5 + 2x^5 + 9x^8 + 9x^5 | (4/5)x^6 + (2/5)x^6 + (9/8)x^9 + (9/5)x^6 + c | powerRuleIntegration |
|
| 52 | Probability of a certain sum appearing on faces of dice | If 1 dice are rolled at the same time, the probability of getting a sum of 2 = | 1/6 | dice_sum_probability |
|
||||||
| 49 | Fourth Angle of Quadrilateral | Fourth angle of quadrilateral with angles 27 , 155, 116 = | 62 | fourthAngleOfQuadrilateral |
|
| 53 | Exponentiation | 6^9 = | 10077696 | exponentiation |
|
||||||
| 50 | Quadratic Equation | Zeros of the Quadratic Equation 53x^2+200x+78=0 | [-0.44, -3.33] | quadraticEquationSolve |
|
| 54 | Confidence interval For sample S | The confidence interval for sample [260, 249, 281, 261, 236, 237, 275, 229, 256, 242, 277, 240, 278, 293, 271, 255, 216, 292, 200, 298, 282, 223] with 99% confidence is | (271.2437114485249, 242.48356127874783) | confidence_interval |
|
||||||
| 51 | HCF (Highest Common Factor) | HCF of 7 and 4 = | 1 | hcf |
|
| 55 | Comparing surds | Fill in the blanks 71^(1/5) _ 31^(1/8) | > | surds_comparison |
|
||||||
| 52 | Probability of a certain sum appearing on faces of dice | If 2 dice are rolled at the same time, the probability of getting a sum of 11 = | 2/36 | diceSumProbability |
|
| 56 | Fibonacci Series | The Fibonacci Series of the first 19 numbers is ? | [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584] | fibonacci_series |
|
||||||
| 53 | Exponentiation | 9^10 = | 3486784401 | exponentiation |
|
| 57 | Trigonometric Values | What is cos(45)? | 1/√2 | basic_trigonometry |
|
||||||
| 54 | Confidence interval For sample S | The confidence interval for sample [266, 201, 278, 209, 229, 275, 216, 234, 219, 276, 282, 281, 208, 247, 265, 273, 286, 202, 231, 207, 251, 203, 259, 288, 291, 260, 210, 263, 222] with 99% confidence is | (260.5668079141175, 231.29526105139982) | confidenceInterval |
|
| 58 | Sum of Angles of Polygon | Sum of angles of polygon with 10 sides = | 1440 | sum_of_polygon_angles |
|
||||||
| 55 | Comparing surds | Fill in the blanks 15^(1/9) _ 55^(1/1) | < | surdsComparison |
|
| 59 | Mean,Standard Deviation,Variance | Find the mean,standard deviation and variance for the data[13, 22, 36, 17, 9, 39, 50, 14, 32, 40, 37, 48, 47, 28, 47] | The Mean is 31.933333333333334 , Standard Deviation is 182.59555555555553, Variance is 13.51279229306643 | data_summary |
|
||||||
| 56 | Fibonacci Series | The Fibonacci Series of the first 10 numbers is ? | [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] | fibonacciSeries |
|
| 60 | Surface Area of Sphere | Surface area of Sphere with radius = 18m is | 4071.5040790523717 m^2 | surface_area_sphere |
|
||||||
| 57 | Trigonometric Values | What is tan(30)? | 1/√3 | basicTrigonometry |
|
| 61 | Volume of Sphere | Volume of sphere with radius 61 m = | 950775.7894726198 m^3 | volume_sphere |
|
||||||
| 58 | Sum of Angles of Polygon | Sum of angles of polygon with 3 sides = | 180 | sumOfAnglesOfPolygon |
|
| 62 | nth Fibonacci number | What is the 85th Fibonacci number? | 259695496911123328 | nth_fibonacci_number |
|
||||||
| 59 | Mean,Standard Deviation,Variance | Find the mean,standard deviation and variance for the data[36, 13, 31, 23, 38, 34, 24, 20, 41, 14, 19, 31, 11, 49, 49] | The Mean is 28.866666666666667 , Standard Deviation is 143.5822222222222, Variance is 11.982579948501167 | dataSummary |
|
| 63 | Profit or Loss Percent | Profit percent when CP = 353 and SP = 752 is: | 113.03116147308782 | profit_loss_percent |
|
||||||
| 59 | Surface Area of Sphere | Surface area of Sphere with radius = 11m is | 1520.5308443374597 m^2 | surfaceAreaSphereGen |
|
| 64 | Binary to Hexidecimal | 111101011 | 0x1eb | binary_to_hex |
|
||||||
| 60 | Volume of Sphere | Volume of sphere with radius 73 m = | 1629510.5990953872 m^3 | volumeSphere |
|
| 65 | Multiplication of 2 complex numbers | (-19-9j) * (-17-2j) = | (305+191j) | multiply_complex_numbers |
|
||||||
| 61 | nth Fibonacci number | What is the 68th Fibonacci number? | 72723460248141 | nthFibonacciNumberGen |
|
| 66 | Geometric Progression | For the given GP [7, 77, 847, 9317, 102487, 1127357] ,Find the value of a,common ratio,6th term value, sum upto 7th term | The value of a is 7, common ratio is 11 , 6th term is 1127357 , sum upto 7th term is 13641019.0 | geometric_progression |
|
||||||
| 62 | Profit or Loss Percent | Profit percent when CP = 825 and SP = 972 is: | 17.81818181818182 | profitLossPercent |
|
| 67 | Geometric Mean of N Numbers | Geometric mean of 3 numbers 32 , 5 and 18 = | (32*5*18)^(1/3) = 14.227573217960249 | geometric_mean |
|
||||||
| 63 | Binary to Hexidecimal | 100000 | 0x20 | binaryToHex |
|
| 68 | Harmonic Mean of N Numbers | Harmonic mean of 3 numbers 48 , 85 and 79 = | 3/((1/48) + (1/85) + (1/79)) = 66.28916158223076 | harmonic_mean |
|
||||||
| 64 | Multiplication of 2 complex numbers | (3+14j) * (-3+16j) = | (-233+6j) | complexNumMultiply |
|
| 69 | Euclidian norm or L2 norm of a vector | Euclidian norm or L2 norm of the vector[743.1109024649227, 951.2861991520674, 821.2679183199273, 831.5922742303677, 972.3005129207023, 775.1712986008336, 869.5254070360901, 34.05779748860371, 495.5299489221041, 516.2458991121815, 620.0871728488738, 12.438787805084894, 967.8138977993306, 627.6791615554401, 129.81896901435886, 566.4442009627315, 521.5300881726977, 741.5947979192599] is: | 2917.827115551868 | euclidian_norm |
|
||||||
| 65 | Geometric Progression | For the given GP [4, 16, 64, 256, 1024, 4096] ,Find the value of a,common ratio,8th term value, sum upto 7th term | The value of a is 4, common ratio is 4 , 8th term is 65536 , sum upto 7th term is 21844.0 | geometricprogression |
|
| 70 | Angle between 2 vectors | angle between the vectors [341.1766244080324, 386.90517658729595, 306.3074773969527, 542.1138441520038, 149.80203485453225, 85.6719016065689, 875.0827941729921, 292.0422074695527, 312.8929536855103, 408.95388654647445, 119.81564007869672, 177.5529661884936, 360.30983184002406, 111.71502530193955, 29.528755078141455, 478.2846569662712, 855.8978282979257] and [230.45166329807688, 922.2895458023412, 219.89492715268733, 375.8793126730714, 731.2614314505195, 277.5554009411926, 329.1490487358273, 477.7600322879586, 168.93745868538923, 423.6897582803929, 724.5555882496458, 519.6421532094823, 158.0479000313908, 679.3674240323584, 496.6795371750926, 853.4421897526636, 715.2567898992207] is: | NaN | angle_btw_vectors |
|
||||||
| 66 | Geometric Mean of N Numbers | Geometric mean of 3 numbers 81 , 35 and 99 = | (81*35*99)^(1/3) = 65.47307713912309 | geometricMean |
|
| 71 | Absolute difference between two numbers | Absolute difference between numbers 53 and -70 = | 123 | absolute_difference |
|
||||||
| 67 | Harmonic Mean of N Numbers | Harmonic mean of 2 numbers 99 and 25 = | 2/((1/99) + (1/25)) = 39.91935483870967 | harmonicMean |
|
| 72 | Dot Product of 2 Vectors | [-8, -4, -10] . [-9, -6, -9] = | 186 | vector_dot |
|
||||||
|
| 73 | Binary 2's Complement | 2's complement of = | | binary_2s_complement |
|
||||||
|
| 74 | Inverse of a Matrix | Inverse of Matrix Matrix([[43, 95, 41], [46, 80, 67], [57, 75, 71]]) is: | Matrix([[131/7038, -367/3519, 617/7038], [553/35190, 358/17595, -199/7038], [-37/1173, 73/1173, -31/1173]]) | invert_matrix |
|
||||||
|
| 75 | Area of a Sector | Given radius, 40 and angle, 199. Find the area of the sector. | Area of sector = 2778.56417 | sector_area |
|
||||||
|
| 76 | Mean and Median | Given the series of numbers [44, 64, 22, 37, 63, 56, 27, 62, 98, 72]. find the arithmatic mean and mdian of the series | Arithmetic mean of the series is 54.5 and Arithmetic median of this series is 59.0 | mean_median |
|
||||||
|
| 77 | Determinant to 2x2 Matrix | Det([[73, 52], [55, 80]]) = | 2980 | int_matrix_22_determinant |
|
||||||
|
| 78 | Compound Interest | Compound Interest for a principle amount of 8506 dollars, 8% rate of interest and for a time period of 10 compounded monthly is = | 8506.0 | compound_interest |
|
||||||
|
| 79 | Decimal to Hexadecimal | Binary of 293= | 0x125 | decimal_to_hexadeci |
|
||||||
|
| 80 | Percentage of a number | What is 57% of 4? | Required percentage = 2.28% | percentage |
|
||||||
|
| 81 | Celsius To Fahrenheit | Convert 57 degrees Celsius to degrees Fahrenheit = | 134.60000000000002 | celsius_to_fahrenheit |
|
||||||
|
| 82 | AP Term Calculation | Find the term number 89 of the AP series: 20, 115, 210 ... | 8380 | arithmetic_progression_term |
|
||||||
|
| 83 | AP Sum Calculation | Find the sum of first 98 terms of the AP series: -58, -106, -154 ... | -233828.0 | arithmetic_progression_sum |
|
||||||
|
| 84 | Converts decimal to octal | The decimal number 1716 in Octal is: | 0o3264 | decimal_to_octal |
|
||||||
|
| 85 | Converts decimal to Roman Numerals | The number 587 in Roman Numerals is: | DLXXXVII | decimal_to_roman_numerals |
|
||||||
|
| 86 | Degrees to Radians | Angle 245 in radians is = | 4.28 | degree_to_rad |
|
||||||
|
| 87 | Radians to Degrees | Angle 0 in degrees is = | 0.0 | radian_to_deg |
|
||||||
|
| 88 | Differentiation | differentiate w.r.t x : d(exp(x)+5*x^(-2))/dx | exp(x) - 10/x^3 | differentiation |
|
||||||
|
| 89 | Definite Integral of Quadratic Equation | The definite integral within limits 0 to 1 of the equation 39x^2 + 72x + 74 is = | 123.0 | definite_integral |
|
||||||
|
|||||||
@@ -3,3 +3,5 @@ hypothesis
|
|||||||
flake8
|
flake8
|
||||||
autopep8
|
autopep8
|
||||||
sympy
|
sympy
|
||||||
|
numpy
|
||||||
|
scipy
|
||||||
|
|||||||
@@ -1,14 +1,23 @@
|
|||||||
# To use, paste at bottom of mathgen.py code, change line variable and remove all table rows in README.md except for the top 2 and run mathgen.py
