mirror of
https://github.com/DeaDvey/mathgenerator.git
synced 2025-11-28 14:35:23 +01:00
1121 lines
38 KiB
Python
1121 lines
38 KiB
Python
import random
|
|
import math
|
|
import fractions
|
|
|
|
genList = []
|
|
|
|
# || Generator class
|
|
class Generator:
|
|
def __init__(self, title, id, generalProb, generalSol, func):
|
|
self.title = title
|
|
self.id = id
|
|
self.generalProb = generalProb
|
|
self.generalSol = generalSol
|
|
self.func = func
|
|
genList.append([id, title, self])
|
|
|
|
def __str__(self):
|
|
return str(self.id) + " " + self.title + " " + self.generalProb + " " + self.generalSol
|
|
|
|
def __call__(self, **kwargs):
|
|
return self.func(**kwargs)
|
|
|
|
|
|
# || Non-generator Functions
|
|
def genById(id):
|
|
generator = genList[id][2]
|
|
return(generator())
|
|
|
|
|
|
def getGenList():
|
|
return(genList)
|
|
|
|
# || Generator Functions
|
|
|
|
|
|
def additionFunc(maxSum=99, maxAddend=50):
|
|
a = random.randint(0, maxAddend)
|
|
# The highest value of b will be no higher than the maxsum minus the first number and no higher than the maxAddend as well
|
|
b = random.randint(0, min((maxSum - a), maxAddend))
|
|
c = a + b
|
|
problem = str(a) + "+" + str(b) + "="
|
|
solution = str(c)
|
|
return problem, solution
|
|
|
|
|
|
def subtractionFunc(maxMinuend=99, maxDiff=99):
|
|
a = random.randint(0, maxMinuend)
|
|
b = random.randint(max(0, (a - maxDiff)), a)
|
|
c = a - b
|
|
problem = str(a) + "-" + str(b) + "="
|
|
solution = str(c)
|
|
return problem, solution
|
|
|
|
|
|
def multiplicationFunc(maxRes=99, maxMulti=99):
|
|
a = random.randint(0, maxMulti)
|
|
b = random.randint(0, min(int(maxMulti / a), maxRes))
|
|
c = a * b
|
|
problem = str(a) + "*" + str(b) + "="
|
|
solution = str(c)
|
|
return problem, solution
|
|
|
|
|
|
def divisionFunc(maxRes=99, maxDivid=99):
|
|
a = random.randint(0, maxDivid)
|
|
b = random.randint(0, min(maxRes, maxDivid))
|
|
c = a / b
|
|
problem = str(a) + "/" + str(b) + "="
|
|
solution = str(c)
|
|
return problem, solution
|
|
|
|
|
|
def binaryComplement1sFunc(maxDigits=10):
|
|
question = ''
|
|
answer = ''
|
|
for i in range(random.randint(1, maxDigits)):
|
|
temp = str(random.randint(0, 1))
|
|
question += temp
|
|
answer += "0" if temp == "1" else "1"
|
|
|
|
problem = question + "="
|
|
solution = answer
|
|
return problem, solution
|
|
|
|
|
|
def moduloFunc(maxRes=99, maxModulo=99):
|
|
a = random.randint(0, maxModulo)
|
|
b = random.randint(0, min(maxRes, maxModulo))
|
|
c = a % b
|
|
problem = str(a) + "%" + str(b) + "="
|
|
solution = str(c)
|
|
return problem, solution
|
|
|
|
|
|
def squareRootFunc(minNo=1, maxNo=12):
|
|
b = random.randint(minNo, maxNo)
|
|
a = b * b
|
|
problem = "sqrt(" + str(a) + ")="
|
|
solution = str(b)
|
|
return problem, solution
|
|
|
|
|
|
def powerRuleDifferentiationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
|
numTerms = random.randint(1, maxTerms)
|
|
problem = ""
|
|
solution = ""
|
|
for i in range(numTerms):
|
|
if i > 0:
|
|
problem += " + "
|
|
solution += " + "
|
|
coefficient = random.randint(1, maxCoef)
|
|
exponent = random.randint(1, maxExp)
|
|
problem += str(coefficient) + "x^" + str(exponent)
|
|
solution += str(coefficient * exponent) + "x^" + str(exponent - 1)
|
|
return problem, solution
|
|
|
|
|
|
def squareFunc(maxSquareNum=20):
|
|
a = random.randint(1, maxSquareNum)
|
|
b = a * a
|
|
problem = str(a) + "^2" + "="
|
|
solution = str(b)
|
|
return problem, solution
|
|
|
|
|
|
def gcdFunc(maxVal=20):
|
|
a = random.randint(1, maxVal)
|
|
b = random.randint(1, maxVal)
|
|
x, y = a, b
|
|
while(y):
|
|
x, y = y, x % y
|
|
problem = f"GCD of {a} and {b} = "
|
|
solution = str(x)
|
|
return problem, solution
|
|
|
|
|
|
def lcmFunc(maxVal=20):
|
|
a = random.randint(1, maxVal)
|
|
b = random.randint(1, maxVal)
|
|
x, y = a, b
|
|
c = a * b
|
|
while(y):
|
|
x, y = y, x % y
|
|
d = c // x
|
|
problem = f"LCM of {a} and {b} ="
|
|
solution = str(d)
|
|
return problem, solution
|
|
|
|
|
|
def basicAlgebraFunc(maxVariable=10):
|
|
a = random.randint(1, maxVariable)
|
|
b = random.randint(1, maxVariable)
|
|
c = random.randint(b, maxVariable)
|
|
# calculate gcd
|
|
|
|
def calculate_gcd(x, y):
|
|
while(y):
|
|
x, y = y, x % y
|
|
return x
|
|
i = calculate_gcd((c - b), a)
|
|
x = f"{(c - b)//i}/{a//i}"
|
|
if (c - b == 0):
|
|
x = "0"
|
|
elif a == 1 or a == i:
|
|
x = f"{c - b}"
|
|
problem = f"{a}x + {b} = {c}"
|
|
solution = x
|
|
return problem, solution
|
|
|
|
|
|
def logFunc(maxBase=3, maxVal=8):
|
|
a = random.randint(1, maxVal)
|
|
b = random.randint(2, maxBase)
|
|
c = pow(b, a)
|
|
problem = "log" + str(b) + "(" + str(c) + ")"
|
|
solution = str(a)
|
|
return problem, solution
|
|
|
|
|
|
def divisionToIntFunc(maxA=25, maxB=25):
|
|
a = random.randint(1, maxA)
|
|
b = random.randint(1, maxB)
|
|
divisor = a * b
|
|
dividend = random.choice([a, b])
