Split term and sum to 2 functions

This commit is contained in:
Anshita
2020-10-20 00:16:32 +05:30
101 changed files with 2091 additions and 858 deletions

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def BinaryToDecimalFunc(max_dig=10):
problem = ''
for i in range(random.randint(1, max_dig)):
temp = str(random.randint(0, 1))
problem += temp
solution = int(problem, 2)
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def DecimalToBinaryFunc(max_dec=99):
a = random.randint(1, max_dec)
b = bin(a).replace("0b", "")
problem = "Binary of " + str(a) + "="
solution = str(b)
return problem, solution

View File

@@ -0,0 +1,26 @@
from .__init__ import *
def DiceSumProbFunc(maxDice=3):
a = random.randint(1, maxDice)
b = random.randint(a, 6 * a)
count = 0
for i in [1, 2, 3, 4, 5, 6]:
if a == 1:
if i == b:
count = count + 1
elif a == 2:
for j in [1, 2, 3, 4, 5, 6]:
if i + j == b:
count = count + 1
elif a == 3:
for j in [1, 2, 3, 4, 5, 6]:
for k in [1, 2, 3, 4, 5, 6]:
if i + j + k == b:
count = count + 1
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(
a, b)
solution = "{}/{}".format(count, 6**a)
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def MidPointOfTwoPointFunc(maxValue=20):
x1 = random.randint(-20, maxValue)
y1 = random.randint(-20, maxValue)
x2 = random.randint(-20, maxValue)
y2 = random.randint(-20, maxValue)
problem = f"({x1},{y1}),({x2},{y2})="
solution = f"({(x1+x2)/2},{(y1+y2)/2})"
return problem, solution

View File

@@ -0,0 +1,86 @@
import random
import math
import fractions
from .addition import *
from .subtractionFunc import *
from .multiplicationFunc import *
from .divisionFunc import *
from .binaryComplement1sFunc import *
from .moduloFunc import *
from .squareRootFunc import *
from .powerRuleDifferentiationFunc import *
from .squareFunc import *
from .gcdFunc import *
from .lcmFunc import *
from .basicAlgebraFunc import *
from .logFunc import *
from .divisionToIntFunc import *
from .DecimalToBinaryFunc import *
from .BinaryToDecimalFunc import *
from .divideFractionsFunc import *
from .multiplyIntToMatrix22 import *
from .areaOfTriangleFunc import *
from .isTriangleValidFunc import *
from .MidPointOfTwoPointFunc import *
from .factoringFunc import *
from .thirdAngleOfTriangleFunc import *
from .systemOfEquationsFunc import *
from .distanceTwoPointsFunc import *
from .pythagoreanTheoremFunc import *
from .linearEquationsFunc import *
from .primeFactorsFunc import *
from .multiplyFractionsFunc import *
from .regularPolygonAngleFunc import *
from .combinationsFunc import *
from .factorialFunc import *
from .surfaceAreaCube import *
from .volumeCube import *
from .surfaceAreaCuboid import *
from .volumeCuboid import *
from .surfaceAreaCylinder import *
from .volumeCylinder import *
from .surfaceAreaCone import *
from .volumeCone import *
from .commonFactorsFunc import *
from .intersectionOfTwoLinesFunc import *
from .permutationFunc import *
from .vectorCrossFunc import *
from .compareFractionsFunc import *
from .simpleInterestFunc import *
from .matrixMultiplicationFunc import *
from .cubeRootFunc import *
from .powerRuleIntegrationFunc import *
from .fourthAngleOfQuadriFunc import *
from .quadraticEquation import *
from .hcfFunc import *
from .DiceSumProbFunc import *
from .exponentiationFunc import *
from .confidenceIntervalFunc import *
from .surdsComparisonFunc import *
from .fibonacciSeriesFunc import *
from .basicTrigonometryFunc import *
from .sumOfAnglesOfPolygonFunc import *
from .dataSummaryFunc import *
from .surfaceAreaSphere import *
from .volumeSphereFunc import *
from .nthFibonacciNumberFunc import *
from .profitLossPercentFunc import *
from .binaryToHexFunc import *
from .multiplyComplexNumbersFunc import *
from .geomProgrFunc import *
from .geometricMeanFunc import *
from .harmonicMeanFunc import *
from .euclidianNormFunc import *
from .angleBtwVectorsFunc import *
from .absoluteDifferenceFunc import *
from .vectorDotFunc import *
from .binary2sComplement import *
from .matrixInversion import *
from .sectorAreaFunc import *
from .meanMedianFunc import *
from .determinantToMatrix22 import *
from .compoundInterestFunc import *
from .deciToHexaFunc import *
from .percentageFunc import *
from .celsiustofahrenheit import *

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def absoluteDifferenceFunc(maxA=100, maxB=100):
a = random.randint(-1 * maxA, maxA)
b = random.randint(-1 * maxB, maxB)
absDiff = abs(a - b)
problem = "Absolute difference between numbers " + \
str(a) + " and " + str(b) + " = "
solution = absDiff
return problem, solution

View File

@@ -0,0 +1,15 @@
from .__init__ import *
from ..__init__ import Generator
def additionFunc(maxSum=99, maxAddend=50):
a = random.randint(0, maxAddend)
# The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
b = random.randint(0, min((maxSum - a), maxAddend))
c = a + b
problem = str(a) + "+" + str(b) + "="
solution = str(c)
return problem, solution
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)