|
|
||||||
# NOTE: not anymore. but still leaving this comment in.
|
|
||||||
from mathgenerator.mathgen import *
|
from mathgenerator.mathgen import *
|
||||||
|
|
||||||
|
|
||||||
|
def array2markdown_table(string):
|
||||||
|
string = string.replace("[[", "<table><tr><td>")
|
||||||
|
string = string.replace("[", "<tr><td>")
|
||||||
|
string = string.replace(", ", "</td><td>")
|
||||||
|
string = string.replace("]]", "</td></tr></table>")
|
||||||
|
string = string.replace("]", "</td></tr>")
|
||||||
|
string = string.replace(" ", "")
|
||||||
|
string = string.replace("\n", "")
|
||||||
|
return string
|
||||||
|
|
||||||
|
|
||||||
wList = getGenList()
|
wList = getGenList()
|
||||||
lines = []
|
lines = []
|
||||||
with open('mathgenerator/mathgen.py', 'r') as f:
|
with open('mathgenerator/mathgen.py', 'r') as f:
|
||||||
lines=f.readlines()
|
lines = f.readlines()
|
||||||
|
|
||||||
allRows = []
|
allRows = []
|
||||||
line = lines.index('# Funcs_start - DO NOT REMOVE!\n')+1 # get the first line of the functions in mathgen.py
|
|
||||||
for item in wList:
|
for item in wList:
|
||||||
myGen = item[2]
|
myGen = item[2]
|
||||||
# NOTE: renamed 'sol' to 'solu' to make it look nicer
|
# NOTE: renamed 'sol' to 'solu' to make it look nicer
|
||||||
@@ -17,32 +26,27 @@ for item in wList:
|
|||||||
solu = str(solu).rstrip("\n")
|
solu = str(solu).rstrip("\n")
|
||||||
# edge case for matrixMultiplication
|
# edge case for matrixMultiplication
|
||||||
if item[0] == 46:
|
if item[0] == 46:
|
||||||
print(prob)
|
prob, solu = myGen(maxVal=10, max_dim=4)
|
||||||
|
prob = str(prob).rstrip("\n")
|
||||||
|
solu = str(solu).rstrip("\n")
|
||||||
|
prob = array2markdown_table(prob)
|
||||||
|
solu = array2markdown_table(solu)
|
||||||
|
|
||||||
prob = prob.replace("[[", "<table><tr><td>")
|
# NOTE: renamed 'def_name' to 'func_name' because it suits it more
|
||||||
prob = prob.replace("[", "<tr><td>")
|
func_name = item[3]
|
||||||
prob = prob.replace(", ", "</td><td>")
|
|
||||||
prob = prob.replace("]]\n", "</td></tr></table>")
|
|
||||||
prob = prob.replace("]\n", "</td></tr>")
|
|
||||||
print(prob)
|
|
||||||
|
|
||||||
instName = lines[line]
|
|
||||||
func_name = instName[:instName.find('=')].strip() # NOTE: renamed 'def_name' to 'func_name' because it suits it more
|
|
||||||
row = [myGen.id, myGen.title, prob, solu, func_name]
|
row = [myGen.id, myGen.title, prob, solu, func_name]
|
||||||
# print(item[1], func_name)
|
print('added', item[1], '-', func_name, 'to the README.md')
|
||||||
line += 1
|
|
||||||
if line > len(lines):
|
|
||||||
break
|
|
||||||
allRows.append(row)
|
allRows.append(row)
|
||||||
|
|
||||||
with open('README.md', "r") as g:
|
with open('README.md', "r") as g:
|
||||||
lines = g.readlines()
|
lines = g.readlines()
|
||||||
|
|
||||||
line = lines.index('[//]: # list start\n')
|
line = lines.index('[//]: # list start\n')
|
||||||
lines = lines[:line+1]
|
lines = lines[:line + 1]
|
||||||
|
|
||||||
for row in allRows:
|
for row in allRows:
|
||||||
tableLine = "| " + str(row[0]) + " | " + str(row[1]) + " | " + str(row[2]) + " | " + str(row[3]) + " | " + str(row[4]) + " |\n"
|
tableLine = "| " + str(row[0]) + " | " + str(row[1]) + " | " + str(
|
||||||
|
row[2]) + " | " + str(row[3]) + " | " + str(row[4]) + " |\n"
|
||||||
lines.append(tableLine)
|
lines.append(tableLine)
|
||||||
|
|
||||||
with open('README.md', "w") as g:
|
with open('README.md', "w") as g:
|
||||||
|
|||||||
@@ -0,0 +1,31 @@
|
|||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
genList = []
|
||||||
|
|
||||||
|
|
||||||
|
class Generator:
|
||||||
|
def __init__(self, title, id, generalProb, generalSol, func):
|
||||||
|
self.title = title
|
||||||
|
self.id = id
|
||||||
|
self.generalProb = generalProb
|
||||||
|
self.generalSol = generalSol
|
||||||
|
self.func = func
|
||||||
|
|
||||||
|
(filename, line_number, function_name, text) = traceback.extract_stack()[-2]
|
||||||
|
funcname = filename[filename.rfind('/'):].strip()
|
||||||
|
funcname = funcname[1:-3]
|
||||||
|
# print(funcname)
|
||||||
|
genList.append([id, title, self, funcname])
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return str(
|
||||||
|
self.id
|
||||||
|
) + " " + self.title + " " + self.generalProb + " " + self.generalSol
|
||||||
|
|
||||||
|
def __call__(self, *args, **kwargs):
|
||||||
|
return self.func(*args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def getGenList():
|
||||||
|
correctedList = genList[-1:] + genList[:-1]
|
||||||
|
return correctedList
|
||||||
|
|||||||
@@ -1,12 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def BinaryToDecimalFunc(max_dig=10):
|
|
||||||
problem = ''
|
|
||||||
|
|
||||||
for i in range(random.randint(1, max_dig)):
|
|
||||||
temp = str(random.randint(0, 1))
|
|
||||||
problem += temp
|
|
||||||
|
|
||||||
solution = int(problem, 2)
|
|
||||||
return problem, solution
|
|
||||||
@@ -1,25 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def DiceSumProbFunc(maxDice=3):
|
|
||||||
a = random.randint(1,maxDice)
|
|
||||||
b = random.randint(a,6*a)
|
|
||||||
|
|
||||||
count=0
|
|
||||||
for i in [1,2,3,4,5,6]:
|
|
||||||
if a==1:
|
|
||||||
if i==b:
|
|
||||||
count=count+1
|
|
||||||
elif a==2:
|
|
||||||
for j in [1,2,3,4,5,6]:
|
|
||||||
if i+j==b:
|
|
||||||
count=count+1
|
|
||||||
elif a==3:
|
|
||||||
for j in [1,2,3,4,5,6]:
|
|
||||||
for k in [1,2,3,4,5,6]:
|
|
||||||
if i+j+k==b:
|
|
||||||
count=count+1
|
|
||||||
|
|
||||||
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(a,b)
|
|
||||||
solution="{}/{}".format(count, 6**a)
|
|
||||||
return problem, solution
|
|
||||||
@@ -2,82 +2,96 @@ import random
|
|||||||
import math
|
import math
|
||||||
import fractions
|
import fractions
|
||||||
|
|
||||||
from .additionFunc import *
|
from ..__init__ import *
|
||||||
from .subtractionFunc import *
|
|
||||||
from .multiplicationFunc import *
|
from .addition import *
|
||||||
from .divisionFunc import *
|
from .subtraction import *
|
||||||
from .binaryComplement1sFunc import *
|
from .multiplication import *
|
||||||
from .moduloFunc import *
|
from .division import *
|
||||||
from .squareRootFunc import *
|
from .binary_complement_1s import *
|
||||||
from .powerRuleDifferentiationFunc import *
|
from .modulo_division import *
|
||||||
from .squareFunc import *
|
from .square_root import *
|
||||||
from .gcdFunc import *
|
from .power_rule_differentiation import *
|
||||||
from .lcmFunc import *
|
from .square import *
|
||||||
from .basicAlgebraFunc import *
|
from .lcm import *
|
||||||
from .logFunc import *
|
from .gcd import *
|
||||||
from .divisionToIntFunc import *
|
from .basic_algebra import *
|
||||||
from .DecimalToBinaryFunc import *
|
from .log import *
|
||||||
from .BinaryToDecimalFunc import *
|
from .int_division import *
|
||||||
from .divideFractionsFunc import *
|
from .decimal_to_binary import *
|
||||||
from .multiplyIntToMatrix22 import *
|
from .binary_to_decimal import *
|
||||||
from .areaOfTriangleFunc import *
|
from .divide_fractions import *
|
||||||
from .isTriangleValidFunc import *
|
from .multiply_int_to_22_matrix import *
|
||||||
from .MidPointOfTwoPointFunc import *
|
from .area_of_triangle import *
|
||||||
from .factoringFunc import *
|
from .valid_triangle import *
|
||||||
from .thirdAngleOfTriangleFunc import *
|
from .midpoint_of_two_points import *
|
||||||
from .systemOfEquationsFunc import *
|
from .factoring import *
|
||||||
from .distanceTwoPointsFunc import *
|
from .third_angle_of_triangle import *
|
||||||
from .pythagoreanTheoremFunc import *
|
from .system_of_equations import *
|
||||||
from .linearEquationsFunc import *
|
from .distance_two_points import *
|
||||||
from .primeFactorsFunc import *
|
from .pythagorean_theorem import *
|
||||||
from .multiplyFractionsFunc import *
|
from .linear_equations import *
|
||||||
from .regularPolygonAngleFunc import *
|
from .prime_factors import *
|
||||||
from .combinationsFunc import *
|
from .fraction_multiplication import *
|
||||||
from .factorialFunc import *
|
from .angle_regular_polygon import *
|
||||||
from .surfaceAreaCube import *
|
from .combinations import *
|
||||||
from .volumeCube import *
|
from .factorial import *
|
||||||
from .surfaceAreaCuboid import *
|
from .surface_area_cube import *
|
||||||
from .volumeCuboid import *
|
from .surface_area_cuboid import *
|
||||||
from .surfaceAreaCylinder import *
|
from .surface_area_cylinder import *
|
||||||
from .volumeCylinder import *
|
from .volume_cube import *
|
||||||
from .surfaceAreaCone import *
|
from .volume_cuboid import *
|
||||||
from .volumeCone import *
|
from .volume_cylinder import *
|
||||||
from .commonFactorsFunc import *
|
from .surface_area_cone import *
|
||||||
from .intersectionOfTwoLinesFunc import *
|
from .volume_cone import *
|
||||||
from .permutationFunc import *
|
from .common_factors import *
|
||||||
from .vectorCrossFunc import *
|
from .intersection_of_two_lines import *
|
||||||
from .compareFractionsFunc import *
|
from .permutation import *
|
||||||
from .simpleInterestFunc import *
|
from .vector_cross import *
|
||||||
from .matrixMultiplicationFunc import *
|
from .compare_fractions import *
|
||||||
from .cubeRootFunc import *
|
from .simple_interest import *
|
||||||
from .powerRuleIntegrationFunc import *
|
from .matrix_multiplication import *
|
||||||
from .fourthAngleOfQuadriFunc import *
|
from .cube_root import *
|
||||||
from .quadraticEquation import *
|
from .power_rule_integration import *
|
||||||
from .hcfFunc import *
|
from .fourth_angle_of_quadrilateral import *
|
||||||
from .DiceSumProbFunc import *
|
from .quadratic_equation import *
|
||||||
from .exponentiationFunc import *
|
from .hcf import *
|
||||||
from .confidenceIntervalFunc import *
|
from .dice_sum_probability import *
|
||||||
from .surdsComparisonFunc import *
|
from .exponentiation import *
|
||||||
from .fibonacciSeriesFunc import *
|
from .confidence_interval import *
|
||||||
from .basicTrigonometryFunc import *
|
from .surds_comparison import *
|
||||||
from .sumOfAnglesOfPolygonFunc import *
|
from .fibonacci_series import *
|
||||||
from .dataSummaryFunc import *
|
from .basic_trigonometry import *
|
||||||
from .surfaceAreaSphere import *
|
from .sum_of_polygon_angles import *
|
||||||
from .volumeSphereFunc import *
|
from .data_summary import *
|
||||||
from .nthFibonacciNumberFunc import *
|
from .surface_area_sphere import *
|
||||||
from .profitLossPercentFunc import *
|
from .volume_sphere import *
|
||||||
from .binaryToHexFunc import *
|
from .nth_fibonacci_number import *
|
||||||
from .multiplyComplexNumbersFunc import *
|
