add: d10p2 (chagpt'd in python)

This commit is contained in:
2025-12-13 02:14:55 +01:00
parent 7e7a9e20d6
commit 55f4d012ab

75
2025/10/p2.py Normal file
View File

@@ -0,0 +1,75 @@
import pulp
import numpy as np
from scipy.optimize import minimize
# pretty chatgpt'd
def solve_linear_program(A, B):
"""
Solve the integer linear programming problem to minimize the sum of variables
given a matrix A (coefficients) and a vector B (right-hand side).
"""
# Number of variables (columns in A)
num_variables = A.shape[1]
# Define the problem as a minimization problem
prob = pulp.LpProblem("Minimize_Sum_of_Variables", pulp.LpMinimize)
# Define variables (all non-negative integers)
variables = [pulp.LpVariable(f'x{i}', lowBound=0, cat='Integer') for i in range(num_variables)]
# Objective function: Minimize the sum of the variables
prob += pulp.lpSum(variables), "Minimize sum"
# Add the constraints based on A * X = B
for i in range(A.shape[0]): # Iterate over each equation (row of A)
prob += pulp.lpSum(A[i, j] * variables[j] for j in range(num_variables)) == B[i]
# Solve the problem
prob.solve(pulp.PULP_CBC_CMD(msg=False))
# Get the results
if pulp.LpStatus[prob.status] == 'Optimal':
solution = [v.varValue for v in variables]
return solution, sum(solution)
else:
return None, None
def parse_buttons(bts):
return list(map(lambda bt: list(map(int, bt[1:-1].split(","))), bts))
def make_btn(len, bt):
btn = [0] * len
for idx in bt:
btn[idx] = 1
return btn
def parse_ln(ln):
ln = ln.strip()
ln = ln.split(" ")
coefs = list(map(int, ln[-1][1:-1].split(",")))
return list(map(lambda bt:
make_btn(len(coefs), bt)
, parse_buttons(ln[1:-1]))), coefs
total = 0
with open("input.txt", "r") as file:
for line in file:
coefs, terms = parse_ln(line)
A = np.transpose(np.array(coefs))
b = np.array(terms)
solution, min_sum = solve_linear_program(A, b)
if solution is not None:
total += min_sum
# print(f"Optimal solution: {solution}")
# print(f"Minimum sum: {min_sum}")
else:
print("No solution found.")
print(f"total is {total}")