import random import math import fractions genList = [] # || Generator class class Generator: def __init__(self, title, id, generalProb, generalSol, func): self.title = title self.id = id self.generalProb = generalProb self.generalSol = generalSol self.func = func genList.append([id, title, self]) def __str__(self): return str(self.id) + " " + self.title + " " + self.generalProb + " " + self.generalSol def __call__(self, **kwargs): return self.func(**kwargs) # || Non-generator Functions def genById(id): generator = genList[id][2] return(generator()) def getGenList(): return(genList) # || Generator Functions def additionFunc(maxSum=99, maxAddend=50): a = random.randint(0, maxAddend) b = random.randint(0, min((maxSum - a), maxAddend)) # The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well c = a + b problem = str(a) + "+" + str(b) + "=" solution = str(c) return problem, solution def subtractionFunc(maxMinuend=99, maxDiff=99): a = random.randint(0, maxMinuend) b = random.randint(max(0, (a - maxDiff)), a) c = a - b problem = str(a) + "-" + str(b) + "=" solution = str(c) return problem, solution def multiplicationFunc(maxRes=99, maxMulti=99): a = random.randint(0, maxMulti) b = random.randint(0, min(int(maxMulti / a), maxRes)) c = a * b problem = str(a) + "*" + str(b) + "=" solution = str(c) return problem, solution def divisionFunc(maxRes=99, maxDivid=99): a = random.randint(0, maxDivid) b = random.randint(0, min(maxRes, maxDivid)) c = a / b problem = str(a) + "/" + str(b) + "=" solution = str(c) return problem, solution def binaryComplement1sFunc(maxDigits=10): question = '' answer = '' for i in range(random.randint(1, maxDigits)): temp = str(random.randint(0, 1)) question += temp answer += "0" if temp == "1" else "1" problem = question solution = answer return problem, solution def moduloFunc(maxRes=99, maxModulo=99): a = random.randint(0, maxModulo) b = random.randint(0, min(maxRes, maxModulo)) c = a % b problem = str(a) + "%" + str(b) + "=" solution = str(c) return problem, solution def squareRootFunc(minNo=1, maxNo=12): b = random.randint(minNo, maxNo) a = b * b problem = "sqrt(" + str(a) + ")=" solution = str(b) return problem, solution def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5): numTerms = random.randint(1, maxTerms) problem = "" solution = "" for i in range(numTerms): if i > 0: problem += " + " solution += " + " coefficient = random.randint(1, maxCoef) exponent = random.randint(1, maxExp) problem += str(coefficient) + "x^" + str(exponent) solution += str(coefficient * exponent) + "x^" + str(exponent - 1) return problem, solution def squareFunc(maxSquareNum=20): a = random.randint(1, maxSquareNum) b = a * a problem = str(a) + "^2" + "=" solution = str(b) return problem, solution def gcdFunc(maxVal=20): a = random.randint(1, maxVal) b = random.randint(1, maxVal) x, y = a, b while(y): x, y = y, x % y problem = f"GCD of {a} and {b} = " solution = str(x) return problem, solution def lcmFunc(maxVal=20): a = random.randint(1, maxVal) b = random.randint(1, maxVal) x, y = a, b c = a * b while(y): x, y = y, x % y d = c // x problem = f"LCM of {a} and {b} = " solution = str(d) return problem, solution def basicAlgebraFunc(maxVariable=10): a = random.randint(1, maxVariable) b = random.randint(1, maxVariable) c = random.randint(b, maxVariable) # calculate gcd def calculate_gcd(x, y): while(y): x, y = y, x % y return x i = calculate_gcd((c - b), a) x = f"{(c - b)//i}/{a//i}" if (c - b == 0): x = "0" elif a == 1 or a == i: x = f"{c - b}" problem = f"{a}x + {b} = {c}" solution = x return problem, solution def logFunc(maxBase=3, maxVal=8): a = random.randint(1, maxVal) b = random.randint(2, maxBase) c = pow(b, a) problem = "log" + str(b) + "(" + str(c) + ")" solution = str(a) return problem, solution def divisionToIntFunc(maxA=25, maxB=25): a = random.randint(1, maxA) b = random.randint(1, maxB) divisor = a * b dividend = random.choice([a, b]) problem = f"{divisor}/{dividend} = " solution = int(divisor / dividend) return problem, solution def