from .profit_loss_percent import *
|
||||||
from .geomProgrFunc import *
|
from .binary_to_hex import *
|
||||||
from .geometricMeanFunc import *
|
from .multiply_complex_numbers import *
|
||||||
from .harmonicMeanFunc import *
|
from .geometric_progression import *
|
||||||
from .euclidianNormFunc import *
|
from .geometric_mean import *
|
||||||
from .angleBtwVectorsFunc import *
|
from .harmonic_mean import *
|
||||||
from .absoluteDifferenceFunc import *
|
from .euclidian_norm import *
|
||||||
from .vectorDotFunc import *
|
from .angle_btw_vectors import *
|
||||||
from .binary2sComplement import *
|
from .absolute_difference import *
|
||||||
from .matrixInversion import *
|
from .vector_dot import *
|
||||||
from .sectorAreaFunc import*
|
from .binary_2s_complement import *
|
||||||
from .meanMedianFunc import*
|
from .invert_matrix import *
|
||||||
from .determinantToMatrix22 import *
|
from .sector_area import *
|
||||||
from .deciToHexaFunc import *
|
from .mean_median import *
|
||||||
|
from .int_matrix_22_determinant import *
|
||||||
|
from .compound_interest import *
|
||||||
|
from .decimal_to_hexadeci import *
|
||||||
|
from .percentage import *
|
||||||
|
from .celsius_to_fahrenheit import *
|
||||||
|
from .arithmetic_progression_term import *
|
||||||
|
from .arithmetic_progression_sum import *
|
||||||
|
from .decimal_to_octal import *
|
||||||
|
from .decimal_to_roman_numerals import *
|
||||||
|
from .degree_to_rad import *
|
||||||
|
from .radian_to_deg import *
|
||||||
|
from .differentiation import *
|
||||||
|
from .definite_integral import *
|
||||||
|
from .is_prime import *
|
||||||
|
|||||||
@@ -1,10 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
def absoluteDifferenceFunc (maxA = 100, maxB = 100):
|
|
||||||
a = random.randint(-1*maxA, maxA)
|
|
||||||
b = random.randint(-1*maxB, maxB)
|
|
||||||
absDiff = abs(a-b)
|
|
||||||
|
|
||||||
problem = "Absolute difference between numbers " + str(a) + " and " + str(b) + " = "
|
|
||||||
solution = absDiff
|
|
||||||
return problem, solution
|
|
||||||
18
mathgenerator/funcs/absolute_difference.py
Normal file
18
mathgenerator/funcs/absolute_difference.py
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def absoluteDifferenceFunc(maxA=100, maxB=100):
|
||||||
|
a = random.randint(-1 * maxA, maxA)
|
||||||
|
b = random.randint(-1 * maxB, maxB)
|
||||||
|
absDiff = abs(a - b)
|
||||||
|
|
||||||
|
problem = "Absolute difference between numbers " + \
|
||||||
|
str(a) + " and " + str(b) + " = "
|
||||||
|
solution = absDiff
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
absolute_difference = Generator(
|
||||||
|
"Absolute difference between two numbers", 71,
|
||||||
|
"Absolute difference betweeen two numbers a and b =", "|a-b|",
|
||||||
|
absoluteDifferenceFunc)
|
||||||
14
mathgenerator/funcs/addition.py
Normal file
14
mathgenerator/funcs/addition.py
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def additionFunc(maxSum=99, maxAddend=50):
|
||||||
|
a = random.randint(0, maxAddend)
|
||||||
|
# The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
||||||
|
b = random.randint(0, min((maxSum - a), maxAddend))
|
||||||
|
c = a + b
|
||||||
|
problem = str(a) + "+" + str(b) + "="
|
||||||
|
solution = str(c)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
||||||
@@ -1,10 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def additionFunc(maxSum=99, maxAddend=50):
|
|
||||||
a = random.randint(0, maxAddend)
|
|
||||||
b = random.randint(0, min((maxSum - a), maxAddend)) # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
|
||||||
c = a + b
|
|
||||||
problem = str(a) + "+" + str(b) + "="
|
|
||||||
solution = str(c)
|
|
||||||
return problem, solution
|
|
||||||
@@ -1,16 +0,0 @@
|
|||||||
from .euclidianNormFunc import euclidianNormFunc
|
|
||||||
import math
|
|
||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def angleBtwVectorsFunc(v1: list, v2: list):
|
|
||||||
sum = 0
|
|
||||||
for i in v1:
|
|
||||||
for j in v2:
|
|
||||||
sum += i * j
|
|
||||||
|
|
||||||
mags = euclidianNormFunc(v1) * euclidianNormFunc(v2)
|
|
||||||
problem = f"angle between the vectors {v1} and {v2} is:"
|
|
||||||
solution = math.acos(sum / mags)
|
|
||||||
# would return the answer in radians
|
|
||||||
return problem, solution
|
|
||||||
28
mathgenerator/funcs/angle_btw_vectors.py
Normal file
28
mathgenerator/funcs/angle_btw_vectors.py
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def angleBtwVectorsFunc(maxEltAmt=20):
|
||||||
|
s = 0
|
||||||
|
v1 = [random.uniform(0, 1000) for i in range(random.randint(2, maxEltAmt))]
|
||||||
|
v2 = [random.uniform(0, 1000) for i in v1]
|
||||||
|
for i in v1:
|
||||||
|
for j in v2:
|
||||||
|
s += i * j
|
||||||
|
|
||||||
|
mags = math.sqrt(sum([i**2 for i in v1])) * math.sqrt(sum([i**2 for i in v2]))
|
||||||
|
problem = f"angle between the vectors {v1} and {v2} is:"
|
||||||
|
solution = ''
|
||||||
|
try:
|
||||||
|
solution = str(math.acos(s / mags))
|
||||||
|
except ValueError:
|
||||||
|
print('angleBtwVectorsFunc has some issues with math module, line 16')
|
||||||
|
solution = 'NaN'
|
||||||
|
# would return the answer in radians
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
angle_btw_vectors = Generator(
|
||||||
|
"Angle between 2 vectors", 70,
|
||||||
|
"Angle Between 2 vectors V1=[v11, v12, ..., v1n] and V2=[v21, v22, ....., v2n]",
|
||||||
|
"V1.V2 / (euclidNorm(V1)*euclidNorm(V2))", angleBtwVectorsFunc)
|
||||||
@@ -8,3 +8,9 @@ def regularPolygonAngleFunc(minVal=3, maxVal=20):
|
|||||||
exteriorAngle = round((360 / sideNum), 2)
|
exteriorAngle = round((360 / sideNum), 2)
|
||||||
solution = 180 - exteriorAngle
|
solution = 180 - exteriorAngle
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
angle_regular_polygon = Generator(
|
||||||
|
"Angle of a Regular Polygon", 29,
|
||||||
|
"Find the angle of a regular polygon with 6 sides", "120",
|
||||||
|
regularPolygonAngleFunc)
|
||||||
@@ -1,14 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
|
||||||
a = random.randint(1, maxA)
|
|
||||||
b = random.randint(1, maxB)
|
|
||||||
c = random.randint(1, maxC)
|
|
||||||
|
|
||||||
s = (a + b + c) / 2
|
|
||||||
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
|
|
||||||
|
|
||||||
problem = "Area of triangle with side lengths: " + str(a) + " " + str(b) + " " + str(c) + " = "
|
|
||||||
solution = area
|
|
||||||
return problem, solution
|
|
||||||
20
mathgenerator/funcs/area_of_triangle.py
Normal file
20
mathgenerator/funcs/area_of_triangle.py
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
||||||
|
a = random.randint(1, maxA)
|
||||||
|
b = random.randint(1, maxB)
|
||||||
|
c = random.randint(1, maxC)
|
||||||
|
|
||||||
|
s = (a + b + c) / 2
|
||||||
|
area = (s * (s - a) * (s - b) * (s - c))**0.5
|
||||||
|
|
||||||
|
problem = "Area of triangle with side lengths: " + \
|
||||||
|
str(a) + " " + str(b) + " " + str(c) + " = "
|
||||||
|
solution = area
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
area_of_triangle = Generator("Area of Triangle", 18,
|
||||||
|
"Area of Triangle with side lengths a, b, c = ",
|
||||||
|
"area", areaOfTriangleFunc)
|
||||||
18
mathgenerator/funcs/arithmetic_progression_sum.py
Normal file
18
mathgenerator/funcs/arithmetic_progression_sum.py
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def arithmeticProgressionSumFunc(maxd=100, maxa=100, maxn=100):
|
||||||
|
d = random.randint(-1 * maxd, maxd)
|
||||||
|
a1 = random.randint(-1 * maxa, maxa)
|
||||||
|
a2 = a1 + d
|
||||||
|
a3 = a2 + d
|
||||||
|
n = random.randint(4, maxn)
|
||||||
|
apString = str(a1) + ', ' + str(a2) + ', ' + str(a3) + ' ... '
|
||||||
|
problem = 'Find the sum of first ' + str(n) + ' terms of the AP series: ' + apString
|
||||||
|
solution = n * ((2 * a1) + ((n - 1) * d)) / 2
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
arithmetic_progression_sum = Generator("AP Sum Calculation", 83,
|
||||||
|
"Find the sum of first n terms of the AP series: a1, a2, a3 ...",
|
||||||
|
"Sum", arithmeticProgressionSumFunc)
|
||||||
18
mathgenerator/funcs/arithmetic_progression_term.py
Normal file
18
mathgenerator/funcs/arithmetic_progression_term.py
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def arithmeticProgressionTermFunc(maxd=100, maxa=100, maxn=100):
|
||||||
|
d = random.randint(-1 * maxd, maxd)
|
||||||
|
a1 = random.randint(-1 * maxa, maxa)
|
||||||
|
a2 = a1 + d
|
||||||
|
a3 = a2 + d
|
||||||
|
n = random.randint(4, maxn)
|
||||||
|
apString = str(a1) + ', ' + str(a2) + ', ' + str(a3) + ' ... '
|
||||||
|
problem = 'Find the term number ' + str(n) + ' of the AP series: ' + apString
|
||||||
|
solution = a1 + ((n - 1) * d)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
arithmetic_progression_term = Generator("AP Term Calculation", 82,
|
||||||
|
"Find the term number n of the AP series: a1, a2, a3 ...",
|
||||||
|
"a-n", arithmeticProgressionTermFunc)
|
||||||
@@ -1,14 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def basicTrigonometryFunc(angles=[0,30,45,60,90],functions=["sin","cos","tan"]): #Handles degrees in quadrant one
|
|
||||||
angle=random.choice(angles)
|
|
||||||
function=random.choice(functions)
|
|
||||||
|
|
||||||
problem=f"What is {function}({angle})?"
|
|
||||||
|
|
||||||
expression='math.'+function+'(math.radians(angle))'
|
|
||||||
result_fraction_map={0.0:"0",0.5:"1/2",0.71:"1/√2",0.87:"√3/2",1.0:"1",0.58:"1/√3",1.73:"√3"}
|
|
||||||
|
|
||||||
solution=result_fraction_map[round(eval(expression),2)] if round(eval(expression),2)<=99999 else "∞" #for handling the ∞ condition
|
|
||||||
return problem,solution
|
|
||||||
@@ -8,7 +8,7 @@ def basicAlgebraFunc(maxVariable=10):
|
|||||||
|
|
||||||
# calculate gcd
|
# calculate gcd
|
||||||
def calculate_gcd(x, y):
|
def calculate_gcd(x, y):
|
||||||
while(y):
|
while (y):
|
||||||
x, y = y, x % y
|
x, y = y, x % y
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@@ -23,3 +23,7 @@ def basicAlgebraFunc(maxVariable=10):
|
|||||||
problem = f"{a}x + {b} = {c}"
|
problem = f"{a}x + {b} = {c}"
|
||||||
solution = x
|
solution = x
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
basic_algebra = Generator("Basic Algebra", 11, "ax + b = c", "d",
|
||||||
|
basicAlgebraFunc)
|
||||||
29
mathgenerator/funcs/basic_trigonometry.py
Normal file
29
mathgenerator/funcs/basic_trigonometry.py
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
# Handles degrees in quadrant one
|
||||||
|
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90],
|
||||||
|
functions=["sin", "cos", "tan"]):
|
||||||
|
angle = random.choice(angles)
|
||||||
|
function = random.choice(functions)
|
||||||
|
|
||||||
|
problem = f"What is {function}({angle})?"