View File

@@ -0,0 +1,16 @@
from .euclidianNormFunc import euclidianNormFunc
import math
from .__init__ import *
def angleBtwVectorsFunc(v1: list, v2: list):
sum = 0
for i in v1:
for j in v2:
sum += i * j
mags = euclidianNormFunc(v1) * euclidianNormFunc(v2)
problem = f"angle between the vectors {v1} and {v2} is:"
solution = math.acos(sum / mags)
# would return the answer in radians
return problem, solution

View File

@@ -0,0 +1,15 @@
from .__init__ import *
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
a = random.randint(1, maxA)
b = random.randint(1, maxB)
c = random.randint(1, maxC)
s = (a + b + c) / 2
area = (s * (s - a) * (s - b) * (s - c))**0.5
problem = "Area of triangle with side lengths: " + \
str(a) + " " + str(b) + " " + str(c) + " = "
solution = area
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def arithmeticProgressionSumFunc (maxd = 100, maxa = 100, maxn = 100):
d = random.randint (-1 * maxd, maxd)
a1 = random.randint (-1 * maxa, maxa)
a2 = a1 + d
a3 = a2 + d
n = random.randint (4, maxn)
apString = str(a1) +', ' + str(a2) +', ' + str(a3) + ' ... '
problem = 'Find the sum of first ' + str(n) + ' terms of the AP series: ' + apString
solution = n * ((2*a1) + ((n-1)*d))/2
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def arithmeticProgressionTermFunc (maxd = 100, maxa = 100, maxn = 100):
d = random.randint (-1 * maxd, maxd)
a1 = random.randint (-1 * maxa, maxa)
a2 = a1 + d
a3 = a2 + d
n = random.randint (4, maxn)
apString = str(a1) +', ' + str(a2) +', ' + str(a3) + ' ... '
problem = 'Find the term number ' + str(n) + ' of the AP series: ' + apString
solution = a1 + ((n-1)*d)
return problen, solution

View File

@@ -0,0 +1,25 @@
from .__init__ import *
def basicAlgebraFunc(maxVariable=10):
a = random.randint(1, maxVariable)
b = random.randint(1, maxVariable)
c = random.randint(b, maxVariable)
# calculate gcd
def calculate_gcd(x, y):
while (y):
x, y = y, x % y
return x
i = calculate_gcd((c - b), a)
x = f"{(c - b)//i}/{a//i}"
if (c - b == 0):
x = "0"
elif a == 1 or a == i:
x = f"{c - b}"
problem = f"{a}x + {b} = {c}"
solution = x
return problem, solution

View File

@@ -0,0 +1,25 @@
from .__init__ import *
# Handles degrees in quadrant one
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90],
functions=["sin", "cos", "tan"]):
angle = random.choice(angles)
function = random.choice(functions)
problem = f"What is {function}({angle})?"
expression = 'math.' + function + '(math.radians(angle))'
result_fraction_map = {
0.0: "0",
0.5: "1/2",
0.71: "1/√2",
0.87: "√3/2",
1.0: "1",
0.58: "1/√3",
1.73: "√3"
}
solution = result_fraction_map[round(eval(expression), 2)] if round(
eval(expression), 2) <= 99999 else "" # for handling the ∞ condition
return problem, solution

View File

@@ -0,0 +1,28 @@
from .__init__ import *
def binary2sComplementFunc(maxDigits=10):
digits = random.randint(1, maxDigits)
question = ''.join([str(random.randint(0, 1))
for i in range(digits)]).lstrip('0')
answer = []
for i in question:
answer.append(str(int(not bool(int(i)))))
carry = True
j = len(answer) - 1
while j >= 0:
if answer[j] == '0':
answer[j] = '1'
carry = False
break
answer[j] = '0'
j -= 1
if j == 0 and carry is True:
answer.insert(0, '1')
problem = "2's complement of " + question + " ="
solution = ''.join(answer).lstrip('0')
return problem, solution

View File

@@ -0,0 +1,15 @@
from .__init__ import *
def binaryComplement1sFunc(maxDigits=10):
question = ''
answer = ''
for i in range(random.randint(1, maxDigits)):
temp = str(random.randint(0, 1))
question += temp
answer += "0" if temp == "1" else "1"
problem = question + "="
solution = answer
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def binaryToHexFunc(max_dig=10):
problem = ''
for i in range(random.randint(1, max_dig)):
temp = str(random.randint(0, 1))
problem += temp
solution = hex(int(problem, 2))
return problem, solution

View File

@@ -0,0 +1,14 @@
from .__init__ import *
from ..__init__ import Generator
def celsiustofahrenheitFunc(maxTemp=100):
celsius = random.randint(-50, maxTemp)
fahrenheit = (celsius * (9 / 5)) + 32
problem = "Convert " + str(celsius) + " degrees Celsius to degrees Fahrenheit ="
solution = str(fahrenheit)
return problem, solution
celsiustofahrenheit = Generator("Celsius To Fahrenheit", 81,
"(C +(9/5))+32=", "F", celsiustofahrenheitFunc)

View File

@@ -0,0 +1,19 @@
from .__init__ import *
def combinationsFunc(maxlength=20):
def factorial(a):
d = 1
for i in range(a):
a = (i + 1) * d
d = a
return d
a = random.randint(10, maxlength)
b = random.randint(0, 9)
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
problem = "Number of combinations from {} objects picked {} at a time ".format(
a, b)
return problem, solution