DecimalToBinaryFunc(max_dec=99): a = random.randint(1, max_dec) b = bin(a).replace("0b", "") problem = "Binary of " + str(a) + "=" solution = str(b) return problem, solution def BinaryToDecimalFunc(max_dig=10): problem = '' for i in range(random.randint(1, max_dig)): temp = str(random.randint(0, 1)) problem += temp solution = int(problem, 2) return problem, solution def divideFractionsFunc(maxVal=10): a = random.randint(1, maxVal) b = random.randint(1, maxVal) while (a == b): b = random.randint(1, maxVal) c = random.randint(1, maxVal) d = random.randint(1, maxVal) while (c == d): d = random.randint(1, maxVal) def calculate_gcd(x, y): while(y): x, y = y, x % y return x tmp_n = a * d tmp_d = b * c gcd = calculate_gcd(tmp_n, tmp_d) x = f"{tmp_n//gcd}/{tmp_d//gcd}" if (tmp_d == 1 or tmp_d == gcd): x = f"{tmp_n//gcd}" # for equal numerator and denominators problem = f"({a}/{b})/({c}/{d})" solution = x return problem, solution def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100): a = random.randint(0, maxMatrixVal) b = random.randint(0, maxMatrixVal) c = random.randint(0, maxMatrixVal) d = random.randint(0, maxMatrixVal) constant = random.randint(0, int(maxRes / max(a, b, c, d))) problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = " solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]" return problem, solution def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20): a = random.randint(1, maxA) b = random.randint(1, maxB) c = random.randint(1, maxC) s = (a + b + c) / 2 area = (s * (s - a) * (s - b) * (s - c)) ** 0.5 problem = "Area of triangle with side lengths: " + str(a) + " " + str(b) + " " + str(c) + " = " solution = area return problem, solution def isTriangleValidFunc(maxSideLength=50): sideA = random.randint(1, maxSideLength) sideB = random.randint(1, maxSideLength) sideC = random.randint(1, maxSideLength) sideSums = [sideA + sideB, sideB + sideC, sideC + sideA] sides = [sideC, sideA, sideB] exists = True & (sides[0] < sideSums[0]) & (sides[1] < sideSums[1]) & (sides[2] < sideSums[2]) problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?" if exists: solution = "Yes" return problem, solution solution = "No" return problem, solution def MidPointOfTwoPointFunc(maxValue=20): x1 = random.randint(-20, maxValue) y1 = random.randint(-20, maxValue) x2 = random.randint(-20, maxValue) y2 = random.randint(-20, maxValue) problem = f"({x1},{y1}),({x2},{y2})=" solution = f"({(x1+x2)/2},{(y1+y2)/2})" return problem, solution def factoringFunc(range_x1=10, range_x2=10): x1 = random.randint(-range_x1, range_x1) x2 = random.randint(-range_x2, range_x2) def intParser(z): if (z == 0): return "" if (z > 0): return "+" + str(z) if (z < 0): return "-" + str(abs(z)) b = intParser(x1 + x2) c = intParser(x1 * x2) if (b == "+1"): b = "+" if (b == ""): problem = f"x^2{c}" else: problem = f"x^2{b}x{c}" x1 = intParser(x1) x2 = intParser(x2) solution = f"(x{x1})(x{x2})" return problem, solution def thirdAngleOfTriangleFunc(maxAngle=89): angle1 = random.randint(1, maxAngle) angle2 = random.randint(1, maxAngle) angle3 = 180 - (angle1 + angle2) problem = f"Third angle of triangle with angles {angle1} and {angle2} = " solution = angle3 return problem, solution def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10): # Generate solution point first x = random.randint(-range_x, range_x) y = random.randint(-range_y, range_y) # Start from reduced echelon form (coeffs 1) c1 = [1, 0, x] c2 = [0, 1, y] def randNonZero(): return random.choice([i for i in range(-coeff_mult_range, coeff_mult_range) if i != 0]) # Add random (non-zero) multiple of equations (rows) to each other c1_mult = randNonZero() c2_mult = randNonZero() new_c1 = [c1[i] + c1_mult * c2[i] for i in range(len(c1))] new_c2 = [c2[i] + c2_mult * c1[i] for i in range(len(c2))] # For extra randomness, now add random (non-zero) multiples of original rows # to themselves c1_mult = randNonZero() c2_mult = randNonZero() new_c1 = [new_c1[i] + c1_mult * c1[i] for i in range(len(c1))] new_c2 = [new_c2[i] + c2_mult * c2[i] for i in