|
||||||
|
|
||||||
|
expression = 'math.' + function + '(math.radians(angle))'
|
||||||
|
result_fraction_map = {
|
||||||
|
0.0: "0",
|
||||||
|
0.5: "1/2",
|
||||||
|
0.71: "1/√2",
|
||||||
|
0.87: "√3/2",
|
||||||
|
1.0: "1",
|
||||||
|
0.58: "1/√3",
|
||||||
|
1.73: "√3"
|
||||||
|
}
|
||||||
|
|
||||||
|
solution = result_fraction_map[round(eval(expression), 2)] if round(
|
||||||
|
eval(expression), 2) <= 99999 else "∞" # for handling the ∞ condition
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
basic_trigonometry = Generator("Trigonometric Values", 57, "What is sin(X)?",
|
||||||
|
"ans", basicTrigonometryFunc)
|
||||||
@@ -1,8 +1,10 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def binary2sComplementFunc(maxDigits=10):
|
def binary2sComplementFunc(maxDigits=10):
|
||||||
digits = random.randint(1, maxDigits)
|
digits = random.randint(1, maxDigits)
|
||||||
question = ''.join([str(random.randint(0, 1)) for i in range(digits)]).lstrip('0')
|
question = ''.join([str(random.randint(0, 1))
|
||||||
|
for i in range(digits)]).lstrip('0')
|
||||||
|
|
||||||
answer = []
|
answer = []
|
||||||
for i in question:
|
for i in question:
|
||||||
@@ -18,9 +20,14 @@ def binary2sComplementFunc(maxDigits=10):
|
|||||||
answer[j] = '0'
|
answer[j] = '0'
|
||||||
j -= 1
|
j -= 1
|
||||||
|
|
||||||
if j == 0 and carry == True:
|
if j == 0 and carry is True:
|
||||||
answer.insert(0, '1')
|
answer.insert(0, '1')
|
||||||
|
|
||||||
problem = "2's complement of " + question + " ="
|
problem = "2's complement of " + question + " ="
|
||||||
solution = ''.join(answer).lstrip('0')
|
solution = ''.join(answer).lstrip('0')
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
binary_2s_complement = Generator("Binary 2's Complement", 73,
|
||||||
|
"2's complement of 11010110 =", "101010",
|
||||||
|
binary2sComplementFunc)
|
||||||
@@ -10,6 +10,10 @@ def binaryComplement1sFunc(maxDigits=10):
|
|||||||
question += temp
|
question += temp
|
||||||
answer += "0" if temp == "1" else "1"
|
answer += "0" if temp == "1" else "1"
|
||||||
|
|
||||||
problem = question+"="
|
problem = question + "="
|
||||||
solution = answer
|
solution = answer
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
binary_complement_1s = Generator("Binary Complement 1s", 4, "1010=", "0101",
|
||||||
|
binaryComplement1sFunc)
|
||||||
16
mathgenerator/funcs/binary_to_decimal.py
Normal file
16
mathgenerator/funcs/binary_to_decimal.py
Normal file
@@ -0,0 +1,16 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def binaryToDecimalFunc(max_dig=10):
|
||||||
|
problem = ''
|
||||||
|
|
||||||
|
for i in range(random.randint(1, max_dig)):
|
||||||
|
temp = str(random.randint(0, 1))
|
||||||
|
problem += temp
|
||||||
|
|
||||||
|
solution = int(problem, 2)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
binary_to_decimal = Generator("Binary to Decimal", 15, "Decimal of a=", "b",
|
||||||
|
binaryToDecimalFunc)
|
||||||
@@ -9,3 +9,7 @@ def binaryToHexFunc(max_dig=10):
|
|||||||
|
|
||||||
solution = hex(int(problem, 2))
|
solution = hex(int(problem, 2))
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
binary_to_hex = Generator("Binary to Hexidecimal", 64, "Hexidecimal of a=", "b",
|
||||||
|
binaryToHexFunc)
|
||||||
13
mathgenerator/funcs/celsius_to_fahrenheit.py
Normal file
13
mathgenerator/funcs/celsius_to_fahrenheit.py
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def celsiustofahrenheitFunc(maxTemp=100):
|
||||||
|
celsius = random.randint(-50, maxTemp)
|
||||||
|
fahrenheit = (celsius * (9 / 5)) + 32
|
||||||
|
problem = "Convert " + str(celsius) + " degrees Celsius to degrees Fahrenheit ="
|
||||||
|
solution = str(fahrenheit)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
celsius_to_fahrenheit = Generator("Celsius To Fahrenheit", 81,
|
||||||
|
"(C +(9/5))+32=", "F", celsiustofahrenheitFunc)
|
||||||
@@ -2,7 +2,6 @@ from .__init__ import *
|
|||||||
|
|
||||||
|
|
||||||
def combinationsFunc(maxlength=20):
|
def combinationsFunc(maxlength=20):
|
||||||
|
|
||||||
def factorial(a):
|
def factorial(a):
|
||||||
d = 1
|
d = 1
|
||||||
for i in range(a):
|
for i in range(a):
|
||||||
@@ -14,6 +13,13 @@ def combinationsFunc(maxlength=20):
|
|||||||
b = random.randint(0, 9)
|
b = random.randint(0, 9)
|
||||||
|
|
||||||
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
|
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
|
||||||
problem = "Number of combinations from {} objects picked {} at a time ".format(a, b)
|
problem = "Number of combinations from {} objects picked {} at a time ".format(
|
||||||
|
a, b)
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
combinations = Generator(
|
||||||
|
"Combinations of Objects", 30,
|
||||||
|
"Combinations available for picking 4 objects at a time from 6 distinct objects =",
|
||||||
|
" 15", combinationsFunc)
|
||||||
@@ -22,3 +22,8 @@ def commonFactorsFunc(maxVal=100):
|
|||||||
problem = f"Common Factors of {a} and {b} = "
|
problem = f"Common Factors of {a} and {b} = "
|
||||||
solution = arr
|
solution = arr
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
common_factors = Generator("Common Factors", 40,
|
||||||
|
"Common Factors of {a} and {b} = ", "[c, d, ...]",
|
||||||
|
commonFactorsFunc)
|
||||||
@@ -15,12 +15,18 @@ def compareFractionsFunc(maxVal=10):
|
|||||||
first = a / b
|
first = a / b
|
||||||
second = c / d
|
second = c / d
|
||||||
|
|
||||||
if(first > second):
|
if (first > second):
|
||||||
solution = ">"
|
solution = ">"
|
||||||
elif(first < second):
|
elif (first < second):
|
||||||
solution = "<"
|
solution = "<"
|
||||||
else:
|
else:
|
||||||
solution = "="
|
solution = "="
|
||||||
|
|
||||||
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
|
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
compare_fractions = Generator(
|
||||||
|
"Compare Fractions", 44,
|
||||||
|
"Which symbol represents the comparison between a/b and c/d?", ">/</=",
|
||||||
|
compareFractionsFunc)
|
||||||
@@ -1,11 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
def compoundInterestFunc(maxPrinciple = 10000, maxRate = 10, maxTime = 10, maxPeriod = ):
|
|
||||||
p = random.randint(100, maxPrinciple)
|
|
||||||
r = random.randint(1, maxRate)
|
|
||||||
t = random.randint(1, maxTime)
|
|
||||||
n = random.randint(1, maxPeriod)
|
|
||||||
A = p * ((1 + (r/(100*n))**(n*t)))
|
|
||||||
problem = "Compound Interest for a principle amount of " + str(p) + " dollars, " + str(r) + "% rate of interest and for a time period of " + str(t) + " compounded monthly is = "
|
|
||||||
solution = round(A, 2)
|
|
||||||
return problem, solution
|
|
||||||
17
mathgenerator/funcs/compound_interest.py
Normal file
17
mathgenerator/funcs/compound_interest.py
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def compoundInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
|
||||||
|
p = random.randint(1000, maxPrinciple)
|
||||||
|
r = random.randint(1, maxRate)
|
||||||
|
n = random.randint(1, maxTime)
|
||||||
|
a = p * (1 + r / 100)**n
|
||||||
|
problem = "Compound interest for a principle amount of " + \
|
||||||
|
str(p) + " dollars, " + str(r) + \
|
||||||
|
"% rate of interest and for a time period of " + str(n) + " year is = "
|
||||||
|
solution = round(a, 2)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
compound_interest = Generator(
|
||||||
|
"Compound Interest", 78, "Compound interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", compoundInterestFunc)
|
||||||
@@ -1,30 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def confidenceIntervalFunc():
|
|
||||||
n=random.randint(20,40)
|
|
||||||
j=random.randint(0,3)
|
|
||||||
|
|
||||||
lst=random.sample(range(200,300),n)
|
|
||||||
lst_per=[80 ,90, 95, 99]
|
|
||||||
lst_t = [1.282, 1.645, 1.960, 2.576]
|
|
||||||
|
|
||||||
mean=0
|
|
||||||
sd=0
|
|
||||||
|
|
||||||
for i in lst:
|
|
||||||
count= i + mean
|
|
||||||
mean=count
|
|
||||||
|
|
||||||
mean = mean/n
|
|
||||||
|
|
||||||
for i in lst:
|
|
||||||
x=(i-mean)**2+sd
|
|
||||||
sd=x
|
|
||||||
|
|
||||||
sd=sd/n
|
|
||||||
standard_error = lst_t[j]*math.sqrt(sd/n)
|
|
||||||
|
|
||||||
problem= 'The confidence interval for sample {} with {}% confidence is'.format([x for x in lst], lst_per[j])
|
|
||||||
solution= '({}, {})'.format(mean+standard_error, mean-standard_error)
|
|
||||||
return problem, solution
|
|
||||||
36
mathgenerator/funcs/confidence_interval.py
Normal file
36
mathgenerator/funcs/confidence_interval.py
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def confidenceIntervalFunc():
|
||||||
|
n = random.randint(20, 40)
|
||||||
|
j = random.randint(0, 3)
|
||||||
|
|
||||||
|
lst = random.sample(range(200, 300), n)
|
||||||
|
lst_per = [80, 90, 95, 99]
|
||||||
|
lst_t = [1.282, 1.645, 1.960, 2.576]
|
||||||
|
|
||||||
|
mean = 0
|
||||||
|
sd = 0
|
||||||
|
|
||||||
|
for i in lst:
|
||||||
|
count = i + mean
|
||||||
|
mean = count
|
||||||
|
|
||||||
|
mean = mean / n
|
||||||
|
|
||||||
|
for i in lst:
|
||||||
|
x = (i - mean)**2 + sd
|
||||||
|
sd = x
|
||||||
|
|
||||||
|
sd = sd / n
|
||||||
|
standard_error = lst_t[j] * math.sqrt(sd / n)
|
||||||
|
|
||||||
|
problem = 'The confidence interval for sample {} with {}% confidence is'.format(
|
||||||
|
[x for x in lst], lst_per[j])
|
||||||
|
solution = '({}, {})'.format(mean + standard_error, mean - standard_error)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
confidence_interval = Generator("Confidence interval For sample S", 54,
|
||||||
|
"With X% confidence", "is (A,B)",
|
||||||
|
confidenceIntervalFunc)
|
||||||
@@ -8,3 +8,7 @@ def cubeRootFunc(minNo=1, maxNo=1000):
|
|||||||
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
|
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
|
||||||
solution = str(round(a, 2))
|
solution = str(round(a, 2))
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
cube_root = Generator("Cube Root", 47, "Cuberoot of a upto 2 decimal places is",
|
||||||
|
"b", cubeRootFunc)
|
||||||
@@ -1,26 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def dataSummaryFunc(number_values=15,minval=5,maxval=50):
|
|
||||||
random_list=[]
|
|
||||||
|
|
||||||
for i in range(number_values):
|
|
||||||
n=random.randint(minval,maxval)
|
|
||||||
random_list.append(n)
|
|
||||||
|
|
||||||
a=sum(random_list)
|
|
||||||
mean=a/number_values
|
|
||||||
|
|
||||||
var=0
|
|
||||||
for i in range(number_values):