View File

@@ -0,0 +1,24 @@
from .__init__ import *
def commonFactorsFunc(maxVal=100):
a = x = random.randint(1, maxVal)
b = y = random.randint(1, maxVal)
if (x < y):
min = x
else:
min = y
count = 0
arr = []
for i in range(1, min + 1):
if (x % i == 0):
if (y % i == 0):
count = count + 1
arr.append(i)
problem = f"Common Factors of {a} and {b} = "
solution = arr
return problem, solution

View File

@@ -0,0 +1,26 @@
from .__init__ import *
def compareFractionsFunc(maxVal=10):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
c = random.randint(1, maxVal)
d = random.randint(1, maxVal)
while (a == b):
b = random.randint(1, maxVal)
while (c == d):
d = random.randint(1, maxVal)
first = a / b
second = c / d
if (first > second):
solution = ">"
elif (first < second):
solution = "<"
else:
solution = "="
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
return problem, solution

View File

@@ -0,0 +1,18 @@
from .__init__ import *
def compoundInterestFunc(maxPrinciple=10000,
maxRate=10,
maxTime=10,
maxPeriod=10):
p = random.randint(100, maxPrinciple)
r = random.randint(1, maxRate)
t = random.randint(1, maxTime)
n = random.randint(1, maxPeriod)
A = p * ((1 + (r / (100 * n))**(n * t)))
problem = "Compound Interest for a principle amount of " + str(
p) + " dollars, " + str(
r) + "% rate of interest and for a time period of " + str(
t) + " compounded monthly is = "
solution = round(A, 2)
return problem, solution

View File

@@ -0,0 +1,31 @@
from .__init__ import *
def confidenceIntervalFunc():
n = random.randint(20, 40)
j = random.randint(0, 3)
lst = random.sample(range(200, 300), n)
lst_per = [80, 90, 95, 99]
lst_t = [1.282, 1.645, 1.960, 2.576]
mean = 0
sd = 0
for i in lst:
count = i + mean
mean = count
mean = mean / n
for i in lst:
x = (i - mean)**2 + sd
sd = x
sd = sd / n
standard_error = lst_t[j] * math.sqrt(sd / n)
problem = 'The confidence interval for sample {} with {}% confidence is'.format(
[x for x in lst], lst_per[j])
solution = '({}, {})'.format(mean + standard_error, mean - standard_error)
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def cubeRootFunc(minNo=1, maxNo=1000):
b = random.randint(minNo, maxNo)
a = b**(1 / 3)
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
solution = str(round(a, 2))
return problem, solution

View File

@@ -0,0 +1,28 @@
from .__init__ import *
def dataSummaryFunc(number_values=15, minval=5, maxval=50):
random_list = []
for i in range(number_values):
n = random.randint(minval, maxval)
random_list.append(n)
a = sum(random_list)
mean = a / number_values
var = 0
for i in range(number_values):
var += (random_list[i] - mean)**2
# we're printing stuff here?
print(random_list)
print(mean)
print(var / number_values)
print((var / number_values)**0.5)
problem = "Find the mean,standard deviation and variance for the data" + \
str(random_list)
solution = "The Mean is {} , Standard Deviation is {}, Variance is {}".format(
mean, var / number_values, (var / number_values)**0.5)
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def deciToHexaFunc(max_dec=1000):
a = random.randint(0, max_dec)
b = hex(a)
problem = "Binary of " + str(a) + "="
solution = str(b)
return problem, solution

View File

@@ -0,0 +1,13 @@
from .__init__ import *
def determinantToMatrix22(maxMatrixVal=100):
a = random.randint(0, maxMatrixVal)
b = random.randint(0, maxMatrixVal)
c = random.randint(0, maxMatrixVal)
d = random.randint(0, maxMatrixVal)
determinant = a * d - b * c
problem = f"Det([[{a}, {b}], [{c}, {d}]]) = "
solution = f" {determinant}"
return problem, solution

View File

@@ -0,0 +1,14 @@
from .__init__ import *
def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
point1X = random.randint(minValXY, maxValXY + 1)
point1Y = random.randint(minValXY, maxValXY + 1)
point2X = random.randint(minValXY, maxValXY + 1)
point2Y = random.randint(minValXY, maxValXY + 1)
distanceSq = (point1X - point2X)**2 + (point1Y - point2Y)**2
solution = f"sqrt({distanceSq})"
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
return problem, solution

View File

@@ -0,0 +1,32 @@
from .__init__ import *
def divideFractionsFunc(maxVal=10):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
while (a == b):
b = random.randint(1, maxVal)
c = random.randint(1, maxVal)
d = random.randint(1, maxVal)
while (c == d):
d = random.randint(1, maxVal)
def calculate_gcd(x, y):
while (y):
x, y = y, x % y
return x
tmp_n = a * d
tmp_d = b * c
gcd = calculate_gcd(tmp_n, tmp_d)
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
if (tmp_d == 1 or tmp_d == gcd):
x = f"{tmp_n//gcd}"
# for equal numerator and denominators
problem = f"({a}/{b})/({c}/{d})"
solution = x
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def divisionFunc(maxRes=99, maxDivid=99):
a = random.randint(0, maxDivid)
b = random.randint(0, min(maxRes, maxDivid))
c = a / b
problem = str(a) + "/" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,13 @@
from .__init__ import *
def divisionToIntFunc(maxA=25, maxB=25):
a = random.randint(1, maxA)
b = random.randint(1, maxB)
divisor = a * b
dividend = random.choice([a, b])
problem = f"{divisor}/{dividend} = "
solution = int(divisor / dividend)
return problem, solution