|
|
problem = f"{divisor}/{dividend} = "
|
|
solution = int(divisor / dividend)
|
|
return problem, solution
|
|
|
|
|
|
def DecimalToBinaryFunc(max_dec=99):
|
|
a = random.randint(1, max_dec)
|
|
b = bin(a).replace("0b", "")
|
|
problem = "Binary of " + str(a) + "="
|
|
solution = str(b)
|
|
return problem, solution
|
|
|
|
|
|
def BinaryToDecimalFunc(max_dig=10):
|
|
problem = ''
|
|
for i in range(random.randint(1, max_dig)):
|
|
temp = str(random.randint(0, 1))
|
|
problem += temp
|
|
|
|
solution = int(problem, 2)
|
|
return problem, solution
|
|
|
|
|
|
def divideFractionsFunc(maxVal=10):
|
|
a = random.randint(1, maxVal)
|
|
b = random.randint(1, maxVal)
|
|
while (a == b):
|
|
b = random.randint(1, maxVal)
|
|
c = random.randint(1, maxVal)
|
|
d = random.randint(1, maxVal)
|
|
while (c == d):
|
|
d = random.randint(1, maxVal)
|
|
|
|
def calculate_gcd(x, y):
|
|
while(y):
|
|
x, y = y, x % y
|
|
return x
|
|
tmp_n = a * d
|
|
tmp_d = b * c
|
|
gcd = calculate_gcd(tmp_n, tmp_d)
|
|
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
|
|
if (tmp_d == 1 or tmp_d == gcd):
|
|
x = f"{tmp_n//gcd}"
|
|
# for equal numerator and denominators
|
|
problem = f"({a}/{b})/({c}/{d})"
|
|
solution = x
|
|
return problem, solution
|
|
|
|
|
|
def multiplyIntToMatrix22(maxMatrixVal=10, maxRes=100):
|
|
a = random.randint(0, maxMatrixVal)
|
|
b = random.randint(0, maxMatrixVal)
|
|
c = random.randint(0, maxMatrixVal)
|
|
d = random.randint(0, maxMatrixVal)
|
|
constant = random.randint(0, int(maxRes / max(a, b, c, d)))
|
|
problem = f"{constant} * [[{a}, {b}], [{c}, {d}]] = "
|
|
solution = f"[[{a*constant},{b*constant}],[{c*constant},{d*constant}]]"
|
|
return problem, solution
|
|
|
|
|
|
def areaOfTriangleFunc(maxA=20, maxB=20, maxC=20):
|
|
a = random.randint(1, maxA)
|
|
b = random.randint(1, maxB)
|
|
c = random.randint(1, maxC)
|
|
s = (a + b + c) / 2
|
|
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
|
|
problem = "Area of triangle with side lengths: " + \
|
|
str(a) + " " + str(b) + " " + str(c) + " = "
|
|
solution = area
|
|
return problem, solution
|
|
|
|
|
|
def isTriangleValidFunc(maxSideLength=50):
|
|
sideA = random.randint(1, maxSideLength)
|
|
sideB = random.randint(1, maxSideLength)
|
|
sideC = random.randint(1, maxSideLength)
|
|
sideSums = [sideA + sideB, sideB + sideC, sideC + sideA]
|
|
sides = [sideC, sideA, sideB]
|
|
exists = True & (sides[0] < sideSums[0]) & (
|
|
sides[1] < sideSums[1]) & (sides[2] < sideSums[2])
|
|
problem = f"Does triangle with sides {sideA}, {sideB} and {sideC} exist?"
|
|
if exists:
|
|
solution = "Yes"
|
|
return problem, solution
|
|
solution = "No"
|
|
return problem, solution
|
|
|
|
|
|
def MidPointOfTwoPointFunc(maxValue=20):
|
|
x1 = random.randint(-20, maxValue)
|
|
y1 = random.randint(-20, maxValue)
|
|
x2 = random.randint(-20, maxValue)
|
|
y2 = random.randint(-20, maxValue)
|
|
problem = f"({x1},{y1}),({x2},{y2})="
|
|
solution = f"({(x1+x2)/2},{(y1+y2)/2})"
|
|
return problem, solution
|
|
|
|
|
|
def factoringFunc(range_x1=10, range_x2=10):
|
|
x1 = random.randint(-range_x1, range_x1)
|
|
x2 = random.randint(-range_x2, range_x2)
|
|
|
|
def intParser(z):
|
|
if (z == 0):
|
|
return ""
|
|
if (z > 0):
|
|
return "+" + str(z)
|
|
if (z < 0):
|
|
return "-" + str(abs(z))
|
|
|
|
b = intParser(x1 + x2)
|
|
c = intParser(x1 * x2)
|
|
|
|
if (b == "+1"):
|
|
b = "+"
|
|
|
|
if (b == ""):
|
|
problem = f"x^2{c}"
|
|
else:
|
|
problem = f"x^2{b}x{c}"
|
|
|
|
x1 = intParser(x1)
|
|
x2 = intParser(x2)
|
|
solution = f"(x{x1})(x{x2})"
|
|
return problem, solution
|
|
|
|
|
|
def thirdAngleOfTriangleFunc(maxAngle=89):
|
|
angle1 = random.randint(1, maxAngle)
|
|
angle2 = random.randint(1, maxAngle)
|
|
angle3 = 180 - (angle1 + angle2)
|
|
problem = f"Third angle of triangle with angles {angle1} and {angle2} = "
|
|
solution = angle3
|
|
return problem, solution
|
|
|
|
|
|
def systemOfEquationsFunc(range_x=10, range_y=10, coeff_mult_range=10):
|
|
# Generate solution point first
|
|
x = random.randint(-range_x, range_x)
|
|
y = random.randint(-range_y, range_y)
|
|
# Start from reduced echelon form (coeffs 1)
|
|
c1 = [1, 0, x]
|
|
c2 = [0, 1, y]
|
|
|
|
def randNonZero():
|
|
return random.choice([i for i in range(-coeff_mult_range, coeff_mult_range)
|
|
if i != 0])
|
|
# Add random (non-zero) multiple of equations (rows) to each other
|
|
c1_mult = randNonZero()
|
|
c2_mult = randNonZero()
|
|
new_c1 = [c1[i] + c1_mult * c2[i] for i in range(len(c1))]
|
|
new_c2 = [c2[i] + c2_mult * c1[i] for i in range(len(c2))]
|
|
|
|
# For extra randomness, now add random (non-zero) multiples of original rows
|
|
# to themselves
|
|
c1_mult = randNonZero()
|
|
c2_mult = randNonZero()
|
|
new_c1 = [new_c1[i] + c1_mult * c1[i] for i in range(len(c1))]
|
|
new_c2 = [new_c2[i] + c2_mult * c2[i] for i in range(len(c2))]
|
|
|
|
def coeffToFuncString(coeffs):