|
|
||||||
var+=(random_list[i]-mean)**2
|
|
||||||
|
|
||||||
# we're printing stuff here?
|
|
||||||
print(random_list)
|
|
||||||
print(mean)
|
|
||||||
print(var/number_values)
|
|
||||||
print((var/number_values)**0.5)
|
|
||||||
|
|
||||||
problem="Find the mean,standard deviation and variance for the data"+str(random_list)
|
|
||||||
solution="The Mean is {} , Standard Deviation is {}, Variance is {}".format(mean,var/number_values,(var/number_values)**0.5)
|
|
||||||
return problem,solution
|
|
||||||
29
mathgenerator/funcs/data_summary.py
Normal file
29
mathgenerator/funcs/data_summary.py
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def dataSummaryFunc(number_values=15, minval=5, maxval=50):
|
||||||
|
random_list = []
|
||||||
|
|
||||||
|
for i in range(number_values):
|
||||||
|
n = random.randint(minval, maxval)
|
||||||
|
random_list.append(n)
|
||||||
|
|
||||||
|
a = sum(random_list)
|
||||||
|
mean = a / number_values
|
||||||
|
|
||||||
|
var = 0
|
||||||
|
for i in range(number_values):
|
||||||
|
var += (random_list[i] - mean)**2
|
||||||
|
|
||||||
|
standardDeviation = var / number_values
|
||||||
|
variance = (var / number_values) ** 0.5
|
||||||
|
|
||||||
|
problem = "Find the mean,standard deviation and variance for the data" + \
|
||||||
|
str(random_list)
|
||||||
|
solution = "The Mean is {} , Standard Deviation is {}, Variance is {}".format(
|
||||||
|
mean, standardDeviation, variance)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
data_summary = Generator("Mean,Standard Deviation,Variance", 59, "a,b,c",
|
||||||
|
"Mean:a+b+c/3,Std,Var", dataSummaryFunc)
|
||||||
@@ -9,3 +9,7 @@ def DecimalToBinaryFunc(max_dec=99):
|
|||||||
solution = str(b)
|
solution = str(b)
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
decimal_to_binary = Generator("Decimal to Binary", 14, "Binary of a=", "b",
|
||||||
|
DecimalToBinaryFunc)
|
||||||
@@ -8,3 +8,7 @@ def deciToHexaFunc(max_dec=1000):
|
|||||||
solution = str(b)
|
solution = str(b)
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
decimal_to_hexadeci = Generator("Decimal to Hexadecimal", 79, "Binary of a=",
|
||||||
|
"b", deciToHexaFunc)
|
||||||
12
mathgenerator/funcs/decimal_to_octal.py
Normal file
12
mathgenerator/funcs/decimal_to_octal.py
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def decimalToOctalFunc(maxDecimal=4096):
|
||||||
|
x = random.randint(0, maxDecimal)
|
||||||
|
problem = "The decimal number " + str(x) + " in Octal is: "
|
||||||
|
solution = oct(x)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
decimal_to_octal = Generator("Converts decimal to octal", 84,
|
||||||
|
"What's the octal representation of 98?", "0o142", decimalToOctalFunc)
|
||||||
29
mathgenerator/funcs/decimal_to_roman_numerals.py
Normal file
29
mathgenerator/funcs/decimal_to_roman_numerals.py
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def decimalToRomanNumeralsFunc(maxDecimal=4000):
|
||||||
|
x = random.randint(0, maxDecimal)
|
||||||
|
problem = "The number " + str(x) + " in Roman Numerals is: "
|
||||||
|
roman_dict = {1: "I", 5: "V", 10: "X", 50: "L", 100: "C", 500: "D", 1000: "M"}
|
||||||
|
divisor = 1
|
||||||
|
while x >= divisor:
|
||||||
|
divisor *= 10
|
||||||
|
divisor /= 10
|
||||||
|
solution = ""
|
||||||
|
while x:
|
||||||
|
last_value = int(x / divisor)
|
||||||
|
if last_value <= 3:
|
||||||
|
solution += (roman_dict[divisor] * last_value)
|
||||||
|
elif last_value == 4:
|
||||||
|
solution += (roman_dict[divisor] + roman_dict[divisor * 5])
|
||||||
|
elif 5 <= last_value <= 8:
|
||||||
|
solution += (roman_dict[divisor * 5] + (roman_dict[divisor] * (last_value - 5)))
|
||||||
|
elif last_value == 9:
|
||||||
|
solution += (roman_dict[divisor] + roman_dict[divisor * 10])
|
||||||
|
x = math.floor(x % divisor)
|
||||||
|
divisor /= 10
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
decimal_to_roman_numerals = Generator("Converts decimal to Roman Numerals",
|
||||||
|
85, "Convert 20 into Roman Numerals", "XX", decimalToRomanNumeralsFunc)
|
||||||
27
mathgenerator/funcs/definite_integral.py
Normal file
27
mathgenerator/funcs/definite_integral.py
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
import scipy
|
||||||
|
from scipy.integrate import quad
|
||||||
|
|
||||||
|
|
||||||
|
def definiteIntegralFunc(max_coeff=100):
|
||||||
|
|
||||||
|
def integrand(x, a, b, c):
|
||||||
|
return a * x ** 2 + b * x + c
|
||||||
|
|
||||||
|
a = random.randint(0, max_coeff)
|
||||||
|
b = random.randint(0, max_coeff)
|
||||||
|
c = random.randint(0, max_coeff)
|
||||||
|
|
||||||
|
result = quad(integrand, 0, 1, args=(a, b, c))[0]
|
||||||
|
S = round(result, 4)
|
||||||
|
|
||||||
|
problem = "The definite integral within limits 0 to 1 of the equation " + \
|
||||||
|
str(a) + "x^2 + " + str(b) + "x + " + str(c) + " is = "
|
||||||
|
|
||||||
|
solution = str(S)
|
||||||
|
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
definite_integral = Generator("Definite Integral of Quadratic Equation", 89,
|
||||||
|
"The definite integral within limits 0 to 1 of quadratic equation ax^2+bx+c is = ", "S", definiteIntegralFunc)
|
||||||
17
mathgenerator/funcs/degree_to_rad.py
Normal file
17
mathgenerator/funcs/degree_to_rad.py
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
from numpy import pi
|
||||||
|
|
||||||
|
|
||||||
|
def degreeToRadFunc(max_deg=360):
|
||||||
|
a = random.randint(0, max_deg)
|
||||||
|
b = (pi * a) / 180
|
||||||
|
b = round(b, 2)
|
||||||
|
|
||||||
|
problem = "Angle " + str(a) + " in radians is = "
|
||||||
|
solution = str(b)
|
||||||
|
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
degree_to_rad = Generator("Degrees to Radians", 86,
|
||||||
|
"Angle a in radians is = ", "b", degreeToRadFunc)
|
||||||
@@ -1,12 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
def determinantToMatrix22(maxMatrixVal = 100):
|
|
||||||
a = random.randint(0, maxMatrixVal)
|
|
||||||
b = random.randint(0, maxMatrixVal)
|
|
||||||
c = random.randint(0, maxMatrixVal)
|
|
||||||
d = random.randint(0, maxMatrixVal)
|
|
||||||
|
|
||||||
determinant = a*d - b*c
|
|
||||||
problem = f"Det([[{a}, {b}], [{c}, {d}]]) = "
|
|
||||||
solution = f" {determinant}"
|
|
||||||
return problem, solution
|
|
||||||
32
mathgenerator/funcs/dice_sum_probability.py
Normal file
32
mathgenerator/funcs/dice_sum_probability.py
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def DiceSumProbFunc(maxDice=3):
|
||||||
|
a = random.randint(1, maxDice)
|
||||||
|
b = random.randint(a, 6 * a)
|
||||||
|
|
||||||
|
count = 0
|
||||||
|
for i in [1, 2, 3, 4, 5, 6]:
|
||||||
|
if a == 1:
|
||||||
|
if i == b:
|
||||||
|
count = count + 1
|
||||||
|
elif a == 2:
|
||||||
|
for j in [1, 2, 3, 4, 5, 6]:
|
||||||
|
if i + j == b:
|
||||||
|
count = count + 1
|
||||||
|
elif a == 3:
|
||||||
|
for j in [1, 2, 3, 4, 5, 6]:
|
||||||
|
for k in [1, 2, 3, 4, 5, 6]:
|
||||||
|
if i + j + k == b:
|
||||||
|
count = count + 1
|
||||||
|
|
||||||
|
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(
|
||||||
|
a, b)
|
||||||
|
solution = "{}/{}".format(count, 6**a)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
dice_sum_probability = Generator(
|
||||||
|
"Probability of a certain sum appearing on faces of dice", 52,
|
||||||
|
"If n dices are rolled then probabilty of getting sum of x is =", "z",
|
||||||
|
DiceSumProbFunc)
|
||||||
53
mathgenerator/funcs/differentiation.py
Normal file
53
mathgenerator/funcs/differentiation.py
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def genDifferentiationProblem(diff_lvl):
|
||||||
|
problem = ''
|
||||||
|
|
||||||
|
types = {
|
||||||
|
'Logrithmic': ['ln'],
|
||||||
|
'Trigonometric': ['sin', 'cos', 'tan', 'cot', 'sec'],
|
||||||
|
'Exponentional': ['exp']
|
||||||
|
}
|
||||||
|
|
||||||
|
if diff_lvl == 1:
|
||||||
|
coeff = random.randrange(2, 10)
|
||||||
|
power = random.randint(2, 4)
|
||||||
|
flag = random.random()
|
||||||
|
if flag > 0.5:
|
||||||
|
power *= -1
|
||||||
|
problem += str(coeff) + '*x^' + '(' + str(power) + ')'
|
||||||
|
else:
|
||||||
|
problem += str(coeff) + '*x^' + str(power)
|
||||||
|
if diff_lvl == 2:
|
||||||
|
func_type = random.choices(list(types.keys()), weights=(1, 4, 1))[0]
|
||||||
|
func = random.choice(types[func_type])
|
||||||
|
problem += func + '(x)' + '+' + genDifferentiationProblem(1)
|
||||||
|
if diff_lvl == 3:
|
||||||
|
func_type = random.choices(list(types.keys()), weights=(1, 4, 1))[0]
|
||||||
|
func = random.choice(types[func_type])
|
||||||
|
problem += func + '(' + genDifferentiationProblem(1) + ')'
|
||||||
|
if diff_lvl == 4:
|
||||||
|
operator = random.choice(('/', '*'))
|
||||||
|
problem = '(' + genDifferentiationProblem(2) + ')' + \
|
||||||
|
operator + '(' + genDifferentiationProblem(3) + ')'
|
||||||
|
|
||||||
|
return problem
|
||||||
|
|
||||||
|
|
||||||
|
def differentiationFunc(diff_lvl=2):
|
||||||
|
if diff_lvl < 1 or diff_lvl > 4:
|
||||||
|
print("diff_lvl not supported")
|
||||||
|
return None
|
||||||
|
problem = genDifferentiationProblem(diff_lvl)
|
||||||
|
|
||||||
|
x = sympy.symbols('x')
|
||||||
|
solution = str(sympy.diff(problem.replace('^', '**'), x))
|
||||||
|
solution = solution.replace('**', '^')
|
||||||
|
problem = f"differentiate w.r.t x : d({problem})/dx"
|
||||||
|
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
differentiation = Generator(
|
||||||
|
"Differentiation", 88, "differentiate w.r.t x : d(f(x))/dx", "g(x)", differentiationFunc)
|
||||||
@@ -7,8 +7,13 @@ def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
|
|||||||
point2X = random.randint(minValXY, maxValXY + 1)
|
point2X = random.randint(minValXY, maxValXY + 1)
|
||||||
point2Y = random.randint(minValXY, maxValXY + 1)
|
point2Y = random.randint(minValXY, maxValXY + 1)
|
||||||
|
|
||||||
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
|
distanceSq = (point1X - point2X)**2 + (point1Y - point2Y)**2
|
||||||
|
|
||||||
solution = f"sqrt({distanceSq})"
|
solution = f"sqrt({distanceSq})"
|
||||||
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
|
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
distance_two_points = Generator("Distance between 2 points", 24,
|
||||||
|
"Find the distance between (x1,y1) and (x2,y2)",
|
||||||
|
"sqrt(distanceSquared)", distanceTwoPointsFunc)
|
||||||
@@ -14,7 +14,7 @@ def divideFractionsFunc(maxVal=10):
|
|||||||
d = random.randint(1, maxVal)
|
d = random.randint(1, maxVal)
|
||||||
|
|
||||||
def calculate_gcd(x, y):
|
def calculate_gcd(x, y):
|
||||||
while(y):
|
while (y):
|
||||||
x, y = y, x % y
|
x, y = y, x % y
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@@ -30,3 +30,7 @@ def divideFractionsFunc(maxVal=10):
|
|||||||
problem = f"({a}/{b})/({c}/{d})"
|
problem = f"({a}/{b})/({c}/{d})"
|
||||||
solution = x
|
solution = x
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
divide_fractions = Generator("Fraction Division", 16, "(a/b)/(c/d)=", "x/y",
|
||||||
|
divideFractionsFunc)
|
||||||
@@ -9,3 +9,6 @@ def divisionFunc(maxRes=99, maxDivid=99):
|
|||||||
problem = str(a) + "/" + str(b) + "="
|
problem = str(a) + "/" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
division = Generator("Division", 3, "a/b=", "c", divisionFunc)
|
||||||
@@ -1,7 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def euclidianNormFunc(v1: list):
|
|
||||||
problem = f"Euclidian norm or L2 norm of the vector{v1} is:"
|
|
||||||
solution = sqrt(sum([i**2 for i in v1]))
|
|
||||||
return problem, solution
|
|
||||||
13
mathgenerator/funcs/euclidian_norm.py
Normal file
13
mathgenerator/funcs/euclidian_norm.py
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def euclidianNormFunc(maxEltAmt=20):
|
||||||
|
vec = [random.uniform(0, 1000) for i in range(random.randint(2, maxEltAmt))]
|
||||||
|
problem = f"Euclidian norm or L2 norm of the vector{vec} is:"
|
||||||
|
solution = math.sqrt(sum([i**2 for i in vec]))
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
eucldian_norm = Generator("Euclidian norm or L2 norm of a vector", 69,
|
||||||
|
"Euclidian Norm of a vector V:[v1, v2, ......., vn]",
|
||||||
|
"sqrt(v1^2 + v2^2 ........ +vn^2)", euclidianNormFunc)
|
||||||
14
mathgenerator/funcs/exponentiation.py
Normal file
14
mathgenerator/funcs/exponentiation.py
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def exponentiationFunc(maxBase=20, maxExpo=10):
|
||||||
|
base = random.randint(1, maxBase)
|
||||||
|
expo = random.randint(1, maxExpo)
|
||||||
|
|
||||||
|
problem = f"{base}^{expo} ="
|
||||||
|
solution = str(base**expo)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
exponentiation = Generator("Exponentiation", 53, "a^b = ", "c",
|
||||||
|
exponentiationFunc)
|
||||||
@@ -1,10 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def exponentiationFunc(maxBase = 20,maxExpo = 10):
|
|
||||||
base = random.randint(1, maxBase)
|
|
||||||
expo = random.randint(1, maxExpo)
|
|
||||||
|
|
||||||
problem = f"{base}^{expo} ="
|
|
||||||
solution = str(base ** expo)
|
|
||||||
return problem, solution
|
|
||||||
@@ -13,3 +13,6 @@ def factorialFunc(maxInput=6):
|
|||||||
n -= 1
|
n -= 1
|
||||||
solution = str(b)
|
solution = str(b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
|
||||||
@@ -27,3 +27,7 @@ def factoringFunc(range_x1=10, range_x2=10):
|
|||||||
x2 = intParser(x2)
|
x2 = intParser(x2)
|
||||||
solution = f"(x{x1})(x{x2})"
|
solution = f"(x{x1})(x{x2})"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
factoring = Generator("Factoring Quadratic", 21, "x^2+(x1+x2)+x1*x2",
|
||||||
|
"(x-x1)(x-x2)", factoringFunc)
|
||||||
@@ -1,21 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def fibonacciSeriesFunc(minNo=1):
|
|
||||||
n = random.randint(minNo,20)
|
|
||||||
|
|
||||||
def createFibList(n):
|
|
||||||
l=[]
|
|
||||||
for i in range(n):
|
|
||||||
if i<2:
|
|
||||||
l.append(i)
|
|
||||||
else:
|
|
||||||
val = l[i-1]+l[i-2]
|
|
||||||
l.append(val)
|
|
||||||
return l
|
|
||||||
|
|
||||||
fibList=createFibList(n)
|
|
||||||
|
|
||||||
problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?"