View File

@@ -0,0 +1,7 @@
from .__init__ import *
def euclidianNormFunc(v1: list):
problem = f"Euclidian norm or L2 norm of the vector{v1} is:"
solution = sqrt(sum([i**2 for i in v1]))
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def exponentiationFunc(maxBase=20, maxExpo=10):
base = random.randint(1, maxBase)
expo = random.randint(1, maxExpo)
problem = f"{base}^{expo} ="
solution = str(base**expo)
return problem, solution

View File

@@ -0,0 +1,15 @@
from .__init__ import *
def factorialFunc(maxInput=6):
a = random.randint(0, maxInput)
n = a
problem = str(a) + "! = "
b = 1
while a != 1 and n > 0:
b *= n
n -= 1
solution = str(b)
return problem, solution

View File

@@ -0,0 +1,29 @@
from .__init__ import *
def factoringFunc(range_x1=10, range_x2=10):
x1 = random.randint(-range_x1, range_x1)
x2 = random.randint(-range_x2, range_x2)
def intParser(z):
if (z == 0):
return ""
if (z > 0):
return "+" + str(z)
if (z < 0):
return "-" + str(abs(z))
b = intParser(x1 + x2)
c = intParser(x1 * x2)
if b == "+1":
b = "+"
if b == "":
problem = f"x^2{c}"
else:
problem = f"x^2{b}x{c}"
x1 = intParser(x1)
x2 = intParser(x2)
solution = f"(x{x1})(x{x2})"
return problem, solution

View File

@@ -0,0 +1,21 @@
from .__init__ import *
def fibonacciSeriesFunc(minNo=1):
n = random.randint(minNo, 20)
def createFibList(n):
list = []
for i in range(n):
if i < 2:
list.append(i)
else:
val = list[i - 1] + list[i - 2]
list.append(val)
return list
fibList = createFibList(n)
problem = "The Fibonacci Series of the first " + str(n) + " numbers is ?"
solution = fibList
return problem, solution

View File

@@ -0,0 +1,14 @@
from .__init__ import *
def fourthAngleOfQuadriFunc(maxAngle=180):
angle1 = random.randint(1, maxAngle)
angle2 = random.randint(1, 240 - angle1)
angle3 = random.randint(1, 340 - (angle1 + angle2))
sum_ = angle1 + angle2 + angle3
angle4 = 360 - sum_
problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} ="
solution = angle4
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def gcdFunc(maxVal=20):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
x, y = a, b
while y:
x, y = y, x % y
problem = f"GCD of {a} and {b} = "
solution = str(x)
return problem, solution

View File

@@ -0,0 +1,23 @@
from .__init__ import *
def geomProgrFunc(number_values=6,
min_value=2,
max_value=12,
n_term=7,
sum_term=5):
r = random.randint(min_value, max_value)
a = random.randint(min_value, max_value)
n_term = random.randint(number_values, number_values + 5)
sum_term = random.randint(number_values, number_values + 5)
GP = []
for i in range(number_values):
GP.append(a * (r**i))
problem = "For the given GP " + str(
GP) + " ,Find the value of a,common ratio," + str(
n_term) + "th term value, sum upto " + str(sum_term) + "th term"
value_nth_term = a * (r**(n_term - 1))
sum_till_nth_term = a * ((r**sum_term - 1) / (r - 1))
solution = "The value of a is {}, common ratio is {} , {}th term is {} , sum upto {}th term is {}".format(
a, r, n_term, value_nth_term, sum_term, sum_till_nth_term)
return problem, solution

View File

@@ -0,0 +1,27 @@
from .__init__ import *
def geometricMeanFunc(maxValue=100, maxNum=4):
a = random.randint(1, maxValue)
b = random.randint(1, maxValue)
c = random.randint(1, maxValue)
d = random.randint(1, maxValue)
num = random.randint(2, 4)
if num == 2:
product = a * b
elif num == 3:
product = a * b * c
elif num == 4:
product = a * b * c * d
ans = product**(1 / num)
if num == 2:
problem = f"Geometric mean of {num} numbers {a} and {b} = "
solution = f"({a}*{b})^(1/{num}) = {ans}"
elif num == 3:
problem = f"Geometric mean of {num} numbers {a} , {b} and {c} = "
solution = f"({a}*{b}*{c})^(1/{num}) = {ans}"
elif num == 4:
problem = f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = "
solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}"
return problem, solution

View File

@@ -0,0 +1,28 @@
from .__init__ import *
def harmonicMeanFunc(maxValue=100, maxNum=4):
a = random.randint(1, maxValue)
b = random.randint(1, maxValue)
c = random.randint(1, maxValue)
d = random.randint(1, maxValue)
num = random.randint(2, 4)
if num == 2:
sum = (1 / a) + (1 / b)
elif num == 3:
sum = (1 / a) + (1 / b) + (1 / c)
elif num == 4:
sum = (1 / a) + (1 / b) + (1 / c) + (1 / d)
ans = num / sum
if num == 2:
problem = f"Harmonic mean of {num} numbers {a} and {b} = "
solution = f" {num}/((1/{a}) + (1/{b})) = {ans}"
elif num == 3:
problem = f"Harmonic mean of {num} numbers {a} , {b} and {c} = "
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c})) = {ans}"
elif num == 4:
problem = f"Harmonic mean of {num} numbers {a} , {b} , {c} , {d} = "
solution = f" {num}/((1/{a}) + (1/{b}) + (1/{c}) + (1/{d})) = {ans}"
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def hcfFunc(maxVal=20):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
x, y = a, b
while (y):
x, y = y, x % y
problem = f"HCF of {a} and {b} = "
solution = str(x)
return problem, solution