|
|
# lots of edge cases for perfect formatting!
|
|
x_sign = '-' if coeffs[0] < 0 else ''
|
|
# No redundant 1s
|
|
x_coeff = str(abs(coeffs[0])) if abs(coeffs[0]) != 1 else ''
|
|
# If x coeff is 0, dont include x
|
|
x_str = f'{x_sign}{x_coeff}x' if coeffs[0] != 0 else ''
|
|
# if x isn't included and y is positive, dont include operator
|
|
op = ' - ' if coeffs[1] < 0 else (' + ' if x_str != '' else '')
|
|
# No redundant 1s
|
|
y_coeff = abs(coeffs[1]) if abs(coeffs[1]) != 1 else ''
|
|
# Don't include if 0, unless x is also 0 (probably never happens)
|
|
y_str = f'{y_coeff}y' if coeffs[1] != 0 else (
|
|
'' if x_str != '' else '0')
|
|
return f'{x_str}{op}{y_str} = {coeffs[2]}'
|
|
|
|
problem = f"{coeffToFuncString(new_c1)}, {coeffToFuncString(new_c2)}"
|
|
solution = f"x = {x}, y = {y}"
|
|
return problem, solution
|
|
|
|
# Add random (non-zero) multiple of equations to each other
|
|
|
|
|
|
def distanceTwoPointsFunc(maxValXY=20, minValXY=-20):
|
|
point1X = random.randint(minValXY, maxValXY + 1)
|
|
point1Y = random.randint(minValXY, maxValXY + 1)
|
|
point2X = random.randint(minValXY, maxValXY + 1)
|
|
point2Y = random.randint(minValXY, maxValXY + 1)
|
|
distanceSq = (point1X - point2X) ** 2 + (point1Y - point2Y) ** 2
|
|
solution = f"sqrt({distanceSq})"
|
|
problem = f"Find the distance between ({point1X}, {point1Y}) and ({point2X}, {point2Y})"
|
|
return problem, solution
|
|
|
|
|
|
def pythagoreanTheoremFunc(maxLength=20):
|
|
a = random.randint(1, maxLength)
|
|
b = random.randint(1, maxLength)
|
|
c = (a**2 + b**2)**0.5
|
|
problem = f"The hypotenuse of a right triangle given the other two lengths {a} and {b} = "
|
|
solution = f"{c:.0f}" if c.is_integer() else f"{c:.2f}"
|
|
return problem, solution
|
|
|
|
|
|
def linearEquationsFunc(n=2, varRange=20, coeffRange=20):
|
|
if n > 10:
|
|
print("[!] n cannot be greater than 10")
|
|
return None, None
|
|
|
|
vars = ['x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g'][:n]
|
|
soln = [random.randint(-varRange, varRange) for i in range(n)]
|
|
|
|
problem = list()
|
|
solution = ", ".join(["{} = {}".format(vars[i], soln[i])
|
|
for i in range(n)])
|
|
for _ in range(n):
|
|
coeff = [random.randint(-coeffRange, coeffRange) for i in range(n)]
|
|
res = sum([coeff[i] * soln[i] for i in range(n)])
|
|
|
|
prob = ["{}{}".format(coeff[i], vars[i]) if coeff[i] != 0 else "" for i in range(n)]
|
|
while "" in prob:
|
|
prob.remove("")
|
|
prob = " + ".join(prob) + " = " + str(res)
|
|
problem.append(prob)
|
|
|
|
problem = "\n".join(problem)
|
|
return problem, solution
|
|
|
|
|
|
def primeFactorsFunc(minVal=1, maxVal=200):
|
|
a = random.randint(minVal, maxVal)
|
|
n = a
|
|
i = 2
|
|
factors = []
|
|
while i * i <= n:
|
|
if n % i:
|
|
i += 1
|
|
else:
|
|
n //= i
|
|
factors.append(i)
|
|
if n > 1:
|
|
factors.append(n)
|
|
problem = f"Find prime factors of {a}"
|
|
solution = f"{factors}"
|
|
return problem, solution
|
|
|
|
|
|
def multiplyFractionsFunc(maxVal=10):
|
|
a = random.randint(1, maxVal)
|
|
b = random.randint(1, maxVal)
|
|
c = random.randint(1, maxVal)
|
|
d = random.randint(1, maxVal)
|
|
while (a == b):
|
|
b = random.randint(1, maxVal)
|
|
while (c == d):
|
|
d = random.randint(1, maxVal)
|
|
|
|
def calculate_gcd(x, y):
|
|
while(y):
|
|
x, y = y, x % y
|
|
return x
|
|
tmp_n = a * c
|
|
tmp_d = b * d
|
|
gcd = calculate_gcd(tmp_n, tmp_d)
|
|
x = f"{tmp_n//gcd}/{tmp_d//gcd}"
|
|
if (tmp_d == 1 or tmp_d == gcd):
|
|
x = f"{tmp_n//gcd}"
|
|
problem = f"({a}/{b})*({c}/{d})"
|
|
solution = x
|
|
return problem, solution
|
|
|
|
|
|
def regularPolygonAngleFunc(minVal=3, maxVal=20):
|
|
sideNum = random.randint(minVal, maxVal)
|
|
problem = f"Find the angle of a regular polygon with {sideNum} sides"
|
|
exteriorAngle = round((360 / sideNum), 2)
|
|
solution = 180 - exteriorAngle
|
|
return problem, solution
|
|
|
|
|
|
def combinationsFunc(maxlength=20):
|
|
|
|
def factorial(a):
|
|
d = 1
|
|
for i in range(a):
|
|
a = (i + 1) * d
|
|
d = a
|
|
return d
|
|
a = random.randint(10, maxlength)
|
|
b = random.randint(0, 9)
|
|
|
|
