mirror of
https://github.com/javalsai/aoc.git
synced 2026-01-12 17:10:00 +01:00
i hate d09p2
This commit is contained in:
36
2025/09/p1.rs
Normal file
36
2025/09/p1.rs
Normal file
@@ -0,0 +1,36 @@
|
||||
#[unsafe(no_mangle)]
|
||||
pub extern "Rust" fn challenge_usize(buf: &[u8]) -> usize {
|
||||
// I do see how to make this in idk if O(n) or O(nlogn), but ima O(n^2) just at first
|
||||
let coords = buf[..(buf.len() - 1)]
|
||||
.split(|&b| b == b'\n')
|
||||
.map(parse_ln)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let mut area = 0;
|
||||
for coor1 in &coords {
|
||||
for coor2 in &coords {
|
||||
let dx = coor1.0.abs_diff(coor2.0) + 1;
|
||||
let dy = coor1.1.abs_diff(coor2.1) + 1;
|
||||
let this_area = dx * dy;
|
||||
|
||||
// println!(
|
||||
// "{},{} {},{} | {this_area}",
|
||||
// coor1.0, coor1.1, coor2.0, coor2.1
|
||||
// );
|
||||
|
||||
area = area.max(this_area);
|
||||
}
|
||||
}
|
||||
|
||||
area
|
||||
}
|
||||
|
||||
fn parse_ln(ln: &[u8]) -> (usize, usize) {
|
||||
let mut iter = ln.split(|&b| b == b',').map(|slice| {
|
||||
slice
|
||||
.iter()
|
||||
.fold(0, |acc, b| acc * 10 + (b - b'0') as usize)
|
||||
});
|
||||
|
||||
(iter.next().unwrap(), iter.next().unwrap())
|
||||
}
|
||||
133
2025/09/p2-hu.rs
Normal file
133
2025/09/p2-hu.rs
Normal file
@@ -0,0 +1,133 @@
|
||||
//! Half of the puzzle seems like a fancy way to say that the puzzle corners have to be within any
|
||||
//! other rectangle or adyacent (as in same x or y as any other point) to other corners.
|
||||
//!
|
||||
//! I think even adyacent is within the "other rectangle thing", because
|
||||
|
||||
#[unsafe(no_mangle)]
|
||||
pub extern "Rust" fn challenge_usize(buf: &[u8]) -> usize {
|
||||
// I do see how to make this in idk if O(n) or O(nlogn), but ima O(n^2) just at first
|
||||
let coords = buf[..(buf.len() - 1)]
|
||||
.split(|&b| b == b'\n')
|
||||
.map(parse_ln)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let mut filtering_tiles = coords.clone();
|
||||
loop {
|
||||
let filtered_tiles = filtering_tiles
|
||||
.iter()
|
||||
.cloned()
|
||||
.filter(|coor| {
|
||||
for corner1 in &filtering_tiles {
|
||||
for corner2 in &filtering_tiles {
|
||||
if coor == corner1 || coor == corner2 {
|
||||
continue;
|
||||
}
|
||||
|
||||
let minx = corner1.0.min(corner2.0);
|
||||
let maxx = corner1.0.max(corner2.0);
|
||||
let miny = corner1.1.min(corner2.1);
|
||||
let maxy = corner1.1.max(corner2.1);
|
||||
|
||||
if (minx..=maxx).contains(&coor.0) && (miny..=maxy).contains(&coor.1) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
false
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let filtered_anything = filtered_tiles.len() != filtering_tiles.len();
|
||||
filtering_tiles = filtered_tiles;
|
||||
dbg!(filtered_anything);
|
||||
if !filtered_anything {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let mut area = 0;
|
||||
for coor1 in &coords {
|
||||
for coor2 in &coords {
|
||||
let dx = coor1.0.abs_diff(coor2.0) + 1;
|
||||
let dy = coor1.1.abs_diff(coor2.1) + 1;
|
||||
let this_area = dx * dy;
|
||||
|
||||
let conjugate1 = (coor1.0, coor2.1);
|
||||
let conjugate2 = (coor2.0, coor1.1);
|
||||
|
||||
if !is_really_contained_in_any_rectangle(conjugate1, &coords) { continue; }
|
||||
if !is_really_contained_in_any_rectangle(conjugate2, &coords) { continue; }
|
||||
|
||||
// println!(
|
||||
// "{},{} {},{} | {this_area}",
|
||||
// coor1.0, coor1.1, coor2.0, coor2.1
|
||||
// );
|
||||
|
||||
area = area.max(this_area);
|
||||
}
|
||||
}
|
||||
|
||||
area
|
||||
}
|
||||
|
||||
/// This should count
|
||||
/// ....O.....O
|
||||
/// .....X.....