View File

@@ -0,0 +1,66 @@
from .__init__ import *
def intersectionOfTwoLinesFunc(minM=-10,
maxM=10,
minB=-10,
maxB=10,
minDenominator=1,
maxDenominator=6):
def generateEquationString(m, b):
"""
Generates an equation given the slope and intercept.
It handles cases where m is fractional.
It also ensures that we don't have weird signs such as y = mx + -b.
"""
if m[1] == 1:
m = m[0]
else:
m = f"{m[0]}/{m[1]}"
base = f"y = {m}x"
if b > 0:
return f"{base} + {b}"
elif b < 0:
return f"{base} - {b * -1}"
else:
return base
def fractionToString(x):
"""
Converts the given fractions.Fraction into a string.
"""
if x.denominator == 1:
x = x.numerator
else:
x = f"{x.numerator}/{x.denominator}"
return x
m1 = (random.randint(minM,
maxM), random.randint(minDenominator, maxDenominator))
m2 = (random.randint(minM,
maxM), random.randint(minDenominator, maxDenominator))
b1 = random.randint(minB, maxB)
b2 = random.randint(minB, maxB)
equation1 = generateEquationString(m1, b1)
equation2 = generateEquationString(m2, b2)
problem = "Find the point of intersection of the two lines: "
problem += f"{equation1} and {equation2}"
m1 = fractions.Fraction(*m1)
m2 = fractions.Fraction(*m2)
# if m1 == m2 then the slopes are equal
# This can happen if both line are the same
# Or if they are parallel
# In either case there is no intersection
if m1 == m2:
solution = "No Solution"
else:
intersection_x = (b1 - b2) / (m2 - m1)
intersection_y = ((m2 * b1) - (m1 * b2)) / (m2 - m1)
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
return problem, solution

View File

@@ -0,0 +1,20 @@
from .__init__ import *
def isTriangleValidFunc(maxSideLength=50):
sideA = random.randint(1, maxSideLength)
sideB = random.randint(1, maxSideLength)
sideC = random.randint(1, maxSideLength)
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
sides = [sideC, sideA, sideB]
exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (
sides[2] < sideSums[2])
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
if exists:
solution = "Yes"
return problem, solution
solution = "No"
return problem, solution

View File

@@ -0,0 +1,17 @@
from .__init__ import *
def lcmFunc(maxVal=20):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
c = a * b
x, y = a, b
while y:
x, y = y, x % y
d = c // x
problem = f"LCM of {a} and {b} ="
solution = str(d)
return problem, solution

View File

@@ -0,0 +1,29 @@
from .__init__ import *
def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
if n > 10:
print("[!] n cannot be greater than 10")
return None, None
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
soln = [random.randint(-varRange, varRange) for i in range(n)]
problem = list()
solution = ", ".join(
["{} = {}".format(vars[i], soln[i]) for i in range(n)])
for _ in range(n):
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
res = sum([coeff[i] * soln[i] for i in range(n)])
prob = [
"{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else ""
for i in range(n)
]
while "" in prob:
prob.remove("")
prob = " + ".join(prob) + " = " + str(res)
problem.append(prob)
problem = "\n".join(problem)
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def logFunc(maxBase=3, maxVal=8):
a = random.randint(1, maxVal)
b = random.randint(2, maxBase)
c = pow(b, a)
problem = "log" + str(b) + "(" + str(c) + ")"
solution = str(a)
return problem, solution

View File

@@ -0,0 +1,78 @@
from .__init__ import *
import sympy
def matrixInversion(SquareMatrixDimension=3,
MaxMatrixElement=99,
OnlyIntegerElementsInInvertedMatrix=False):
if OnlyIntegerElementsInInvertedMatrix is True:
isItOk = False
Mat = list()
while (isItOk is False):
Mat = list()
for i in range(0, SquareMatrixDimension):
z = list()
for j in range(0, SquareMatrixDimension):
z.append(0)
z[i] = 1
Mat.append(z)
MaxAllowedMatrixElement = math.ceil(
pow(MaxMatrixElement, 1 / (SquareMatrixDimension)))
randomlist = random.sample(range(0, MaxAllowedMatrixElement + 1),
SquareMatrixDimension)
for i in range(0, SquareMatrixDimension):
if i == SquareMatrixDimension - 1:
Mat[0] = [
j + (k * randomlist[i])
for j, k in zip(Mat[0], Mat[i])
]
else:
Mat[i + 1] = [
j + (k * randomlist[i])
for j, k in zip(Mat[i + 1], Mat[i])
]
for i in range(1, SquareMatrixDimension - 1):
Mat[i] = [
sum(i) for i in zip(Mat[SquareMatrixDimension - 1], Mat[i])
]
isItOk = True
for i in Mat:
for j in i:
if j > MaxMatrixElement:
isItOk = False
break
if isItOk is False:
break
random.shuffle(Mat)
Mat = sympy.Matrix(Mat)
Mat = sympy.Matrix.transpose(Mat)
Mat = Mat.tolist()
random.shuffle(Mat)
Mat = sympy.Matrix(Mat)
Mat = sympy.Matrix.transpose(Mat)
else:
randomlist = list(sympy.primerange(0, MaxMatrixElement + 1))
plist = random.sample(randomlist, SquareMatrixDimension)
randomlist = random.sample(
range(0, MaxMatrixElement + 1),
SquareMatrixDimension * SquareMatrixDimension)
randomlist = list(set(randomlist) - set(plist))
n_list = random.sample(
randomlist, SquareMatrixDimension * (SquareMatrixDimension - 1))
Mat = list()
for i in range(0, SquareMatrixDimension):
z = list()
z.append(plist[i])
for j in range(0, SquareMatrixDimension - 1):
z.append(n_list[(i * SquareMatrixDimension) + j - i])
random.shuffle(z)
Mat.append(z)
Mat = sympy.Matrix(Mat)
problem = 'Inverse of Matrix ' + str(Mat) + ' is:'
solution = str(sympy.Matrix.inv(Mat))
return problem, solution