solution = int(factorial(a) / (factorial(b) * factorial(a - b)))
|
|
problem = "Number of combinations from {} objects picked {} at a time ".format(
|
|
a, b)
|
|
|
|
return problem, solution
|
|
|
|
|
|
def factorialFunc(maxInput=6):
|
|
a = random.randint(0, maxInput)
|
|
n = a
|
|
problem = str(a) + "! = "
|
|
b = 1
|
|
if a == 1:
|
|
solution = str(b)
|
|
return problem, solution
|
|
else:
|
|
while n > 0:
|
|
b *= n
|
|
n = n - 1
|
|
solution = str(b)
|
|
return problem, solution
|
|
|
|
|
|
def surfaceAreaCube(maxSide=20, unit='m'):
|
|
a = random.randint(1, maxSide)
|
|
problem = f"Surface area of cube with side = {a}{unit} is"
|
|
ans = 6 * a * a
|
|
solution = f"{ans} {unit}^2"
|
|
return problem, solution
|
|
|
|
|
|
def volumeCube(maxSide=20, unit='m'):
|
|
a = random.randint(1, maxSide)
|
|
problem = f"Volume of cube with side = {a}{unit} is"
|
|
ans = a * a * a
|
|
solution = f"{ans} {unit}^3"
|
|
return problem, solution
|
|
|
|
|
|
def surfaceAreaCuboid(maxSide=20, unit='m'):
|
|
a = random.randint(1, maxSide)
|
|
b = random.randint(1, maxSide)
|
|
c = random.randint(1, maxSide)
|
|
|
|
problem = f"Surface area of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
|
ans = 2 * (a * b + b * c + c * a)
|
|
solution = f"{ans} {unit}^2"
|
|
return problem, solution
|
|
|
|
|
|
def volumeCuboid(maxSide=20, unit='m'):
|
|
a = random.randint(1, maxSide)
|
|
b = random.randint(1, maxSide)
|
|
c = random.randint(1, maxSide)
|
|
problem = f"Volume of cuboid with sides = {a}{unit}, {b}{unit}, {c}{unit} is"
|
|
ans = a * b * c
|
|
solution = f"{ans} {unit}^3"
|
|
return problem, solution
|
|
|
|
|
|
def surfaceAreaCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
|
a = random.randint(1, maxHeight)
|
|
b = random.randint(1, maxRadius)
|
|
problem = f"Surface area of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
|
ans = int(2 * math.pi * a * b + 2 * math.pi * b * b)
|
|
solution = f"{ans} {unit}^2"
|
|
return problem, solution
|
|
|
|
|
|
def volumeCylinder(maxRadius=20, maxHeight=50, unit='m'):
|
|
a = random.randint(1, maxHeight)
|
|
b = random.randint(1, maxRadius)
|
|
problem = f"Volume of cylinder with height = {a}{unit} and radius = {b}{unit} is"
|
|
ans = int(math.pi * b * b * a)
|
|
solution = f"{ans} {unit}^3"
|
|
return problem, solution
|
|
|
|
|
|
def surfaceAreaCone(maxRadius=20, maxHeight=50, unit='m'):
|
|
a = random.randint(1, maxHeight)
|
|
b = random.randint(1, maxRadius)
|
|
slopingHeight = math.sqrt(a**2 + b**2)
|
|
problem = f"Surface area of cone with height = {a}{unit} and radius = {b}{unit} is"
|
|
ans = int(math.pi * b * slopingHeight + math.pi * b * b)
|
|
solution = f"{ans} {unit}^2"
|
|
return problem, solution
|
|
|
|
|
|
def volumeCone(maxRadius=20, maxHeight=50, unit='m'):
|
|
a = random.randint(1, maxHeight)
|
|
b = random.randint(1, maxRadius)
|
|
problem = f"Volume of cone with height = {a}{unit} and radius = {b}{unit} is"
|
|
ans = int(math.pi * b * b * a * (1 / 3))
|
|
solution = f"{ans} {unit}^3"
|
|
return problem, solution
|
|
|
|
|
|
def commonFactorsFunc(maxVal=100):
|
|
a = random.randint(1, maxVal)
|
|
b = random.randint(1, maxVal)
|
|
x, y = a, b
|
|
if (x < y):
|
|
min = x
|
|
else:
|
|
min = y
|
|
count = 0
|
|
arr = []
|
|
for i in range(1, min + 1):
|
|
if (x % i == 0):
|
|
if (y % i == 0):
|
|
count = count + 1
|
|
arr.append(i)
|
|
problem = f"Common Factors of {a} and {b} = "
|
|
solution = arr
|
|
return problem, solution
|
|
|
|
|
|
def intersectionOfTwoLinesFunc(
|
|
minM=-10, maxM=10, minB=-10, maxB=10, minDenominator=1, maxDenominator=6
|
|
):
|
|
def generateEquationString(m, b):
|
|
"""
|
|
Generates an equation given the slope and intercept.
|
|
It handles cases where m is fractional.
|
|
It also ensures that we don't have weird signs such as y = mx + -b.
|
|
"""
|
|
if m[1] == 1:
|
|
m = m[0]
|
|
else:
|
|
m = f"{m[0]}/{m[1]}"
|
|
base = f"y = {m}x"
|
|
if b > 0:
|
|
return f"{base} + {b}"
|
|
elif b < 0:
|
|
return f"{base} - {b * -1}"
|
|
else:
|
|
return base
|
|
|
|
def fractionToString(x):
|
|
"""
|
|
Converts the given fractions.Fraction into a string.