range(len(c2))] def coeffToFuncString(coeffs): # lots of edge cases for perfect formatting! x_sign = '-' if coeffs[0] < 0 else '' # No redundant 1s x_coeff = str(abs(coeffs[0])) if abs(coeffs[0]) != 1 else '' # If x coeff is 0, dont include x x_str = f'{x_sign}{x_coeff}x' if coeffs[0] != 0 else '' # if x isn't included and y is positive, dont include operator op = ' - ' if coeffs[1] < 0 else (' + ' if x_str != '' else '') # No redundant 1s y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else '' # Don't include if 0, unless x is also 0 (probably never happens) y_str = f'{y_coeff}y' if coeffs[1] != 0 else ('' if x_str != '' else '0') return f'{x_str}{op}{y_str} = {coeffs[2]}' problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}" solution = f"x = {x}, y = {y}" return problem, solution # Add random (non-zero) multiple of equations to each other def distanceTwoPointsFunc(maxValXY=20, minValXY=-20): point1X = random.randint(minValXY, maxValXY + 1) point1Y = random.randint(minValXY, maxValXY + 1) point2X = random.randint(minValXY, maxValXY + 1) point2Y = random.randint(minValXY, maxValXY + 1) distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2 solution = f"sqrt({distanceSq})" problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})" return problem, solution def pythagoreanTheoremFunc(maxLength=20): a = random.randint(1, maxLength) b = random.randint(1, maxLength) c = (a**2 + b**2)**0.5 problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = " solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}" return problem, solution def linearEquationsFunc(n=2, varRange=20, coeffRange=20): if n > 10: print("[!] n cannot be greater than 10") return None, None vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n] soln = [random.randint(-varRange, varRange) for i in range(n)] problem = list() solution = ", ".join(["{} = {}".format(vars[i], soln[i]) for i in range(n)]) for _ in range(n): coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)] res = sum([coeff[i] * soln[i] for i in range(n)]) prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)] while "" in prob: prob.remove("") prob = " + ".join(prob) + " = " + str(res) problem.append(prob) problem = "\n".join(problem) return problem, solution def primeFactorsFunc(minVal=1, maxVal=200): a = random.randint(minVal, maxVal) n = a i = 2 factors = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(i) if n > 1: factors.append(n) problem = f"Find prime factors of {a}" solution = f"{factors}" return problem, solution def multiplyFractionsFunc(maxVal=10): a = random.randint(1, maxVal) b = random.randint(1, maxVal) c = random.randint(1, maxVal) d = random.randint(1, maxVal) while (a == b): b = random.randint(1, maxVal) while (c == d): d = random.randint(1, maxVal) def calculate_gcd(x, y): while(y): x, y = y, x % y return x tmp_n = a * c tmp_d = b * d gcd = calculate_gcd(tmp_n, tmp_d) x = f"{tmp_n//gcd}/{tmp_d//gcd}" if (tmp_d == 1 or tmp_d == gcd): x = f"{tmp_n//gcd}" problem = f"({a}/{b})*({c}/{d})" solution = x return problem, solution def regularPolygonAngleFunc(minVal=3, maxVal=20): sideNum = random.randint(minVal, maxVal) problem = f"Find the angle of a regular polygon with {sideNum} sides" exteriorAngle = round((360 / sideNum), 2) solution = 180 - exteriorAngle return problem, solution def combinationsFunc(maxlength=20): def factorial(a): d = 1 for i in range(a): a = (i + 1) * d d = a return d a = random.randint(10, maxlength) b = random.randint(0, 9) solution = int(factorial(a) / (factorial(b) * factorial(a - b))) problem = "Number of combinations from {} objects picked {} at a time ".format(a, b) return problem, solution def factorialFunc(maxInput=6): a = random.randint(0, maxInput) n = a problem = str(a) + "! = " b = 1 if a == 1: solution = str(b) return problem, solution else: while n > 0: b *= n n = n - 1 solution = str(b) return problem, solution def surfaceAreaCube(maxSide=20, unit='m'): a = random.randint(1, maxSide) problem = f"Surface area of cube with side = {a}{unit} is" ans = 6 * a * a solution = f"{ans} {unit}^2" return problem, solution def volumeCube(maxSide=20, unit='m'): a = random.randint(1, maxSide) problem = f"Volume of cube with side = {a}{unit} is" ans = a * a * a solution = f"{ans} {unit}^3" return problem, solution def surfaceAreaCuboid(maxSide=20, unit='m'): a = random.randint(1, maxSide) b = random.randint(1, maxSide) c = random.randint(1, maxSide) problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is" ans = 2 * (a * b + b * c + c * a) solution = f"{ans} {unit}^2" return problem, solution def volumeCuboid(maxSide=20, unit='m'): a = random.randint(1, maxSide) b = random.randint(1, maxSide) c = random.randint(1, maxSide) problem = f"Volume of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is" ans = a * b * c solution = f"{ans} {unit}^3" return problem, solution def surfaceAreaCylinder(maxRadius=20, maxHeight=50, unit='m'): a = random.randint(1, maxHeight) b = random.randint(1, maxRadius) problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is" ans = int(2 * math.pi * a * b + 2 * math.pi * b * b) solution = f"{ans} {unit}^2" return problem, solution def volumeCylinder(maxRadius=20, maxHeight=50, unit='m'): a = random.randint(1, maxHeight) b = random.randint(1, maxRadius) problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is" ans = int(math.pi * b * b * a) solution = f"{ans} {unit}^3" return problem, solution def surfaceAreaCone(maxRadius=20, maxHeight=50, unit='m'): a = random.randint(1, maxHeight) b = random.randint(1, maxRadius) slopingHeight = math.sqrt(a**2 + b**2) problem = f"Surface area of cone with height = {a}{unit} and radius = {b}{unit} is" ans = int(math.pi * b * slopingHeight + math.pi * b * b) solution = f"{ans} {unit}^2" return problem, solution def volumeCone(maxRadius=20, maxHeight=50, unit='m'): a = random.randint(1, maxHeight) b = random.randint(1, maxRadius) problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is" ans = int(math.pi * b * b * a * (1 / 3)) solution = f"{ans} {unit}^3" return problem, solution def commonFactorsFunc(maxVal=100): a = random.randint(1, maxVal) b = random.randint(1, maxVal) x, y = a, b if (x < y): min = x else: min = y count = 0 arr = [] for i in range(1, min + 1): if (x % i == 0): if (y % i == 0): count = count + 1 arr.append(i) problem = f"Common Factors of {a} and {b} = " solution = arr return problem, solution def intersectionOfTwoLinesFunc( minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6 ): def generateEquationString(m, b): """ Generates an equation given the slope and intercept. It handles cases where m is fractional. It also ensures that we don't have weird signs such as y = mx + -b. """ if m[1] == 1: m = m[0] else: m = f"{m[0]}/{m[1]}" base = f"y = {m}x" if b > 0: return f"{base} + {b}" elif b < 0: return f"{base} - {b * -1}" else: return base def fractionToString(x): """ Converts the given fractions.Fraction into a string. """ if x.denominator == 1: x = x.numerator else: x = f"{x.numerator}/{x.denominator}" return x m1 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator)) m2 = (random.randint(minM, maxM), random.randint(minDenominator, maxDenominator)) b1 = random.randint(minB, maxB) b2 = random.randint(minB, maxB) equation1 = generateEquationString(m1, b1) equation2 = generateEquationString(m2, b2) problem = "Find the point of intersection of the two lines: " problem += f"{equation1} and {equation2}" m1 = fractions.Fraction(*m1) m2 = fractions.Fraction(*m2) # if m1 == m2 then the slopes are equal # This can happen if both line are the same # Or if they are parallel # In either case there is no intersection if m1 == m2: solution = "No Solution" else: intersection_x = (b1 - b2) / (m2 - m1) intersection_y = ((m2 * b1) - (m1 * b2)) / (m2 - m1) solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})" return problem, solution def permutationFunc(maxlength=20): a = random.randint(10, maxlength) b = random.randint(0, 9) solution = int(math.factorial(a) / (math.factorial(a - b))) problem = "Number of Permutations from {} objects picked {} at a time = ".format(a, b) return problem, solution def vectorCrossFunc(minVal=-20, maxVal=20): a = [random.randint(minVal, maxVal) for i in range(3)] b = [random.randint(minVal, maxVal) for i in range(3)] c = [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]] return str(a) + " X " + str(b) + " = ", str(c) def compareFractionsFunc(maxVal=10): a = random.randint(1, maxVal) b = random.randint(1, maxVal) c = random.randint(1, maxVal) d = random.randint(1, maxVal) while (a == b): b = random.randint(1, maxVal) while (c == d): d = random.randint(1, maxVal) first = a / b second = c / d if(first > second): solution = ">" elif(first < second): solution = "<" else: solution = "=" problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?" return problem, solution def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10): a = random.randint(1000, maxPrinciple) b = random.randint(1, maxRate) c = random.randint(1, maxTime) d = (a * b * c) / 100 problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(b) + "% rate of interest and for a time period of " + str(c) + " years is = " solution = round(d, 2) return problem, solution def matrixMultiplicationFunc(maxVal=100): m = random.randint(2, 10) n = random.randint(2, 10) k = random.randint(2, 10) # generate matrices a and b a = [] for r in range(m): a.append([]) for c in range(n): a[r].append(random.randint(-maxVal, maxVal)) b = [] for r in range(n): b.append([]) for c in range(k): b[r].append(random.randint(-maxVal, maxVal)) res = [] a_string = matrixMultiplicationFuncHelper(a) b_string = matrixMultiplicationFuncHelper(b) for r in range(m): res.append([]) for c in range(k): temp = 0 for t in range(n): temp += a[r][t] * b[t][c] res[r].append(temp) problem = f"Multiply \n{a_string}\n and \n\n{b_string}" # consider using a, b instead of a_string, b_string if the problem doesn't look right solution = matrixMultiplicationFuncHelper(res) return problem, solution def matrixMultiplicationFuncHelper(inp): m = len(inp) n = len(inp[0]) string = "" for i in range(m): for j in range(n): string += f"{inp[i][j]: 6d}" string += " " string += "\n" return string def cubeRootFunc(minNo=1, maxNo=1000): b = random.randint(minNo, maxNo) a = b**(1 / 3) problem = "cuberoot of " + str(b) + " upto 2 decimal places is:" solution = str(round(a, 2)) return problem, solution def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5): numTerms = random.randint(1, maxTerms) problem = "" solution = "" for i in range(numTerms): if i > 0: problem += " + " solution += " + " coefficient = random.randint(1, maxCoef) exponent = random.randint(1, maxExp) problem += str(coefficient) + "x^" + str(exponent) solution += "(" + str(coefficient) + "/" + str(exponent) + ")x^" + str(exponent + 1) solution = solution + " + c" return problem, solution def fourthAngleOfQuadriFunc(maxAngle=180): angle1 = random.randint(1, maxAngle) angle2 = random.randint(1, 240 - angle1) angle3 = random.randint(1, 340 - (angle1 + angle2)) sum_ = angle1 + angle2 + angle3 angle4 = 360 - sum_ problem = f"Fourth angle of quadrilateral with angles {angle1} , {angle2}, {angle3} =" solution = angle4 return problem, solution def quadraticEquation(maxVal=100): a = random.randint(1, maxVal) c = random.randint(1, maxVal) b = random.randint(round(math.sqrt(4 * a * c)) + 1, round(math.sqrt(4 * maxVal * maxVal))) problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c) D = math.sqrt(b * b - 4 * a * c) solution = str([round((-b + D) / (2 * a), 2), round((-b - D) / (2 * a), 2)]) return problem, solution def hcfFunc(maxVal=20): a = random.randint(1, maxVal) b = random.randint(1, maxVal) x, y = a, b while(y): x, y = y, x % y problem = f"HCF of {a} and {b} = " solution = str(x) return problem, solution def DiceSumProbFunc(maxDice=3): a = random.randint(1,maxDice) b = random.randint(a,6*a) count=0 for i in [1,2,3,4,5,6]: if a==1: if i==b: count=count+1 elif a==2: for j in [1,2,3,4,5,6]: if i+j==b: count=count+1 elif a==3: for j in [1,2,3,4,5,6]: for k in [1,2,3,4,5,6]: if i+j+k==b: count=count+1 problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(a,b) solution="{}/{}".format(count, 6**a) return problem, solution def exponentiationFunc(maxBase = 20,maxExpo = 10): base = random.randint(1, maxBase) expo = random.randint(1, maxExpo) problem = f"{base}^{expo} =" solution = str(base ** expo) return problem, solution def confidenceIntervalFunc(): n=random.randint(20,40) j=random.randint(0,3) lst=random.sample(range(200,300),n) lst_per=[80 ,90, 95, 99] lst_t = [1.282, 1.645, 1.960, 2.576] mean=0 sd=0 for i in lst: count= i + mean mean=count mean = mean/n for i in lst: x=(i-mean)**2+sd sd=x sd=sd/n standard_error = lst_t[j]*math.sqrt(sd/n) problem= 'The confidence interval for sample {} with {}% confidence is'.format([x for x in lst], lst_per[j]) solution= '({}, {})'.format(mean+standard_error, mean-standard_error) return problem, solution def surdsComparisonFunc(maxValue = 100, maxRoot = 10): radicand1,radicand2 = tuple(random.sample(range(1,maxValue),2)) degree1, degree2 = tuple(random.sample(range(1,maxRoot),2)) problem = f"Fill in the blanks {radicand1}^(1/{degree1}) _ {radicand2}^(1/{degree2})" first = math.pow(radicand1, 1/degree1) second = math.pow(radicand2, 1/degree2) solution = "=" if first > second: solution = ">" elif first < second: solution = "<" return problem, solution def fibonacciSeriesFunc(minNo=1): n = random.randint(minNo,20) def createFibList(n): l=[] for i in range(n): if i<2: l.append(i) else: val = l[i-1]+l[i-2] l.append(val) return l fibList=createFibList(n) problem = "The Fibonacci Series of the first "+str(n)+" numbers is ?" solution = fibList return problem,solution def basicTrigonometryFunc(angles=[0,30,45,60,90],functions=["sin","cos","tan"]): #Handles degrees in quadrant one angle=random.choice(angles) function=random.choice(functions) problem=f"What is {function}({angle})?" expression='math.'+function+'(math.radians(angle))' result_fraction_map={0.0:"0",0.5:"1/2",0.71:"1/√2",0.87:"√3/2",1.0:"1",0.58:"1/√3",1.73:"√3"} solution=result_fraction_map[round(eval(expression),2)] if round(eval(expression),2)<=99999 else "∞" #for handling the ∞ condition return problem,solution def sumOfAnglesOfPolygonFunc(maxSides = 12): side = random.randint(3, maxSides) sum = (side - 2) * 180 problem = f"Sum of angles of polygon with {side} sides = " solution = sum return problem, solution def dataSummaryFunc(number_values=15,minval=5,maxval=50): random_list=[] for i in range(number_values): n=random.randint(minval,maxval) random_list.append(n) a=sum(random_list) mean=a/number_values var=0 for i in range(number_values): var+=(random_list[i]-mean)**2 print(random_list) print(mean) print(var/number_values) print((var/number_values)**0.5) problem="Find the mean,standard deviation and variance for the data"+str(random_list) solution="The Mean is {} , Standard Deviation is {}, Variance is {}".format(mean,var/number_values,(var/number_values)**0.5) return problem,solution def surfaceAreaSphere(maxSide = 20, unit = 'm'): r = random.randint(1, maxSide) problem = f"Surface area of Sphere with radius = {r}{unit} is" ans = 4 * math.pi * r * r solution = f"{ans} {unit}^2" return problem, solution def volumeSphereFunc(maxRadius = 100): r=random.randint(1,maxRadius) problem=f"Volume of sphere with radius {r} m = " ans=(4*math.pi/3)*r*r*r solution = f"{ans} m^3" return problem,solution def geometricMeanFunc(maxValue=100, maxNum=4): a=random.randint(1,maxValue) b=random.randint(1,maxValue) c=random.randint(1,maxValue) d=random.randint(1,maxValue) num=random.randint(2,4) if num==2: product=a*b elif num==3: product=a*b*c elif num==4: product=a*b*c*d ans=product**(1/num) if num==2: problem=f"Geometric mean of {num} numbers {a} and {b} = " solution = f"({a}*{b})^(1/{num}) = {ans}" elif num==3: problem=f"Geometric mean of {num} numbers {a} , {b} and {c} = " solution = f"({a}*{b}*{c})^(1/{num}) = {ans}" elif num==4: problem=f"Geometric mean of {num} numbers {a} , {b} , {c} , {d} = " solution = f"({a}*{b}*{c}*{d})^(1/{num}) = {ans}" return problem,solution # || Class Instances # Format is: #