View File

@@ -0,0 +1,53 @@
from .__init__ import *
def matrixMultiplicationFunc(maxVal=100):
m = random.randint(2, 10)
n = random.randint(2, 10)
k = random.randint(2, 10)
# generate matrices a and b
a = []
for r in range(m):
a.append([])
for c in range(n):
a[r].append(random.randint(-maxVal, maxVal))
b = []
for r in range(n):
b.append([])
for c in range(k):
b[r].append(random.randint(-maxVal, maxVal))
res = []
a_string = matrixMultiplicationFuncHelper(a)
b_string = matrixMultiplicationFuncHelper(b)
for r in range(m):
res.append([])
for c in range(k):
temp = 0
for t in range(n):
temp += a[r][t] * b[t][c]
res[r].append(temp)
# consider using a, b instead of a_string, b_string if the problem doesn't look right
problem = f"Multiply \n{a_string}\n and \n\n{b_string}"
solution = matrixMultiplicationFuncHelper(res)
return problem, solution
def matrixMultiplicationFuncHelper(inp):
m = len(inp)
n = len(inp[0])
string = "[["
for i in range(m):
for j in range(n):
string += f"{inp[i][j]: 6d}"
string += ", " if j < n - 1 else ""
string += "]\n [" if i < m - 1 else ""
string += "]]"
return string

View File

@@ -0,0 +1,14 @@
from .__init__ import *
def meanMedianFunc(maxlen=10):
randomlist = random.sample(range(1, 99), maxlen)
total = 0
for n in randomlist:
total = total + n
mean = total / 10
problem = f"Given the series of numbers {randomlist}. find the arithmatic mean and mdian of the series"
randomlist.sort()
median = (randomlist[4] + randomlist[5]) / 2
solution = f"Arithmetic mean of the series is {mean} and Arithmetic median of this series is {median}"
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def moduloFunc(maxRes=99, maxModulo=99):
a = random.randint(0, maxModulo)
b = random.randint(0, min(maxRes, maxModulo))
c = a % b if b != 0 else 0
problem = str(a) + "%" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def multiplicationFunc(maxRes=99, maxMulti=99):
a = random.randint(0, maxMulti)
b = random.randint(0, min(int(maxMulti / a), maxRes))
c = a * b
problem = str(a) + "*" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def multiplyComplexNumbersFunc(minRealImaginaryNum=-20,
maxRealImaginaryNum=20):
num1 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
num2 = complex(random.randint(minRealImaginaryNum, maxRealImaginaryNum),
random.randint(minRealImaginaryNum, maxRealImaginaryNum))
problem = f"{num1} * {num2} = "
solution = num1 * num2
return problem, solution

View File

@@ -0,0 +1,32 @@
from .__init__ import *
def multiplyFractionsFunc(maxVal=10):
a = random.randint(1, maxVal)
b = random.randint(1, maxVal)
c = random.randint(1, maxVal)
d = random.randint(1, maxVal)
while (a == b):
b = random.randint(1, maxVal)
while (c == d):
d = random.randint(1, maxVal)
def calculate_gcd(x, y):
while (y):
x, y = y, x % y
return x
tmp_n = a * c
tmp_d = b * d
gcd = calculate_gcd(tmp_n, tmp_d)
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
if (tmp_d == 1 or tmp_d == gcd):
x = f"{tmp_n//gcd}"
problem = f"({a}/{b})*({c}/{d})"
solution = x
return problem, solution

View File

@@ -0,0 +1,13 @@
from .__init__ import *
def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100):
a = random.randint(0, maxMatrixVal)
b = random.randint(0, maxMatrixVal)
c = random.randint(0, maxMatrixVal)
d = random.randint(0, maxMatrixVal)
constant = random.randint(0, int(maxRes / max(a, b, c, d)))
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def nthFibonacciNumberFunc(maxN=100):
golden_ratio = (1 + math.sqrt(5)) / 2
n = random.randint(1, maxN)
problem = f"What is the {n}th Fibonacci number?"
ans = round((math.pow(golden_ratio, n) - math.pow(-golden_ratio, -n)) / (math.sqrt(5)))
solution = f"{ans}"
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def percentageFunc(maxValue=99, maxpercentage=99):
a = random.randint(1, maxpercentage)
b = random.randint(1, maxValue)
problem = f"What is {a}% of {b}?"
percentage = a / 100 * b
formatted_float = "{:.2f}".format(percentage)
solution = f"Required percentage = {formatted_float}%"
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def permutationFunc(maxlength=20):
a = random.randint(10, maxlength)
b = random.randint(0, 9)
solution = int(math.factorial(a) / (math.factorial(a - b)))
problem = "Number of Permutations from {} objects picked {} at a time = ".format(
a, b)
return problem, solution