|
|
"""
|
|
if x.denominator == 1:
|
|
x = x.numerator
|
|
else:
|
|
x = f"{x.numerator}/{x.denominator}"
|
|
return x
|
|
|
|
m1 = (random.randint(minM, maxM), random.randint(
|
|
minDenominator, maxDenominator))
|
|
m2 = (random.randint(minM, maxM), random.randint(
|
|
minDenominator, maxDenominator))
|
|
b1 = random.randint(minB, maxB)
|
|
b2 = random.randint(minB, maxB)
|
|
equation1 = generateEquationString(m1, b1)
|
|
equation2 = generateEquationString(m2, b2)
|
|
problem = "Find the point of intersection of the two lines: "
|
|
problem += f"{equation1} and {equation2}"
|
|
m1 = fractions.Fraction(*m1)
|
|
m2 = fractions.Fraction(*m2)
|
|
# if m1 == m2 then the slopes are equal
|
|
# This can happen if both line are the same
|
|
# Or if they are parallel
|
|
# In either case there is no intersection
|
|
if m1 == m2:
|
|
solution = "No Solution"
|
|
else:
|
|
intersection_x = (b1 - b2) / (m2 - m1)
|
|
intersection_y = ((m2 * b1) - (m1 * b2)) / (m2 - m1)
|
|
solution = f"({fractionToString(intersection_x)}, {fractionToString(intersection_y)})"
|
|
return problem, solution
|
|
|
|
|
|
def permutationFunc(maxlength=20):
|
|
a = random.randint(10, maxlength)
|
|
b = random.randint(0, 9)
|
|
solution = int(math.factorial(a) / (math.factorial(a - b)))
|
|
problem = "Number of Permutations from {} objects picked {} at a time = ".format(
|
|
a, b)
|
|
return problem, solution
|
|
|
|
|
|
def vectorCrossFunc(minVal=-20, maxVal=20):
|
|
a = [random.randint(minVal, maxVal) for i in range(3)]
|
|
b = [random.randint(minVal, maxVal) for i in range(3)]
|
|
c = [a[1] * b[2] - a[2] * b[1],
|
|
a[2] * b[0] - a[0] * b[2],
|
|
a[0] * b[1] - a[1] * b[0]]
|
|
return str(a) + " X " + str(b) + " = ", str(c)
|
|
|
|
|
|
def compareFractionsFunc(maxVal=10):
|
|
a = random.randint(1, maxVal)
|
|
b = random.randint(1, maxVal)
|
|
c = random.randint(1, maxVal)
|
|
d = random.randint(1, maxVal)
|
|
|
|
while (a == b):
|
|
b = random.randint(1, maxVal)
|
|
while (c == d):
|
|
d = random.randint(1, maxVal)
|
|
|
|
first = a / b
|
|
second = c / d
|
|
|
|
if(first > second):
|
|
solution = ">"
|
|
elif(first < second):
|
|
solution = "<"
|
|
else:
|
|
solution = "="
|
|
|
|
problem = f"Which symbol represents the comparison between {a}/{b} and {c}/{d}?"
|
|
return problem, solution
|
|
|
|
|
|
def simpleInterestFunc(maxPrinciple=10000, maxRate=10, maxTime=10):
|
|
a = random.randint(1000, maxPrinciple)
|
|
b = random.randint(1, maxRate)
|
|
c = random.randint(1, maxTime)
|
|
d = (a * b * c) / 100
|
|
problem = "Simple interest for a principle amount of " + str(a) + " dollars, " + str(
|
|
b) + "% rate of interest and for a time period of " + str(c) + " years is = "
|
|
solution = round(d, 2)
|
|
return problem, solution
|
|
|
|
|
|
def matrixMultiplicationFunc(maxVal=100):
|
|
m = random.randint(2, 10)
|
|
n = random.randint(2, 10)
|
|
k = random.randint(2, 10)
|
|
# generate matrices a and b
|
|
a = []
|
|
for r in range(m):
|
|
a.append([])
|
|
for c in range(n):
|
|
a[r].append(random.randint(-maxVal, maxVal))
|
|
|
|
b = []
|
|
for r in range(n):
|
|
b.append([])
|
|
for c in range(k):
|
|
b[r].append(random.randint(-maxVal, maxVal))
|
|
|
|
res = []
|
|
a_string = matrixMultiplicationFuncHelper(a)
|
|
b_string = matrixMultiplicationFuncHelper(b)
|
|
|
|
for r in range(m):
|
|
res.append([])
|
|
for c in range(k):
|
|
temp = 0
|
|
for t in range(n):
|
|
temp += a[r][t] * b[t][c]
|
|
res[r].append(temp)
|
|
# consider using a, b instead of a_string, b_string if the problem doesn't look right
|
|
problem = f"Multiply \n{a_string}\n and \n\n{b_string}"
|
|
solution = matrixMultiplicationFuncHelper(res)
|
|
return problem, solution
|
|
|
|
|
|
def matrixMultiplicationFuncHelper(inp):
|
|
m = len(inp)
|
|
n = len(inp[0])
|
|
string = ""
|
|
for i in range(m):
|
|
for j in range(n):
|
|
string += f"{inp[i][j]: 6d}"
|
|
string += " "
|
|
string += "\n"
|
|
return string
|
|
|
|
|
|
def cubeRootFunc(minNo=1, maxNo=1000):
|
|
b = random.randint(minNo, maxNo)
|
|
a = b**(1 / 3)
|
|
problem = "cuberoot of " + str(b) + " upto 2 decimal places is:"
|
|
solution = str(round(a, 2))
|
|
return problem, solution
|
|
|
|
|
|
def powerRuleIntegrationFunc(maxCoef=10, maxExp=10, maxTerms=5):
|
|
numTerms = random.randint(1, maxTerms)
|
|
problem = ""
|
|
solution = ""
|
|
for i in range(numTerms):
|
|
if i > 0:
|
|
problem += " + "
|
|
solution += " + "
|
|
coefficient = random.randint(1, maxCoef)
|
|
exponent = random.randint(1, maxExp)
|
|
problem += str(coefficient) + "x^" + str(exponent)
|
|
solution += "(" + str(coefficient) + "/" + \
|
|
str(exponent) + ")x^" + str(exponent + 1)
|
|
solution = solution + " + c"
|
|
return problem, solution
|
|
|
|
def fourthAngleOfQuadriFunc(total=360):
|
|
def rand_anglesquad():
|
|
a=180
|
|
b=0
|
|
c=0
|
|
d=0
|
|
while(c==0 or d==0):
|
|
a=random.randint(1, total-20)
|
|
b=random.randint(1, total-a-10)
|
|
c=random.randint(1, total-a-b)
|
|
d=total-a-b-c
|
|
return a, b, c, d
|
|
a, b, c, d=rand_anglesquad()
|
|
problem="Fourth angle of a quadrilateral with three angles {}, {}, {} (in degrees)".format(a, b, c)
|
|
solution=d
|
|
return problem, solution
|
|
|
|
def quadraticEquation(maxVal=100):
|
|
a = random.randint(1, maxVal)
|
|
c = random.randint(1, maxVal)
|
|
b = random.randint(round(math.sqrt(4 * a * c)) + 1,
|
|
round(math.sqrt(4 * maxVal * maxVal)))
|
|
|
|