|
|
||||||
solution = fibList
|
|
||||||
return problem,solution
|
|
||||||
26
mathgenerator/funcs/fibonacci_series.py
Normal file
26
mathgenerator/funcs/fibonacci_series.py
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def fibonacciSeriesFunc(minNo=1):
|
||||||
|
n = random.randint(minNo, 20)
|
||||||
|
|
||||||
|
def createFibList(n):
|
||||||
|
list = []
|
||||||
|
for i in range(n):
|
||||||
|
if i < 2:
|
||||||
|
list.append(i)
|
||||||
|
else:
|
||||||
|
val = list[i - 1] + list[i - 2]
|
||||||
|
list.append(val)
|
||||||
|
return list
|
||||||
|
|
||||||
|
fibList = createFibList(n)
|
||||||
|
|
||||||
|
problem = "The Fibonacci Series of the first " + str(n) + " numbers is ?"
|
||||||
|
solution = fibList
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
fibonacci_series = Generator(
|
||||||
|
"Fibonacci Series", 56, "fibonacci series of first a numbers",
|
||||||
|
"prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc)
|
||||||
@@ -12,3 +12,9 @@ def fourthAngleOfQuadriFunc(maxAngle=180):
|
|||||||
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
|
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
|
||||||
solution = angle4
|
solution = angle4
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
fourth_angle_of_quadrilateral = Generator(
|
||||||
|
"Fourth Angle of Quadrilateral", 49,
|
||||||
|
"Fourth angle of Quadrilateral with angles a,b,c =", "angle4",
|
||||||
|
fourthAngleOfQuadriFunc)
|
||||||
@@ -14,7 +14,7 @@ def multiplyFractionsFunc(maxVal=10):
|
|||||||
d = random.randint(1, maxVal)
|
d = random.randint(1, maxVal)
|
||||||
|
|
||||||
def calculate_gcd(x, y):
|
def calculate_gcd(x, y):
|
||||||
while(y):
|
while (y):
|
||||||
x, y = y, x % y
|
x, y = y, x % y
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@@ -30,3 +30,8 @@ def multiplyFractionsFunc(maxVal=10):
|
|||||||
problem = f"({a}/{b})*({c}/{d})"
|
problem = f"({a}/{b})*({c}/{d})"
|
||||||
solution = x
|
solution = x
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
fraction_multiplication = Generator("Fraction Multiplication", 28,
|
||||||
|
"(a/b)*(c/d)=", "x/y",
|
||||||
|
multiplyFractionsFunc)
|
||||||
@@ -10,3 +10,7 @@ def gcdFunc(maxVal=20):
|
|||||||
problem = f"GCD of {a} and {b} = "
|
problem = f"GCD of {a} and {b} = "
|
||||||
solution = str(x)
|
solution = str(x)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
gcd = Generator("GCD (Greatest Common Denominator)", 10, "GCD of a and b = ",
|
||||||
|
"c", gcdFunc)
|
||||||
@@ -1,15 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
def geomProgrFunc(number_values=6, min_value=2, max_value=12, n_term=7, sum_term=5):
|
|
||||||
r=random.randint(min_value,max_value)
|
|
||||||
a=random.randint(min_value,max_value)
|
|
||||||
n_term=random.randint(number_values,number_values+5)
|
|
||||||
sum_term=random.randint(number_values,number_values+5)
|
|
||||||
GP=[]
|
|
||||||
for i in range(number_values):
|
|
||||||
GP.append(a*(r**i))
|
|
||||||
problem="For the given GP "+str(GP)+" ,Find the value of a,common ratio,"+str(n_term)+"th term value, sum upto "+str(sum_term)+"th term"
|
|
||||||
value_nth_term=a*(r**(n_term-1))
|
|
||||||
sum_till_nth_term=a*((r**sum_term-1)/(r-1))
|
|
||||||
solution="The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(a,r,n_term,value_nth_term,sum_term,sum_till_nth_term)
|
|
||||||
return problem,solution
|
|
||||||
@@ -1,27 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def geometricMeanFunc(maxValue=100, maxNum=4):
|
|
||||||
a=random.randint(1,maxValue)
|
|
||||||
b=random.randint(1,maxValue)
|
|
||||||
c=random.randint(1,maxValue)
|
|
||||||
d=random.randint(1,maxValue)
|
|
||||||
num=random.randint(2,4)
|
|
||||||
if num==2:
|
|
||||||
product=a*b
|
|
||||||
elif num==3:
|
|
||||||
product=a*b*c
|
|
||||||
elif num==4:
|
|
||||||
product=a*b*c*d
|
|
||||||
|
|
||||||
ans=product**(1/num)
|
|
||||||
if num==2:
|
|
||||||
problem=f"Geometric mean of {num} numbers {a} and {b} = "
|
|
||||||
solution = f"({a}*{b})^(1/{num}) = {ans}"
|
|
||||||
elif num==3:
|
|
||||||
problem=f"Geometric mean of {num} numbers {a} , {b} and {c} = "
|
|
||||||
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
|
|
||||||
elif num==4:
|
|
||||||
problem=f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
|
|
||||||
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
|
|
||||||
return problem,solution
|
|
||||||
32
mathgenerator/funcs/geometric_mean.py
Normal file
32
mathgenerator/funcs/geometric_mean.py
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def geometricMeanFunc(maxValue=100, maxNum=4):
|
||||||
|
a = random.randint(1, maxValue)
|
||||||
|
b = random.randint(1, maxValue)
|
||||||
|
c = random.randint(1, maxValue)
|
||||||
|
d = random.randint(1, maxValue)
|
||||||
|
num = random.randint(2, 4)
|
||||||
|
if num == 2:
|
||||||
|
product = a * b
|
||||||
|
elif num == 3:
|
||||||
|
product = a * b * c
|
||||||
|
elif num == 4:
|
||||||
|
product = a * b * c * d
|
||||||
|
|
||||||
|
ans = product**(1 / num)
|
||||||
|
if num == 2:
|
||||||
|
problem = f"Geometric mean of {num} numbers {a} and {b} = "
|
||||||
|
solution = f"({a}*{b})^(1/{num}) = {ans}"
|
||||||
|
elif num == 3:
|
||||||
|
problem = f"Geometric mean of {num} numbers {a} , {b} and {c} = "
|
||||||
|
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
|
||||||
|
elif num == 4:
|
||||||
|
problem = f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||||
|
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
geometric_mean = Generator("Geometric Mean of N Numbers", 67,
|
||||||
|
"Geometric mean of n numbers A1 , A2 , ... , An = ",
|
||||||
|
"(A1*A2*...An)^(1/n) = ans", geometricMeanFunc)
|
||||||
29
mathgenerator/funcs/geometric_progression.py
Normal file
29
mathgenerator/funcs/geometric_progression.py
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def geomProgrFunc(number_values=6,
|
||||||
|
min_value=2,
|
||||||
|
max_value=12,
|
||||||
|
n_term=7,
|
||||||
|
sum_term=5):
|
||||||
|
r = random.randint(min_value, max_value)
|
||||||
|
a = random.randint(min_value, max_value)
|
||||||
|
n_term = random.randint(number_values, number_values + 5)
|
||||||
|
sum_term = random.randint(number_values, number_values + 5)
|
||||||
|
GP = []
|
||||||
|
for i in range(number_values):
|
||||||
|
GP.append(a * (r**i))
|
||||||
|
problem = "For the given GP " + str(
|
||||||
|
GP) + " ,Find the value of a,common ratio," + str(
|
||||||
|
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
|
||||||
|
value_nth_term = a * (r**(n_term - 1))
|
||||||
|
sum_till_nth_term = a * ((r**sum_term - 1) / (r - 1))
|
||||||
|
solution = "The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(
|
||||||
|
a, r, n_term, value_nth_term, sum_term, sum_till_nth_term)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
geometric_progression = Generator(
|
||||||
|
"Geometric Progression", 66,
|
||||||
|
"Initial value,Common Ratio,nth Term,Sum till nth term =",
|
||||||
|
"a,r,ar^n-1,sum(ar^n-1", geomProgrFunc)
|
||||||
@@ -1,28 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def harmonicMeanFunc(maxValue=100, maxNum=4):
|
|
||||||
|
|
||||||
a=random.randint(1,maxValue)
|
|
||||||
b=random.randint(1,maxValue)
|
|
||||||
c=random.randint(1,maxValue)
|
|
||||||
d=random.randint(1,maxValue)
|
|
||||||
num=random.randint(2,4)
|
|
||||||
if num==2:
|
|
||||||
sum=(1/a)+(1/b)
|
|
||||||
elif num==3:
|
|
||||||
sum=(1/a)+(1/b)+(1/c)
|
|
||||||
elif num==4:
|
|
||||||
sum=(1/a)+(1/b)+(1/c)+(1/d)
|
|
||||||
|
|
||||||
ans=num/sum
|
|
||||||
if num==2:
|
|
||||||
problem=f"Harmonic mean of {num} numbers {a} and {b} = "
|
|
||||||
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
|
|
||||||
elif num==3:
|
|
||||||
problem=f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
|
|
||||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
|
|
||||||
elif num==4:
|
|
||||||
problem=f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
|
|
||||||
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
|
|
||||||
return problem,solution
|
|
||||||
34
mathgenerator/funcs/harmonic_mean.py
Normal file
34
mathgenerator/funcs/harmonic_mean.py
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def harmonicMeanFunc(maxValue=100, maxNum=4):
|
||||||
|
|
||||||
|
a = random.randint(1, maxValue)
|
||||||
|
b = random.randint(1, maxValue)
|
||||||
|
c = random.randint(1, maxValue)
|
||||||
|
d = random.randint(1, maxValue)
|
||||||
|
num = random.randint(2, 4)
|
||||||
|
if num == 2:
|
||||||
|
sum = (1 / a) + (1 / b)
|
||||||
|
elif num == 3:
|
||||||
|
sum = (1 / a) + (1 / b) + (1 / c)
|
||||||
|
elif num == 4:
|
||||||
|
sum = (1 / a) + (1 / b) + (1 / c) + (1 / d)
|
||||||
|
|
||||||
|
ans = num / sum
|
||||||
|
if num == 2:
|
||||||
|
problem = f"Harmonic mean of {num} numbers {a} and {b} = "
|
||||||
|
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
|
||||||
|
elif num == 3:
|
||||||
|
problem = f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
|
||||||
|
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
|
||||||
|
elif num == 4:
|
||||||
|
problem = f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
|
||||||
|
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
harmonic_mean = Generator("Harmonic Mean of N Numbers", 68,
|
||||||
|
"Harmonic mean of n numbers A1 , A2 , ... , An = ",
|
||||||
|
" n/((1/A1) + (1/A2) + ... + (1/An)) = ans",
|
||||||
|
harmonicMeanFunc)
|
||||||
@@ -1,11 +1,16 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def hcfFunc(maxVal=20):
|
def hcfFunc(maxVal=20):
|
||||||
a = random.randint(1, maxVal)
|
a = random.randint(1, maxVal)
|
||||||
b = random.randint(1, maxVal)
|
b = random.randint(1, maxVal)
|
||||||
x, y = a, b
|
x, y = a, b
|
||||||
while(y):
|
while (y):
|
||||||
x, y = y, x % y
|
x, y = y, x % y
|
||||||
problem = f"HCF of {a} and {b} = "
|
problem = f"HCF of {a} and {b} = "
|
||||||
solution = str(x)
|
solution = str(x)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
hcf = Generator("HCF (Highest Common Factor)", 51, "HCF of a and b = ", "c",
|
||||||
|
hcfFunc)
|
||||||
@@ -11,3 +11,6 @@ def divisionToIntFunc(maxA=25, maxB=25):
|
|||||||
problem = f"{divisor}/{dividend} = "
|
problem = f"{divisor}/{dividend} = "
|
||||||
solution = int(divisor / dividend)
|
solution = int(divisor / dividend)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
int_division = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)
|
||||||
18
mathgenerator/funcs/int_matrix_22_determinant.py
Normal file
18
mathgenerator/funcs/int_matrix_22_determinant.py
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def determinantToMatrix22(maxMatrixVal=100):
|
||||||
|
a = random.randint(0, maxMatrixVal)
|
||||||
|
b = random.randint(0, maxMatrixVal)
|
||||||
|
c = random.randint(0, maxMatrixVal)
|
||||||
|
d = random.randint(0, maxMatrixVal)
|
||||||
|
|
||||||
|
determinant = a * d - b * c
|
||||||
|
problem = f"Det([[{a}, {b}], [{c}, {d}]]) = "
|
||||||
|
solution = f" {determinant}"
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
int_matrix_22_determinant = Generator("Determinant to 2x2 Matrix", 77,
|
||||||
|
"Det([[a,b],[c,d]]) =", " a * d - b * c",
|
||||||
|
determinantToMatrix22)
|
||||||
@@ -1,10 +1,12 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def intersectionOfTwoLinesFunc(
|
def intersectionOfTwoLinesFunc(minM=-10,
|
||||||
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
|
maxM=10,
|
||||||
):
|
minB=-10,
|
||||||
|
maxB=10,
|
||||||
|
minDenominator=1,
|
||||||
|
maxDenominator=6):
|
||||||
def generateEquationString(m, b):
|
def generateEquationString(m, b):
|
||||||
"""
|
"""
|
||||||
Generates an equation given the slope and intercept.