View File

@@ -0,0 +1,18 @@
from .__init__ import *
def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5):
numTerms = random.randint(1, maxTerms)
problem = ""
solution = ""
for i in range(numTerms):
if i > 0:
problem += " + "
solution += " + "
coefficient = random.randint(1, maxCoef)
exponent = random.randint(1, maxExp)
problem += str(coefficient) + "x^" + str(exponent)
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
return problem, solution

View File

@@ -0,0 +1,21 @@
from .__init__ import *
def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
numTerms = random.randint(1, maxTerms)
problem = ""
solution = ""
for i in range(numTerms):
if i > 0:
problem += " + "
solution += " + "
coefficient = random.randint(1, maxCoef)
exponent = random.randint(1, maxExp)
problem += str(coefficient) + "x^" + str(exponent)
solution += "(" + str(coefficient) + "/" + \
str(exponent) + ")x^" + str(exponent + 1)
solution += " + c"
return problem, solution

View File

@@ -0,0 +1,22 @@
from .__init__ import *
def primeFactorsFunc(minVal=1, maxVal=200):
a = random.randint(minVal, maxVal)
n = a
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
problem = f"Find prime factors of {a}"
solution = f"{factors}"
return problem, solution

View File

@@ -0,0 +1,16 @@
from .__init__ import *
def profitLossPercentFunc(maxCP=1000, maxSP=1000):
cP = random.randint(1, maxCP)
sP = random.randint(1, maxSP)
diff = abs(sP - cP)
if (sP - cP >= 0):
profitOrLoss = "Profit"
else:
profitOrLoss = "Loss"
percent = diff / cP * 100
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
solution = percent
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def pythagoreanTheoremFunc(maxLength=20):
a = random.randint(1, maxLength)
b = random.randint(1, maxLength)
c = (a**2 + b**2)**0.5
problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = "
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
return problem, solution

View File

@@ -0,0 +1,15 @@
from .__init__ import *
def quadraticEquation(maxVal=100):
a = random.randint(1, maxVal)
c = random.randint(1, maxVal)
b = random.randint(
round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal)))
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
D = math.sqrt(b * b - 4 * a * c)
solution = str(
[round((-b + D) / (2 * a), 2),
round((-b - D) / (2 * a), 2)])
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def regularPolygonAngleFunc(minVal=3, maxVal=20):
sideNum = random.randint(minVal, maxVal)
problem = f"Find the angle of a regular polygon with {sideNum} sides"
exteriorAngle = round((360 / sideNum), 2)
solution = 180 - exteriorAngle
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def sectorAreaFunc(maxRadius=49, maxAngle=359):
Radius = random.randint(1, maxRadius)
Angle = random.randint(1, maxAngle)
problem = f"Given radius, {Radius} and angle, {Angle}. Find the area of the sector."
secArea = float((Angle / 360) * math.pi * Radius * Radius)
formatted_float = "{:.5f}".format(secArea)
solution = f"Area of sector = {formatted_float}"
return problem, solution

View File

@@ -0,0 +1,15 @@
from .__init__ import *
def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
a = random.randint(1000, maxPrinciple)
b = random.randint(1, maxRate)
c = random.randint(1, maxTime)
d = (a * b * c) / 100
problem = "Simple interest for a principle amount of " + str(
a) + " dollars, " + str(
b) + "% rate of interest and for a time period of " + str(
c) + " years is = "
solution = round(d, 2)
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def squareFunc(maxSquareNum=20):
a = random.randint(1, maxSquareNum)
b = a * a
problem = str(a) + "^2" + "="
solution = str(b)
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def squareRootFunc(minNo=1, maxNo=12):
b = random.randint(minNo, maxNo)
a = b * b
problem = "sqrt(" + str(a) + ")="
solution = str(b)
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def subtractionFunc(maxMinuend=99, maxDiff=99):
a = random.randint(0, maxMinuend)
b = random.randint(max(0, (a - maxDiff)), a)
c = a - b
problem = str(a) + "-" + str(b) + "="
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def sumOfAnglesOfPolygonFunc(maxSides=12):
side = random.randint(3, maxSides)
sum = (side - 2) * 180
problem = f"Sum of angles of polygon with {side} sides = "
solution = sum
return problem, solution

View File

@@ -0,0 +1,17 @@
from .__init__ import *
def surdsComparisonFunc(maxValue=100, maxRoot=10):
radicand1, radicand2 = tuple(random.sample(range(1, maxValue), 2))
degree1, degree2 = tuple(random.sample(range(1, maxRoot), 2))
problem = f"Fill in the blanks {radicand1}^(1/{degree1}) _ {radicand2}^(1/{degree2})"
first = math.pow(radicand1, 1 / degree1)
second = math.pow(radicand2, 1 / degree2)
solution = "="
if first > second:
solution = ">"
elif first < second:
solution = "<"
return problem, solution

View File

@@ -0,0 +1,13 @@
from .__init__ import *
def surfaceAreaCone(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius)
slopingHeight = math.sqrt(a**2 + b**2)
problem = f"Surface area of cone with height = {a}{unit} and radius = {b}{unit} is"
ans = int(math.pi * b * slopingHeight + math.pi * b * b)
solution = f"{ans} {unit}^2"
return problem, solution