problem = "Zeros of the Quadratic Equation {}x^2+{}x+{}=0".format(a, b, c)
|
|
|
|
D = math.sqrt(b * b - 4 * a * c)
|
|
|
|
solution = str([round((-b + D) / (2 * a), 2),
|
|
round((-b - D) / (2 * a), 2)])
|
|
return problem, solution
|
|
|
|
|
|
def hcfFunc(maxVal=20):
|
|
a = random.randint(1, maxVal)
|
|
b = random.randint(1, maxVal)
|
|
x, y = a, b
|
|
while(y):
|
|
x, y = y, x % y
|
|
problem = f"HCF of {a} and {b} = "
|
|
solution = str(x)
|
|
return problem, solution
|
|
|
|
|
|
def DiceSumProbFunc(maxDice=3):
|
|
a = random.randint(1, maxDice)
|
|
b = random.randint(a, 6 * a)
|
|
count = 0
|
|
for i in [1, 2, 3, 4, 5, 6]:
|
|
if a == 1:
|
|
if i == b:
|
|
count = count + 1
|
|
elif a == 2:
|
|
for j in [1, 2, 3, 4, 5, 6]:
|
|
if i + j == b:
|
|
count = count + 1
|
|
elif a == 3:
|
|
for j in [1, 2, 3, 4, 5, 6]:
|
|
for k in [1, 2, 3, 4, 5, 6]:
|
|
if i + j + k == b:
|
|
count = count + 1
|
|
problem = "If {} dice are rolled at the same time, the probability of getting a sum of {} =".format(
|
|
a, b)
|
|
solution = "{}/{}".format(count, 6**a)
|
|
return problem, solution
|
|
|
|
|
|
def exponentiationFunc(maxBase=20, maxExpo=10):
|
|
base = random.randint(1, maxBase)
|
|
expo = random.randint(1, maxExpo)
|
|
problem = f"{base}^{expo} ="
|
|
solution = str(base ** expo)
|
|
return problem, solution
|
|
|
|
|
|
def confidenceIntervalFunc():
|
|
n = random.randint(20, 40)
|
|
j = random.randint(0, 3)
|
|
lst = random.sample(range(200, 300), n)
|
|
lst_per = [80, 90, 95, 99]
|
|
lst_t = [1.282, 1.645, 1.960, 2.576]
|
|
mean = 0
|
|
sd = 0
|
|
for i in lst:
|
|
count = i + mean
|
|
mean = count
|
|
mean = mean / n
|
|
for i in lst:
|
|
x = (i - mean)**2 + sd
|
|
sd = x
|
|
sd = sd / n
|
|
standard_error = lst_t[j] * math.sqrt(sd / n)
|
|
problem = 'The confidence interval for sample {} with {}% confidence is'.format(
|
|
[x for x in lst], lst_per[j])
|
|
solution = '({}, {})'.format(mean + standard_error, mean - standard_error)
|
|
return problem, solution
|
|
|
|
|
|
def surdsComparisonFunc(maxValue=100, maxRoot=10):
|
|
radicand1, radicand2 = tuple(random.sample(range(1, maxValue), 2))
|
|
degree1, degree2 = tuple(random.sample(range(1, maxRoot), 2))
|
|
problem = f"Fill in the blanks {radicand1}^(1/{degree1}) _ {radicand2}^(1/{degree2})"
|
|
first = math.pow(radicand1, 1 / degree1)
|
|
second = math.pow(radicand2, 1 / degree2)
|
|
solution = "="
|
|
if first > second:
|
|
solution = ">"
|
|
elif first < second:
|
|
solution = "<"
|
|
return problem, solution
|
|
|
|
|
|
def fibonacciSeriesFunc(minNo=1):
|
|
n = random.randint(minNo, 20)
|
|
|
|
def createFibList(n):
|
|
fibList = []
|
|
for i in range(n):
|
|
if i < 2:
|
|
fibList.append(i)
|
|
else:
|
|
val = fibList[i - 1] + fibList[i - 2]
|
|
fibList.append(val)
|
|
return fibList
|
|
fibList = createFibList(n)
|
|
problem = "The Fibonacci Series of the first " + str(n) + " numbers is ?"
|
|
solution = fibList
|
|
return problem, solution
|
|
|
|
|
|
# Handles degrees in quadrant one
|
|
def basicTrigonometryFunc(angles=[0, 30, 45, 60, 90], functions=["sin", "cos", "tan"]):
|
|
angle = random.choice(angles)
|
|
function = random.choice(functions)
|
|
|
|
problem = f"What is {function}({angle})?"
|
|
expression = 'math.' + function + '(math.radians(angle))'
|
|
result_fraction_map = {0.0: "0", 0.5: "1/2", 0.71: "1/√2",
|
|
0.87: "√3/2", 1.0: "1", 0.58: "1/√3", 1.73: "√3"}
|
|
|
|
solution = result_fraction_map[round(eval(expression), 2)] if round(
|
|
eval(expression), 2) <= 99999 else "∞" # for handling the ∞ condition
|
|
|
|
return problem, solution
|
|
|
|
|
|
def sumOfAnglesOfPolygonFunc(maxSides=12):
|
|
side = random.randint(3, maxSides)
|
|
sum = (side - 2) * 180
|
|
problem = f"Sum of angles of polygon with {side} sides = "
|
|
solution = sum
|
|
return problem, solution
|
|
|
|
|
|
def dataSummaryFunc(number_values=15, minval=5, maxval=50):
|
|
random_list = []
|
|
for i in range(number_values):
|
|
n = random.randint(minval, maxval)
|
|
random_list.append(n)
|
|
a = sum(random_list)
|
|
mean = a / number_values
|
|
var = 0
|
|
for i in range(number_values):
|
|
var += (random_list[i] - mean)**2
|
|
print(random_list)
|
|
print(mean)
|
|
print(var / number_values)
|
|
print((var / number_values)**0.5)
|
|
problem = "Find the mean,standard deviation and variance for the data" + \
|
|
str(random_list)
|
|
solution = "The Mean is {} , Standard Deviation is {}, Variance is {}".format(
|
|
mean, var / number_values, (var / number_values)**0.5)
|
|
return problem, solution
|
|
|
|
|
|
def surfaceAreaSphere(maxSide=20, unit='m'):
|
|
r = random.randint(1, maxSide)
|
|
problem = f"Surface area of Sphere with radius = {r}{unit} is"
|
|
ans = 4 * math.pi * r * r
|
|
solution = f"{ans} {unit}^2"
|
|
return problem, solution
|
|
|
|
def volumeSphereFunc(maxRadius = 100):
|
|
r=random.randint(1,maxRadius)
|
|
problem=f"Volume of sphere with radius {r} m = "
|
|
ans=(4*math.pi/3)*r*r*r
|
|
solution = f"{ans} m^3"
|
|
return problem,solution
|
|
|
|
def volumeSphereFunc(maxRadius=100):
|
|
r = random.randint(1, maxRadius)
|
|
problem = f"Volume of sphere with radius {r} m = "
|
|
ans = (4 * math.pi / 3) * r * r * r
|
|
solution = f"{ans} m^3"
|
|
return problem,solution
|
|
|
|
def nthFibonacciNumber(maxN = 100):
|
|
golden_ratio = (1 + math.sqrt(5))/2
|
|
n = random.randint(1,maxN)
|
|
problem = f"What is the {n}th Fibonacci number?"