|
Generates an equation given the slope and intercept.
|
||||||
@@ -33,8 +35,10 @@ def intersectionOfTwoLinesFunc(
|
|||||||
x = f"{x.numerator}/{x.denominator}"
|
x = f"{x.numerator}/{x.denominator}"
|
||||||
return x
|
return x
|
||||||
|
|
||||||
m1 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator))
|
m1 = (random.randint(minM,
|
||||||
m2 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator))
|
maxM), random.randint(minDenominator, maxDenominator))
|
||||||
|
m2 = (random.randint(minM,
|
||||||
|
maxM), random.randint(minDenominator, maxDenominator))
|
||||||
|
|
||||||
b1 = random.randint(minB, maxB)
|
b1 = random.randint(minB, maxB)
|
||||||
b2 = random.randint(minB, maxB)
|
b2 = random.randint(minB, maxB)
|
||||||
@@ -60,3 +64,9 @@ def intersectionOfTwoLinesFunc(
|
|||||||
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
|
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
intersection_of_two_lines = Generator(
|
||||||
|
"Intersection of Two Lines", 41,
|
||||||
|
"Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2",
|
||||||
|
"(x, y)", intersectionOfTwoLinesFunc)
|
||||||
@@ -1,7 +1,10 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
import sympy
|
import sympy
|
||||||
|
|
||||||
def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerElementsInInvertedMatrix=False):
|
|
||||||
|
def matrixInversion(SquareMatrixDimension=3,
|
||||||
|
MaxMatrixElement=99,
|
||||||
|
OnlyIntegerElementsInInvertedMatrix=False):
|
||||||
if OnlyIntegerElementsInInvertedMatrix is True:
|
if OnlyIntegerElementsInInvertedMatrix is True:
|
||||||
isItOk = False
|
isItOk = False
|
||||||
Mat = list()
|
Mat = list()
|
||||||
@@ -15,20 +18,25 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
|||||||
Mat.append(z)
|
Mat.append(z)
|
||||||
MaxAllowedMatrixElement = math.ceil(
|
MaxAllowedMatrixElement = math.ceil(
|
||||||
pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
|
pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
|
||||||
randomlist = random.sample(
|
randomlist = random.sample(range(0, MaxAllowedMatrixElement + 1),
|
||||||
range(0, MaxAllowedMatrixElement + 1), SquareMatrixDimension)
|
SquareMatrixDimension)
|
||||||
|
|
||||||
for i in range(0, SquareMatrixDimension):
|
for i in range(0, SquareMatrixDimension):
|
||||||
if i == SquareMatrixDimension - 1:
|
if i == SquareMatrixDimension - 1:
|
||||||
Mat[0] = [j + (k * randomlist[i])
|
Mat[0] = [
|
||||||
for j, k in zip(Mat[0], Mat[i])]
|
j + (k * randomlist[i])
|
||||||
|
for j, k in zip(Mat[0], Mat[i])
|
||||||
|
]
|
||||||
else:
|
else:
|
||||||
Mat[i + 1] = [j + (k * randomlist[i])
|
Mat[i + 1] = [
|
||||||
for j, k in zip(Mat[i + 1], Mat[i])]
|
j + (k * randomlist[i])
|
||||||
|
for j, k in zip(Mat[i + 1], Mat[i])
|
||||||
|
]
|
||||||
|
|
||||||
for i in range(1, SquareMatrixDimension - 1):
|
for i in range(1, SquareMatrixDimension - 1):
|
||||||
Mat[i] = [sum(i)
|
Mat[i] = [
|
||||||
for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])]
|
sum(i) for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])
|
||||||
|
]
|
||||||
|
|
||||||
isItOk = True
|
isItOk = True
|
||||||
for i in Mat:
|
for i in Mat:
|
||||||
@@ -51,7 +59,8 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
|||||||
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
|
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
|
||||||
plist = random.sample(randomlist, SquareMatrixDimension)
|
plist = random.sample(randomlist, SquareMatrixDimension)
|
||||||
randomlist = random.sample(
|
randomlist = random.sample(
|
||||||
range(0, MaxMatrixElement + 1), SquareMatrixDimension * SquareMatrixDimension)
|
range(0, MaxMatrixElement + 1),
|
||||||
|
SquareMatrixDimension * SquareMatrixDimension)
|
||||||
randomlist = list(set(randomlist) - set(plist))
|
randomlist = list(set(randomlist) - set(plist))
|
||||||
n_list = random.sample(
|
n_list = random.sample(
|
||||||
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))
|
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))
|
||||||
@@ -67,3 +76,7 @@ def matrixInversion(SquareMatrixDimension=3, MaxMatrixElement=99, OnlyIntegerEle
|
|||||||
problem = 'Inverse of Matrix ' + str(Mat) + ' is:'
|
problem = 'Inverse of Matrix ' + str(Mat) + ' is:'
|
||||||
solution = str(sympy.Matrix.inv(Mat))
|
solution = str(sympy.Matrix.inv(Mat))
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
invert_matrix = Generator("Inverse of a Matrix", 74, "Inverse of a matrix A is",
|
||||||
|
"A^(-1)", matrixInversion)
|
||||||
22
mathgenerator/funcs/is_prime.py
Normal file
22
mathgenerator/funcs/is_prime.py
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def isprime(max_a=100):
|
||||||
|
a = random.randint(2, max_a)
|
||||||
|
problem = a
|
||||||
|
if a == 2:
|
||||||
|
solution = True
|
||||||
|
return (problem, solution)
|
||||||
|
if a % 2 == 0:
|
||||||
|
solution = False
|
||||||
|
return (problem, solution)
|
||||||
|
for i in range(3, a // 2 + 1, 2):
|
||||||
|
if a % i == 0:
|
||||||
|
solution = False
|
||||||
|
return (problem, solution)
|
||||||
|
solution = True
|
||||||
|
return (problem, solution)
|
||||||
|
|
||||||
|
|
||||||
|
is_prime = Generator('isprime', 90, 'a any positive integer',
|
||||||
|
'True/False', isprime)
|
||||||
@@ -15,3 +15,7 @@ def lcmFunc(maxVal=20):
|
|||||||
solution = str(d)
|
solution = str(d)
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
lcm = Generator("LCM (Least Common Multiple)", 9, "LCM of a and b = ", "c",
|
||||||
|
lcmFunc)
|
||||||
@@ -9,17 +9,26 @@ def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
|
|||||||
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
||||||
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
||||||
problem = list()
|
problem = list()
|
||||||
solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
solution = ", ".join(
|
||||||
|
["{} = {}".format(vars[i], soln[i]) for i in range(n)])
|
||||||
|
|
||||||
for _ in range(n):
|
for _ in range(n):
|
||||||
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
||||||
res = sum([coeff[i] * soln[i] for i in range(n)])
|
res = sum([coeff[i] * soln[i] for i in range(n)])
|
||||||
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)]
|
prob = [
|
||||||
|
"{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else ""
|
||||||
|
for i in range(n)
|
||||||
|
]
|
||||||
|
|
||||||
while "" in prob:
|
while "" in prob:
|
||||||
prob.remove("")
|
prob.remove("")
|
||||||
prob = " + ".join(prob) + " = " + str(res)
|
prob = " + ".join(prob) + " = " + str(res)
|
||||||
problem.append(prob)
|
problem.append(prob)
|
||||||
|
|
||||||
problem = "\n".join(problem)
|
# problem = "\n".join(problem)
|
||||||
|
problem = ", ".join(problem)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
linear_equations = Generator("Linear Equations", 26, "2x+5y=20 & 3x+6y=12",
|
||||||
|
"x=-20 & y=12", linearEquationsFunc)
|
||||||
@@ -10,3 +10,6 @@ def logFunc(maxBase=3, maxVal=8):
|
|||||||
solution = str(a)
|
solution = str(a)
|
||||||
|
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
|
||||||
@@ -1,10 +1,10 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
def matrixMultiplicationFunc(maxVal=100):
|
def matrixMultiplicationFunc(maxVal=100, max_dim=10):
|
||||||
m = random.randint(2, 10)
|
m = random.randint(2, max_dim)
|
||||||
n = random.randint(2, 10)
|
n = random.randint(2, max_dim)
|
||||||
k = random.randint(2, 10)
|
k = random.randint(2, max_dim)
|
||||||
|
|
||||||
# generate matrices a and b
|
# generate matrices a and b
|
||||||
a = []
|
a = []
|
||||||
@@ -32,10 +32,12 @@ def matrixMultiplicationFunc(maxVal=100):
|
|||||||
temp += a[r][t] * b[t][c]
|
temp += a[r][t] * b[t][c]
|
||||||
res[r].append(temp)
|
res[r].append(temp)
|
||||||
|
|
||||||
problem = f"Multiply \n{a_string}\n and \n\n{b_string}" # consider using a, b instead of a_string, b_string if the problem doesn't look right
|
# consider using a, b instead of a_string, b_string if the problem doesn't look right
|
||||||
|
problem = f"Multiply \n{a_string}\n and \n\n{b_string}"
|
||||||
solution = matrixMultiplicationFuncHelper(res)
|
solution = matrixMultiplicationFuncHelper(res)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
def matrixMultiplicationFuncHelper(inp):
|
def matrixMultiplicationFuncHelper(inp):
|
||||||
m = len(inp)
|
m = len(inp)
|
||||||
n = len(inp[0])
|
n = len(inp[0])
|
||||||
@@ -44,8 +46,13 @@ def matrixMultiplicationFuncHelper(inp):
|
|||||||
for i in range(m):
|
for i in range(m):
|
||||||
for j in range(n):
|
for j in range(n):
|
||||||
string += f"{inp[i][j]: 6d}"
|
string += f"{inp[i][j]: 6d}"
|
||||||
string += ", "if j < n-1 else ""
|
string += ", " if j < n - 1 else ""
|
||||||
string += "]\n [" if i < m-1 else ""
|
string += "]\n [" if i < m - 1 else ""
|
||||||
string += "]]"
|
string += "]]"
|
||||||
|
|
||||||
return string
|
return string
|
||||||
|
|
||||||
|
|
||||||
|
matrix_multiplication = Generator("Multiplication of two matrices", 46,
|
||||||
|
"Multiply two matrices A and B", "C",
|
||||||
|
matrixMultiplicationFunc)
|
||||||
@@ -1,13 +1,19 @@
|
|||||||
from .__init__ import *
|
from .__init__ import *
|
||||||
|
|
||||||
def meanMedianFunc(maxlen = 10):
|
|
||||||
|
def meanMedianFunc(maxlen=10):
|
||||||
randomlist = random.sample(range(1, 99), maxlen)
|
randomlist = random.sample(range(1, 99), maxlen)
|
||||||
total = 0
|
total = 0
|
||||||
for n in randomlist:
|
for n in randomlist:
|
||||||
total = total + n
|
total = total + n
|
||||||
mean = total/10
|
mean = total / 10
|
||||||
problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series"
|
problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series"
|
||||||
randomlist.sort()
|
randomlist.sort()
|
||||||
median = (randomlist[4]+randomlist[5])/2
|
median = (randomlist[4] + randomlist[5]) / 2
|
||||||
solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}"
|
solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
mean_median = Generator("Mean and Median", 76,
|
||||||
|
"Mean and median of given set of numbers",
|
||||||
|
"Mean, Median", meanMedianFunc)
|
||||||
@@ -10,3 +10,8 @@ def MidPointOfTwoPointFunc(maxValue=20):
|
|||||||
problem = f"({x1},{y1}),({x2},{y2})="
|
problem = f"({x1},{y1}),({x2},{y2})="
|
||||||
solution = f"({(x1+x2)/2},{(y1+y2)/2})"
|
solution = f"({(x1+x2)/2},{(y1+y2)/2})"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
midPoint_of_two_points = Generator("Midpoint of the two point", 20,
|
||||||
|
"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)",
|
||||||
|
MidPointOfTwoPointFunc)
|
||||||