View File

@@ -0,0 +1,9 @@
from .__init__ import *
def surfaceAreaCube(maxSide=20, unit='m'):
a = random.randint(1, maxSide)
problem = f"Surface area of cube with side = {a}{unit} is"
ans = 6 * a * a
solution = f"{ans} {unit}^2"
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def surfaceAreaCuboid(maxSide=20, unit='m'):
a = random.randint(1, maxSide)
b = random.randint(1, maxSide)
c = random.randint(1, maxSide)
problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
ans = 2 * (a * b + b * c + c * a)
solution = f"{ans} {unit}^2"
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def surfaceAreaCylinder(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius)
problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is"
ans = int(2 * math.pi * a * b + 2 * math.pi * b * b)
solution = f"{ans} {unit}^2"
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def surfaceAreaSphere(maxSide=20, unit='m'):
r = random.randint(1, maxSide)
problem = f"Surface area of Sphere with radius = {r}{unit} is"
ans = 4 * math.pi * r * r
solution = f"{ans} {unit}^2"
return problem, solution

View File

@@ -0,0 +1,47 @@
from .__init__ import *
def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
# Generate solution point first
x = random.randint(-range_x, range_x)
y = random.randint(-range_y, range_y)
# Start from reduced echelon form (coeffs 1)
c1 = [1, 0, x]
c2 = [0, 1, y]
def randNonZero():
return random.choice(
[i for i in range(-coeff_mult_range, coeff_mult_range) if i != 0])
# Add random (non-zero) multiple of equations (rows) to each other
c1_mult = randNonZero()
c2_mult = randNonZero()
new_c1 = [c1[i] + c1_mult * c2[i] for i in range(len(c1))]
new_c2 = [c2[i] + c2_mult * c1[i] for i in range(len(c2))]
# For extra randomness, now add random (non-zero) multiples of original rows
# to themselves
c1_mult = randNonZero()
c2_mult = randNonZero()
new_c1 = [new_c1[i] + c1_mult * c1[i] for i in range(len(c1))]
new_c2 = [new_c2[i] + c2_mult * c2[i] for i in range(len(c2))]
def coeffToFuncString(coeffs):
# lots of edge cases for perfect formatting!
x_sign = '-' if coeffs[0] < 0 else ''
# No redundant 1s
x_coeff = str(abs(coeffs[0])) if abs(coeffs[0]) != 1 else ''
# If x coeff is 0, dont include x
x_str = f'{x_sign}{x_coeff}x' if coeffs[0] != 0 else ''
# if x isn't included and y is positive, dont include operator
op = ' - ' if coeffs[1] < 0 else (' + ' if x_str != '' else '')
# No redundant 1s
y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else ''
# Don't include if 0, unless x is also 0 (probably never happens)
y_str = f'{y_coeff}y' if coeffs[1] != 0 else (
'' if x_str != '' else '0')
return f'{x_str}{op}{y_str} = {coeffs[2]}'
problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}"
solution = f"x = {x}, y = {y}"
return problem, solution
# Add random (non-zero) multiple of equations to each other

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def thirdAngleOfTriangleFunc(maxAngle=89):
angle1 = random.randint(1, maxAngle)
angle2 = random.randint(1, maxAngle)
angle3 = 180 - (angle1 + angle2)
problem = f"Third angle of triangle with angles {angle1} and {angle2} = "
solution = angle3
return problem, solution

View File

@@ -0,0 +1,14 @@
from .__init__ import *
def vectorCrossFunc(minVal=-20, maxVal=20):
a = [random.randint(minVal, maxVal) for i in range(3)]
b = [random.randint(minVal, maxVal) for i in range(3)]
c = [
a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]
]
problem = str(a) + " X " + str(b) + " = "
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def vectorDotFunc(minVal=-20, maxVal=20):
a = [random.randint(minVal, maxVal) for i in range(3)]
b = [random.randint(minVal, maxVal) for i in range(3)]
c = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
problem = str(a) + " . " + str(b) + " = "
solution = str(c)
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def volumeCone(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius)
problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is"
ans = int(math.pi * b * b * a * (1 / 3))
solution = f"{ans} {unit}^3"
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def volumeCube(maxSide=20, unit='m'):
a = random.randint(1, maxSide)
problem = f"Volume of cube with side = {a}{unit} is"
ans = a * a * a
solution = f"{ans} {unit}^3"
return problem, solution

View File

@@ -0,0 +1,12 @@
from .__init__ import *
def volumeCuboid(maxSide=20, unit='m'):
a = random.randint(1, maxSide)
b = random.randint(1, maxSide)
c = random.randint(1, maxSide)
problem = f"Volume of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
ans = a * b * c
solution = f"{ans} {unit}^3"
return problem, solution

View File

@@ -0,0 +1,11 @@
from .__init__ import *
def volumeCylinder(maxRadius=20, maxHeight=50, unit='m'):
a = random.randint(1, maxHeight)
b = random.randint(1, maxRadius)
problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is"
ans = int(math.pi * b * b * a)
solution = f"{ans} {unit}^3"
return problem, solution

View File

@@ -0,0 +1,10 @@
from .__init__ import *
def volumeSphereFunc(maxRadius=100):
r = random.randint(1, maxRadius)
problem = f"Volume of sphere with radius {r} m = "
ans = (4 * math.pi / 3) * r * r * r
solution = f"{ans} m^3"
return problem, solution