|
|
ans = round((math.pow(golden_ratio,n) - math.pow(-golden_ratio,-n))/(math.sqrt(5)))
|
|
solution = f"{ans}"
|
|
return problem, solution
|
|
|
|
def profitLossPercentFunc(maxCP = 1000, maxSP = 1000):
|
|
cP = random.randint(1, maxCP)
|
|
sP = random.randint(1, maxSP)
|
|
diff = abs(sP-cP)
|
|
if (sP-cP >= 0):
|
|
profitOrLoss = "Profit"
|
|
else:
|
|
profitOrLoss = "Loss"
|
|
percent = diff/cP * 100
|
|
problem = f"{profitOrLoss} percent when CP = {cP} and SP = {sP} is: "
|
|
solution = percent
|
|
|
|
def BinaryToHexFunc(max_dig=10):
|
|
problem = ''
|
|
for i in range(random.randint(1, max_dig)):
|
|
temp = str(random.randint(0, 1))
|
|
problem += temp
|
|
|
|
solution = hex(int(problem, 2))
|
|
return problem, solution
|
|
|
|
# || Class Instances
|
|
|
|
|
|
# Format is:
|
|
# <title> = Generator("<Title>", <id>, <generalized problem>, <generalized solution>, <function name>)
|
|
addition = Generator("Addition", 0, "a+b=", "c", additionFunc)
|
|
subtraction = Generator("Subtraction", 1, "a-b=", "c", subtractionFunc)
|
|
multiplication = Generator(
|
|
"Multiplication", 2, "a*b=", "c", multiplicationFunc)
|
|
division = Generator("Division", 3, "a/b=", "c", divisionFunc)
|
|
binaryComplement1s = Generator(
|
|
"Binary Complement 1s", 4, "1010=", "0101", binaryComplement1sFunc)
|
|
moduloDivision = Generator("Modulo Division", 5, "a%b=", "c", moduloFunc)
|
|
squareRoot = Generator("Square Root", 6, "sqrt(a)=", "b", squareRootFunc)
|
|
powerRuleDifferentiation = Generator(
|
|
"Power Rule Differentiation", 7, "nx^m=", "(n*m)x^(m-1)", powerRuleDifferentiationFunc)
|
|
square = Generator("Square", 8, "a^2", "b", squareFunc)
|
|
lcm = Generator("LCM (Least Common Multiple)", 9,
|
|
"LCM of a and b = ", "c", lcmFunc)
|
|
gcd = Generator("GCD (Greatest Common Denominator)",
|
|
10, "GCD of a and b = ", "c", gcdFunc)
|
|
basicAlgebra = Generator(
|
|
"Basic Algebra", 11, "ax + b = c", "d", basicAlgebraFunc)
|
|
log = Generator("Logarithm", 12, "log2(8)", "3", logFunc)
|
|
intDivision = Generator("Easy Division", 13, "a/b=", "c", divisionToIntFunc)
|
|
decimalToBinary = Generator("Decimal to Binary", 14,
|
|
"Binary of a=", "b", DecimalToBinaryFunc)
|
|
binaryToDecimal = Generator("Binary to Decimal", 15,
|
|
"Decimal of a=", "b", BinaryToDecimalFunc)
|
|
fractionDivision = Generator(
|
|
"Fraction Division", 16, "(a/b)/(c/d)=", "x/y", divideFractionsFunc)
|
|
intMatrix22Multiplication = Generator("Integer Multiplication with 2x2 Matrix",
|
|
17, "k * [[a,b],[c,d]]=", "[[k*a,k*b],[k*c,k*d]]", multiplyIntToMatrix22)
|
|
areaOfTriangle = Generator(
|
|
"Area of Triangle", 18, "Area of Triangle with side lengths a, b, c = ", "area", areaOfTriangleFunc)
|
|
doesTriangleExist = Generator("Triangle exists check", 19,
|
|
"Does triangle with sides a, b and c exist?", "Yes/No", isTriangleValidFunc)
|
|
midPointOfTwoPoint = Generator("Midpoint of the two point", 20,
|
|
"((X1,Y1),(X2,Y2))=", "((X1+X2)/2,(Y1+Y2)/2)", MidPointOfTwoPointFunc)
|
|
factoring = Generator("Factoring Quadratic", 21,
|
|
"x^2+(x1+x2)+x1*x2", "(x-x1)(x-x2)", factoringFunc)
|
|
thirdAngleOfTriangle = Generator("Third Angle of Triangle", 22,
|
|
"Third Angle of the triangle = ", "angle3", thirdAngleOfTriangleFunc)
|
|
systemOfEquations = Generator("Solve a System of Equations in R^2", 23,
|
|
"2x + 5y = 13, -3x - 3y = -6", "x = -1, y = 3", systemOfEquationsFunc)
|
|
distance2Point = Generator("Distance between 2 points", 24,
|
|
"Find the distance between (x1,y1) and (x2,y2)", "sqrt(distanceSquared)", distanceTwoPointsFunc)
|
|
pythagoreanTheorem = Generator(
|
|
"Pythagorean Theorem", 25, "The hypotenuse of a right triangle given the other two lengths a and b = ", "hypotenuse", pythagoreanTheoremFunc)
|
|
# This has multiple variables whereas #23 has only x and y
|
|
linearEquations = Generator(
|
|
"Linear Equations", 26, "2x+5y=20 & 3x+6y=12", "x=-20 & y=12", linearEquationsFunc)
|
|
primeFactors = Generator("Prime Factorisation", 27,
|
|
"Prime Factors of a =", "[b, c, d, ...]", primeFactorsFunc)
|
|
fractionMultiplication = Generator(
|
|
"Fraction Multiplication", 28, "(a/b)*(c/d)=", "x/y", multiplyFractionsFunc)
|
|
angleRegularPolygon = Generator("Angle of a Regular Polygon", 29,
|
|
"Find the angle of a regular polygon with 6 sides", "120", regularPolygonAngleFunc)
|
|
combinations = Generator("Combinations of Objects", 30,
|
|
"Combinations available for picking 4 objects at a time from 6 distinct objects =", " 15", combinationsFunc)
|
|
factorial = Generator("Factorial", 31, "a! = ", "b", factorialFunc)
|
|
surfaceAreaCubeGen = Generator(
|
|
"Surface Area of Cube", 32, "Surface area of cube with side a units is", "b units^2", surfaceAreaCube)