|
||||
/// ...........
|
||||
/// ....O.....O
|
||||
///
|
||||
/// but not
|
||||
/// ....O.....O
|
||||
/// .....X.....
|
||||
/// ...........
|
||||
/// ..........O
|
||||
///
|
||||
/// I will refer to the second case as being normally included in a rectangle while the first case
|
||||
/// is contained in both normally and inverse rectangles. Good way to identify is that dx and dy
|
||||
/// have the same sign or not, if sgn(dx) == sgn(dy) its normal, otherwise antinormal.
|
||||
fn is_really_contained_in_any_rectangle(coor: (usize, usize), inpoints: &[(usize, usize)]) -> bool {
|
||||
let mut found_normal = false;
|
||||
let mut found_inverse = false;
|
||||
|
||||
for corner1 in inpoints {
|
||||
for corner2 in inpoints {
|
||||
let minx = corner1.0.min(corner2.0);
|
||||
let maxx = corner1.0.max(corner2.0);
|
||||
let miny = corner1.1.min(corner2.1);
|
||||
let maxy = corner1.1.max(corner2.1);
|
||||
|
||||
if !((minx..=maxx).contains(&coor.0) && (miny..=maxy).contains(&coor.1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
let dx = corner1.0 as isize - corner2.0 as isize;
|
||||
let dy = corner1.1 as isize - corner2.1 as isize;
|
||||
if dx == 0 || dy == 0 {
|
||||
return true;
|
||||
}
|
||||
if (dx * dy).is_positive() {
|
||||
found_normal = true;
|
||||
}
|
||||
if (dx * dy).is_negative() {
|
||||
found_inverse = true;
|
||||
}
|
||||
|
||||
if found_inverse && found_normal {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
false
|
||||
}
|
||||
|
||||
fn parse_ln(ln: &[u8]) -> (usize, usize) {
|
||||
let mut iter = ln.split(|&b| b == b',').map(|slice| {
|
||||
slice
|
||||
.iter()
|
||||
.fold(0, |acc, b| acc * 10 + (b - b'0') as usize)
|
||||
});
|
||||
|
||||
(iter.next().unwrap(), iter.next().unwrap())
|
||||
}
|
||||
133
2025/09/p2-hu2.rs
Normal file
133
2025/09/p2-hu2.rs
Normal file
@@ -0,0 +1,133 @@
|
||||
//! Half of the puzzle seems like a fancy way to say that the puzzle corners have to be within any
|
||||
//! other rectangle or adyacent (as in same x or y as any other point) to other corners.
|
||||
//!