@@ -9,3 +9,6 @@ def moduloFunc(maxRes=99, maxModulo=99):
|
|||||||
problem = str(a) + "%" + str(b) + "="
|
problem = str(a) + "%" + str(b) + "="
|
||||||
solution = str(c)
|
solution = str(c)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
modulo_division = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
|
||||||
18
mathgenerator/funcs/multiplication.py
Normal file
18
mathgenerator/funcs/multiplication.py
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def multiplicationFunc(maxRes=99, maxMulti=99):
|
||||||
|
a = random.randint(0, maxMulti)
|
||||||
|
if a == 0:
|
||||||
|
b = random.randint(0, maxRes)
|
||||||
|
else:
|
||||||
|
b = random.randint(0, min(int(maxMulti / a), maxRes))
|
||||||
|
c = a * b
|
||||||
|
|
||||||
|
problem = str(a) + "*" + str(b) + "="
|
||||||
|
solution = str(c)
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
multiplication = Generator("Multiplication", 2, "a*b=", "c",
|
||||||
|
multiplicationFunc)
|
||||||
@@ -1,11 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def multiplicationFunc(maxRes=99, maxMulti=99):
|
|
||||||
a = random.randint(0, maxMulti)
|
|
||||||
b = random.randint(0, min(int(maxMulti / a), maxRes))
|
|
||||||
c = a * b
|
|
||||||
|
|
||||||
problem = str(a) + "*" + str(b) + "="
|
|
||||||
solution = str(c)
|
|
||||||
return problem, solution
|
|
||||||
@@ -1,9 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def multiplyComplexNumbersFunc(minRealImaginaryNum = -20, maxRealImaginaryNum = 20):
|
|
||||||
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
|
||||||
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum), random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
|
||||||
problem = f"{num1} * {num2} = "
|
|
||||||
solution = num1 * num2
|
|
||||||
return problem, solution
|
|
||||||
17
mathgenerator/funcs/multiply_complex_numbers.py
Normal file
17
mathgenerator/funcs/multiply_complex_numbers.py
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20,
|
||||||
|
maxRealImaginaryNum=20):
|
||||||
|
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||||
|
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||||
|
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
|
||||||
|
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
|
||||||
|
problem = f"{num1} * {num2} = "
|
||||||
|
solution = num1 * num2
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
multiply_complex_numbers = Generator("Multiplication of 2 complex numbers", 65,
|
||||||
|
"(x + j) (y + j) = ", "xy + xj + yj -1",
|
||||||
|
multiplyComplexNumbersFunc)
|
||||||
@@ -11,3 +11,9 @@ def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100):
|
|||||||
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
|
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
|
||||||
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
|
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
multiply_int_to_22_matrix = Generator("Integer Multiplication with 2x2 Matrix",
|
||||||
|
17, "k * [[a,b],[c,d]]=",
|
||||||
|
"[[k*a,k*b],[k*c,k*d]]",
|
||||||
|
multiplyIntToMatrix22)
|
||||||
@@ -1,10 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def nthFibonacciNumberFunc(maxN = 100):
|
|
||||||
golden_ratio = (1 + math.sqrt(5))/2
|
|
||||||
n = random.randint(1,maxN)
|
|
||||||
problem = f"What is the {n}th Fibonacci number?"
|
|
||||||
ans = round((math.pow(golden_ratio,n) - math.pow(-golden_ratio,-n))/(math.sqrt(5)))
|
|
||||||
solution = f"{ans}"
|
|
||||||
return problem, solution
|
|
||||||
15
mathgenerator/funcs/nth_fibonacci_number.py
Normal file
15
mathgenerator/funcs/nth_fibonacci_number.py
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def nthFibonacciNumberFunc(maxN=100):
|
||||||
|
golden_ratio = (1 + math.sqrt(5)) / 2
|
||||||
|
n = random.randint(1, maxN)
|
||||||
|
problem = f"What is the {n}th Fibonacci number?"
|
||||||
|
ans = round((math.pow(golden_ratio, n) - math.pow(-golden_ratio, -n)) / (math.sqrt(5)))
|
||||||
|
solution = f"{ans}"
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
nth_fibonacci_number = Generator("nth Fibonacci number", 62,
|
||||||
|
"What is the nth Fibonacci number", "Fn",
|
||||||
|
nthFibonacciNumberFunc)
|
||||||
15
mathgenerator/funcs/percentage.py
Normal file
15
mathgenerator/funcs/percentage.py
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def percentageFunc(maxValue=99, maxpercentage=99):
|
||||||
|
a = random.randint(1, maxpercentage)
|
||||||
|
b = random.randint(1, maxValue)
|
||||||
|
problem = f"What is {a}% of {b}?"
|
||||||
|
percentage = a / 100 * b
|
||||||
|
formatted_float = "{:.2f}".format(percentage)
|
||||||
|
solution = f"Required percentage = {formatted_float}%"
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
percentage = Generator("Percentage of a number", 80, "What is a% of b?",
|
||||||
|
"percentage", percentageFunc)
|
||||||
@@ -6,5 +6,12 @@ def permutationFunc(maxlength=20):
|
|||||||
b = random.randint(0, 9)
|
b = random.randint(0, 9)
|
||||||
|
|
||||||
solution = int(math.factorial(a) / (math.factorial(a - b)))
|
solution = int(math.factorial(a) / (math.factorial(a - b)))
|
||||||
problem = "Number of Permutations from {} objects picked {} at a time = ".format(a, b)
|
problem = "Number of Permutations from {} objects picked {} at a time = ".format(
|
||||||
|
a, b)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
permutation = Generator(
|
||||||
|
"Permutations", 42,
|
||||||
|
"Total permutations of 4 objects at a time from 10 objects is", "5040",
|
||||||
|
permutationFunc)
|
||||||
@@ -16,3 +16,8 @@ def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
|||||||
problem += str(coefficient) + "x^" + str(exponent)
|
problem += str(coefficient) + "x^" + str(exponent)
|
||||||
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
|
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
power_rule_differentiation = Generator("Power Rule Differentiation", 7, "nx^m=",
|
||||||
|
"(n*m)x^(m-1)",
|
||||||
|
powerRuleDifferentiationFunc)
|
||||||
@@ -14,7 +14,12 @@ def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
|||||||
exponent = random.randint(1, maxExp)
|
exponent = random.randint(1, maxExp)
|
||||||
|
|
||||||
problem += str(coefficient) + "x^" + str(exponent)
|
problem += str(coefficient) + "x^" + str(exponent)
|
||||||
solution += "(" + str(coefficient) + "/" + str(exponent) + ")x^" + str(exponent + 1)
|
solution += "(" + str(coefficient) + "/" + \
|
||||||
|
str(exponent) + ")x^" + str(exponent + 1)
|
||||||
|
|
||||||
solution += " + c"
|
solution += " + c"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
power_rule_integration = Generator("Power Rule Integration", 48, "nx^m=",
|
||||||
|
"(n/m)x^(m+1)", powerRuleIntegrationFunc)
|
||||||
@@ -20,3 +20,7 @@ def primeFactorsFunc(minVal=1, maxVal=200):
|
|||||||
problem = f"Find prime factors of {a}"
|
problem = f"Find prime factors of {a}"
|
||||||
solution = f"{factors}"
|
solution = f"{factors}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
prime_factors = Generator("Prime Factorisation", 27, "Prime Factors of a =",
|
||||||
|
"[b, c, d, ...]", primeFactorsFunc)
|
||||||
@@ -1,16 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def profitLossPercentFunc(maxCP = 1000, maxSP = 1000):
|
|
||||||
cP = random.randint(1, maxCP)
|
|
||||||
sP = random.randint(1, maxSP)
|
|
||||||
diff = abs(sP-cP)
|
|
||||||
if (sP-cP >= 0):
|
|
||||||
profitOrLoss = "Profit"
|
|
||||||
else:
|
|
||||||
profitOrLoss = "Loss"
|
|
||||||
percent = diff/cP * 100
|
|
||||||
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
|
|
||||||
solution = percent
|
|
||||||
|
|
||||||
return problem, solution
|
|
||||||
22
mathgenerator/funcs/profit_loss_percent.py
Normal file
22
mathgenerator/funcs/profit_loss_percent.py
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def profitLossPercentFunc(maxCP=1000, maxSP=1000):
|
||||||
|
cP = random.randint(1, maxCP)
|
||||||
|
sP = random.randint(1, maxSP)
|
||||||
|
diff = abs(sP - cP)
|
||||||
|
if (sP - cP >= 0):
|
||||||
|
profitOrLoss = "Profit"
|
||||||
|
else:
|
||||||
|
profitOrLoss = "Loss"
|
||||||
|
percent = diff / cP * 100
|
||||||
|
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
|
||||||
|
solution = percent
|
||||||
|
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
profit_loss_percent = Generator(
|
||||||
|
"Profit or Loss Percent", 63,
|
||||||
|
"Profit/ Loss percent when CP = cp and SP = sp is: ", "percent",
|
||||||
|
profitLossPercentFunc)
|
||||||
@@ -9,3 +9,9 @@ def pythagoreanTheoremFunc(maxLength=20):
|
|||||||
problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = "
|
problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = "
|
||||||
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
|
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
|
||||||
return problem, solution
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
pythagorean_theorem = Generator(
|
||||||
|
"Pythagorean Theorem", 25,
|
||||||
|
"The hypotenuse of a right triangle given the other two lengths a and b = ",
|
||||||
|
"hypotenuse", pythagoreanTheoremFunc)
|
||||||
@@ -1,12 +0,0 @@
|
|||||||
from .__init__ import *
|
|
||||||
|
|
||||||
|
|
||||||
def quadraticEquation(maxVal=100):
|
|
||||||
a = random.randint(1, maxVal)
|
|
||||||
c = random.randint(1, maxVal)
|
|
||||||
b = random.randint(round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
|
|
||||||
|
|
||||||
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
|
||||||
D = math.sqrt(b * b - 4 * a * c)
|
|
||||||
solution = str([round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)])
|
|
||||||
return problem, solution
|
|
||||||
21
mathgenerator/funcs/quadratic_equation.py
Normal file
21
mathgenerator/funcs/quadratic_equation.py
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
from .__init__ import *
|
||||||
|
|
||||||
|
|
||||||
|
def quadraticEquation(maxVal=100):
|
||||||
|
a = random.randint(1, maxVal)
|
||||||
|
c = random.randint(1, maxVal)
|
||||||
|
b = random.randint(
|
||||||
|
round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
|
||||||
|
|
||||||
|
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
||||||
|
D = math.sqrt(b * b - 4 * a * c)
|
||||||
|
solution = str(
|
||||||
|
[round((-b + D) / (2 * a), 2),
|
||||||
|
round((-b - D) / (2 * a), 2)])
|
||||||
|
return problem, solution
|
||||||
|
|
||||||
|
|
||||||
|
quadratic_equation = Generator(
|
||||||
|
"Quadratic Equation", 50,
|
||||||
|
"Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2",
|
||||||
|
quadraticEquation)
|
||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user