|
|
surfaceAreaCuboidGen = Generator(
|
|
"Surface Area of Cuboid", 33, "Surface area of cuboid with sides = a units, b units, c units is", "d units^2", surfaceAreaCuboid)
|
|
surfaceAreaCylinderGen = Generator(
|
|
"Surface Area of Cylinder", 34, "Surface area of cylinder with height = a units and radius = b units is", "c units^2", surfaceAreaCylinder)
|
|
volumeCubeGen = Generator(
|
|
"Volum of Cube", 35, "Volume of cube with side a units is", "b units^3", volumeCube)
|
|
volumeCuboidGen = Generator(
|
|
"Volume of Cuboid", 36, "Volume of cuboid with sides = a units, b units, c units is", "d units^3", volumeCuboid)
|
|
volumeCylinderGen = Generator(
|
|
"Volume of cylinder", 37, "Volume of cylinder with height = a units and radius = b units is", "c units^3", volumeCylinder)
|
|
surfaceAreaConeGen = Generator(
|
|
"Surface Area of cone", 38, "Surface area of cone with height = a units and radius = b units is", "c units^2", surfaceAreaCone)
|
|
volumeConeGen = Generator(
|
|
"Volume of cone", 39, "Volume of cone with height = a units and radius = b units is", "c units^3", volumeCone)
|
|
commonFactors = Generator(
|
|
"Common Factors", 40, "Common Factors of {a} and {b} = ", "[c, d, ...]", commonFactorsFunc)
|
|
intersectionOfTwoLines = Generator("Intersection of Two Lines", 41,
|
|
"Find the point of intersection of the two lines: y = m1*x + b1 and y = m2*x + b2", "(x, y)", intersectionOfTwoLinesFunc)
|
|
permutations = Generator(
|
|
"Permutations", 42, "Total permutations of 4 objects at a time from 10 objects is", "5040", permutationFunc)
|
|
vectorCross = Generator("Cross Product of 2 Vectors",
|
|
43, "a X b = ", "c", vectorCrossFunc)
|
|
compareFractions = Generator(
|
|
"Compare Fractions", 44, "Which symbol represents the comparison between a/b and c/d?", ">/</=", compareFractionsFunc)
|
|
simpleInterest = Generator(
|
|
"Simple Interest", 45, "Simple interest for a principle amount of a dollars, b% rate of interest and for a time period of c years is = ", "d dollars", simpleInterestFunc)
|
|
matrixMultiplication = Generator("Multiplication of two matrices",
|
|
46, "Multiply two matrices A and B", "C", matrixMultiplicationFunc)
|
|
CubeRoot = Generator(
|
|
"Cube Root", 47, "Cuberoot of a upto 2 decimal places is", "b", cubeRootFunc)
|
|
powerRuleIntegration = Generator(
|
|
"Power Rule Integration", 48, "nx^m=", "(n/m)x^(m+1)", powerRuleIntegrationFunc)
|
|
fourthAngleOfQuadrilateral = Generator("Fourth Angle of Quadrilateral", 49,
|
|
"Fourth angle of Quadrilateral with angles a,b,c =", "angle4", fourthAngleOfQuadriFunc)
|
|
quadraticEquationSolve = Generator(
|
|
"Quadratic Equation", 50, "Find the zeros {x1,x2} of the quadratic equation ax^2+bx+c=0", "x1,x2", quadraticEquation)
|
|
hcf = Generator("HCF (Highest Common Factor)", 51,
|
|
"HCF of a and b = ", "c", hcfFunc)
|
|
diceSumProbability = Generator("Probability of a certain sum appearing on faces of dice",
|
|
52, "If n dices are rolled then probabilty of getting sum of x is =", "z", DiceSumProbFunc)
|
|
exponentiation = Generator(
|
|
"Exponentiation", 53, "a^b = ", "c", exponentiationFunc)
|
|
confidenceInterval = Generator("Confidence interval For sample S",
|
|
54, "With X% confidence", "is (A,B)", confidenceIntervalFunc)
|
|
surdsComparison = Generator(
|
|
"Comparing surds", 55, "Fill in the blanks a^(1/b) _ c^(1/d)", "</>/=", surdsComparisonFunc)
|
|
fibonacciSeries = Generator("Fibonacci Series", 56, "fibonacci series of first a numbers",
|
|
"prints the fibonacci series starting from 0 to a", fibonacciSeriesFunc)
|
|
basicTrigonometry = Generator(
|
|
"Trigonometric Values", 57, "What is sin(X)?", "ans", basicTrigonometryFunc)
|
|
sumOfAnglesOfPolygon = Generator("Sum of Angles of Polygon", 58,
|
|
"Sum of angles of polygon with n sides = ", "sum", sumOfAnglesOfPolygonFunc)
|
|
dataSummary = Generator("Mean,Standard Deviation,Variance",
|
|
59, "a,b,c", "Mean:a+b+c/3,Std,Var", dataSummaryFunc)
|
|
surfaceAreaSphereGen = Generator(
|
|
"Surface Area of Sphere", 59, "Surface area of sphere with radius = a units is", "d units^2", surfaceAreaSphere)
|
|
volumeSphere = Generator("Volume of Sphere", 60,
|
|
"Volume of sphere with radius r m = ", "(4*pi/3)*r*r*r", volumeSphereFunc)
|
|
nthFibonacciNumberGen = Generator("nth Fibonacci number", 61, "What is the nth Fibonacci number", "Fn", nthFibonacciNumber)
|
|
|
|
profitLossPercent = Generator("Profit or Loss Percent", 62, "Profit/ Loss percent when CP = cp and SP = sp is: ", "percent", profitLossPercentFunc)
|
|
binaryToHex = Generator("Binary to Hexidecimal", 63, "Hexidecimal of a=", "b", BinaryToHexFunc)
|