|
||||
//! I think even adyacent is within the "other rectangle thing", because
|
||||
|
||||
#[unsafe(no_mangle)]
|
||||
pub extern "Rust" fn challenge_usize(buf: &[u8]) -> usize {
|
||||
// I do see how to make this in idk if O(n) or O(nlogn), but ima O(n^2) just at first
|
||||
let coords = buf[..(buf.len() - 1)]
|
||||
.split(|&b| b == b'\n')
|
||||
.map(parse_ln)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let mut filtering_tiles = coords.clone();
|
||||
loop {
|
||||
let filtered_tiles = filtering_tiles
|
||||
.iter()
|
||||
.cloned()
|
||||
.filter(|coor| {
|
||||
for corner1 in &filtering_tiles {
|
||||
for corner2 in &filtering_tiles {
|
||||
if coor == corner1 || coor == corner2 {
|
||||
continue;
|
||||
}
|
||||
|
||||
let minx = corner1.0.min(corner2.0);
|
||||
let maxx = corner1.0.max(corner2.0);
|
||||
let miny = corner1.1.min(corner2.1);
|
||||
let maxy = corner1.1.max(corner2.1);
|
||||
|
||||
if (minx..=maxx).contains(&coor.0) && (miny..=maxy).contains(&coor.1) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
false
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let filtered_anything = filtered_tiles.len() != filtering_tiles.len();
|
||||
filtering_tiles = filtered_tiles;
|
||||
dbg!(filtered_anything);
|
||||
if !filtered_anything {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let mut area = 0;
|
||||
for coor1 in &coords {
|
||||
for coor2 in &coords {
|
||||
let dx = coor1.0.abs_diff(coor2.0) + 1;
|
||||
let dy = coor1.1.abs_diff(coor2.1) + 1;
|
||||
let this_area = dx * dy;
|
||||
|
||||
let conjugate1 = (coor1.0, coor2.1);
|
||||
let conjugate2 = (coor2.0, coor1.1);
|
||||
|
||||
if !is_really_contained_in_any_rectangle(conjugate1, &coords) { continue; }
|
||||
if !is_really_contained_in_any_rectangle(conjugate2, &coords) { continue; }
|
||||
|
||||
// println!(
|
||||
// "{},{} {},{} | {this_area}",
|
||||
// coor1.0, coor1.1, coor2.0, coor2.1
|
||||
// );
|
||||
|
||||
area = area.max(this_area);
|
||||
}
|
||||
}
|
||||
|
||||
area
|
||||
}
|
||||
|
||||
/// This should count
|
||||
/// ....O.....O
|
||||
/// .....X.....
|
||||
/// ...........
|
||||
/// ....O.....O
|
||||
///
|
||||
/// but not
|
||||
/// ....O.....O
|
||||
/// .....X.....
|
||||
/// ...........
|
||||
/// ..........O
|
||||
///
|
||||
/// I will refer to the second case as being normally included in a rectangle while the first case
|
||||
/// is contained in both normally and inverse rectangles. Good way to identify is that dx and dy
|
||||
/// have the same sign or not, if sgn(dx) == sgn(dy) its normal, otherwise antinormal.
|
||||
fn is_really_contained_in_any_rectangle(coor: (usize, usize), inpoints: &[(usize, usize)]) -> bool {
|
||||
let mut found_normal = false;
|
||||
let mut found_inverse = false;
|
||||
|
||||
for corner1 in inpoints {
|
||||
for corner2 in inpoints {
|
||||
let minx = corner1.0.min(corner2.0);
|
||||
let maxx = corner1.0.max(corner2.0);
|
||||
let miny = corner1.1.min(corner2.1);
|
||||
let maxy = corner1.1.max(corner2.1);
|
||||
|
||||
if !((minx..=maxx).contains(&coor.0) && (miny..=maxy).contains(&coor.1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
let dx = corner1.0 as isize - corner2.0 as isize;
|
||||
let dy = corner1.1 as isize - corner2.1 as isize;
|
||||
if dx == 0 || dy == 0 {
|
||||
return true;
|
||||
}
|
||||
if (dx * dy).is_positive() {
|
||||
found_normal = true;
|
||||
}
|
||||
if (dx * dy).is_negative() {
|
||||
found_inverse = true;
|
||||
}
|
||||
|
||||
if found_inverse && found_normal {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
false
|
||||
}
|
||||
|
||||
fn parse_ln(ln: &[u8]) -> (usize, usize) {
|
||||
let mut iter = ln.split(|&b| b == b',').map(|slice| {
|
||||
slice
|
||||
.iter()
|
||||
.fold(0, |acc, b| acc * 10 + (b - b'0') as usize)
|
||||
});
|
||||
|
||||
(iter.next().unwrap(), iter.next().unwrap())
|
||||
}
|
||||
89
2025/09/p2.rs
Normal file
89
2025/09/p2.rs
Normal file
@@ -0,0 +1,89 @@
|
||||
#![feature(iter_map_windows)]
|
||||
//! Half of the puzzle seems like a fancy way to say that the puzzle corners have to be within any
|
||||
//! other rectangle or adyacent (as in same x or y as any other point) to other corners.
|
||||
//!
|
||||
//! I think even adyacent is within the "other rectangle thing", because
|
||||
|
||||
#[unsafe(no_mangle)]
|
||||
pub extern "Rust" fn challenge_usize(buf: &[u8]) -> usize {
|
||||
// I do see how to make this in idk if O(n) or O(nlogn), but ima O(n^2) just at first
|
||||
let coords = buf[..(buf.len() - 1)]
|
||||
.split(|&b| b == b'\n')
|
||||
.map(parse_ln)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// assuming each coord is contiguous to the prev one
|
||||
let edges = coords
|
||||
.iter()
|
||||
.cloned()
|
||||
.chain([coords[0]])
|
||||
.map_windows(|&[a, b]| (a, b))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let mut area = 0;
|
||||
for coor1 in &coords {
|
||||
for coor2 in &coords {
|
||||
let dx = coor1.0.abs_diff(coor2.0) + 1;
|
||||
let dy = coor1.1.abs_diff(coor2.1) + 1;
|
||||
let this_area = dx * dy;
|
||||
|
||||
// println!("{coor1:?}, {coor2:?}");
|
||||
if is_really_contained((*coor1, *coor2), &edges) {
|
||||
area = area.max(this_area);
|
||||
}
|
||||
|
||||
// println!(
|
||||
// "{},{} {},{} | {this_area}",
|
||||
// coor1.0, coor1.1, coor2.0, coor2.1
|
||||
// );
|
||||
}
|
||||
}
|
||||
|
||||
area
|
||||
}
|
||||
|
||||
/// If any bouding vertex is well within (not sitting on a rectangle's edge), the rectangle is not
|
||||
/// well contained
|
||||
fn is_really_contained(
|
||||
(rect0, rect1): ((usize, usize), (usize, usize)),
|
||||
edges: &[((usize, usize), (usize, usize))],
|
||||
) -> bool {
|
||||
let (rect0, rect1) = (
|
||||
(rect0.0.min(rect1.0), rect0.1.min(rect1.1)),
|
||||
(rect0.0.max(rect1.0), rect0.1.max(rect1.1)),
|
||||
);
|
||||
|
||||
let xran = (rect0.0 + 1)..=(rect1.0 - 1);
|
||||
let yran = (rect0.1 + 1)..=(rect1.1 - 1);
|
||||
|
||||
// Optimization, no need to check each range's point
|
||||
for (edge1, edge2) in edges {
|
||||
if edge1.0 == edge2.0 && xran.contains(&edge1.0) {
|
||||
for y in edge1.1.min(edge2.1)..edge1.1.max(edge2.1) {
|
||||
if yran.contains(&y) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if edge1.1 == edge2.1 && yran.contains(&edge1.1) {
|
||||
for x in edge1.0.min(edge2.0)..edge1.0.max(edge2.0) {
|
||||
if xran.contains(&x) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
fn parse_ln(ln: &[u8]) -> (usize, usize) {
|
||||
let mut iter = ln.split(|&b| b == b',').map(|slice| {
|
||||
slice
|
||||
.iter()
|
||||
.fold(0, |acc, b| acc * 10 + (b - b'0') as usize)
|
||||
});
|
||||
|
||||
(iter.next().unwrap(), iter.next().unwrap())
|
||||
}
|
||||
Reference in New Issue
Block a user