mirror of
https://github.com/javalsai/aoc.git
synced 2026-01-12 17:10:00 +01:00
i hate d09p2
This commit is contained in:
36
2025/09/p1.rs
Normal file
36
2025/09/p1.rs
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
#[unsafe(no_mangle)]
|
||||||
|
pub extern "Rust" fn challenge_usize(buf: &[u8]) -> usize {
|
||||||
|
// I do see how to make this in idk if O(n) or O(nlogn), but ima O(n^2) just at first
|
||||||
|
let coords = buf[..(buf.len() - 1)]
|
||||||
|
.split(|&b| b == b'\n')
|
||||||
|
.map(parse_ln)
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let mut area = 0;
|
||||||
|
for coor1 in &coords {
|
||||||
|
for coor2 in &coords {
|
||||||
|
let dx = coor1.0.abs_diff(coor2.0) + 1;
|
||||||
|
let dy = coor1.1.abs_diff(coor2.1) + 1;
|
||||||
|
let this_area = dx * dy;
|
||||||
|
|
||||||
|
// println!(
|
||||||
|
// "{},{} {},{} | {this_area}",
|
||||||
|
// coor1.0, coor1.1, coor2.0, coor2.1
|
||||||
|
// );
|
||||||
|
|
||||||
|
area = area.max(this_area);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
area
|
||||||
|
}
|
||||||
|
|
||||||
|
fn parse_ln(ln: &[u8]) -> (usize, usize) {
|
||||||
|
let mut iter = ln.split(|&b| b == b',').map(|slice| {
|
||||||
|
slice
|
||||||
|
.iter()
|
||||||
|
.fold(0, |acc, b| acc * 10 + (b - b'0') as usize)
|
||||||
|
});
|
||||||
|
|
||||||
|
(iter.next().unwrap(), iter.next().unwrap())
|
||||||
|
}
|
||||||
133
2025/09/p2-hu.rs
Normal file
133
2025/09/p2-hu.rs
Normal file
@@ -0,0 +1,133 @@
|
|||||||
|
//! Half of the puzzle seems like a fancy way to say that the puzzle corners have to be within any
|
||||||
|
//! other rectangle or adyacent (as in same x or y as any other point) to other corners.
|
||||||
|
//!
|
||||||
|
//! I think even adyacent is within the "other rectangle thing", because
|
||||||
|
|
||||||
|
#[unsafe(no_mangle)]
|
||||||
|
pub extern "Rust" fn challenge_usize(buf: &[u8]) -> usize {
|
||||||
|
// I do see how to make this in idk if O(n) or O(nlogn), but ima O(n^2) just at first
|
||||||
|
let coords = buf[..(buf.len() - 1)]
|
||||||
|
.split(|&b| b == b'\n')
|
||||||
|
.map(parse_ln)
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let mut filtering_tiles = coords.clone();
|
||||||
|
loop {
|
||||||
|
let filtered_tiles = filtering_tiles
|
||||||
|
.iter()
|
||||||
|
.cloned()
|
||||||
|
.filter(|coor| {
|
||||||
|
for corner1 in &filtering_tiles {
|
||||||
|
for corner2 in &filtering_tiles {
|
||||||
|
if coor == corner1 || coor == corner2 {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
let minx = corner1.0.min(corner2.0);
|
||||||
|
let maxx = corner1.0.max(corner2.0);
|
||||||
|
let miny = corner1.1.min(corner2.1);
|
||||||
|
let maxy = corner1.1.max(corner2.1);
|
||||||
|
|
||||||
|
if (minx..=maxx).contains(&coor.0) && (miny..=maxy).contains(&coor.1) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
false
|
||||||
|
})
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let filtered_anything = filtered_tiles.len() != filtering_tiles.len();
|
||||||
|
filtering_tiles = filtered_tiles;
|
||||||
|
dbg!(filtered_anything);
|
||||||
|
if !filtered_anything {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut area = 0;
|
||||||
|
for coor1 in &coords {
|
||||||
|
for coor2 in &coords {
|
||||||
|
let dx = coor1.0.abs_diff(coor2.0) + 1;
|
||||||
|
let dy = coor1.1.abs_diff(coor2.1) + 1;
|
||||||
|
let this_area = dx * dy;
|
||||||
|
|
||||||
|
let conjugate1 = (coor1.0, coor2.1);
|
||||||
|
let conjugate2 = (coor2.0, coor1.1);
|
||||||
|
|
||||||
|
if !is_really_contained_in_any_rectangle(conjugate1, &coords) { continue; }
|
||||||
|
if !is_really_contained_in_any_rectangle(conjugate2, &coords) { continue; }
|
||||||
|
|
||||||
|
// println!(
|
||||||
|
// "{},{} {},{} | {this_area}",
|
||||||
|
// coor1.0, coor1.1, coor2.0, coor2.1
|
||||||
|
// );
|
||||||
|
|
||||||
|
area = area.max(this_area);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
area
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This should count
|
||||||
|
/// ....O.....O
|
||||||
|
/// .....X.....
|
||||||
|
/// ...........
|
||||||
|
/// ....O.....O
|
||||||
|
///
|
||||||
|
/// but not
|
||||||
|
/// ....O.....O
|
||||||
|
/// .....X.....
|
||||||
|
/// ...........
|
||||||
|
/// ..........O
|
||||||
|
///
|
||||||
|
/// I will refer to the second case as being normally included in a rectangle while the first case
|
||||||
|
/// is contained in both normally and inverse rectangles. Good way to identify is that dx and dy
|
||||||
|
/// have the same sign or not, if sgn(dx) == sgn(dy) its normal, otherwise antinormal.
|
||||||
|
fn is_really_contained_in_any_rectangle(coor: (usize, usize), inpoints: &[(usize, usize)]) -> bool {
|
||||||
|
let mut found_normal = false;
|
||||||
|
let mut found_inverse = false;
|
||||||
|
|
||||||
|
for corner1 in inpoints {
|
||||||
|
for corner2 in inpoints {
|
||||||
|
let minx = corner1.0.min(corner2.0);
|
||||||
|
let maxx = corner1.0.max(corner2.0);
|
||||||
|
let miny = corner1.1.min(corner2.1);
|
||||||
|
let maxy = corner1.1.max(corner2.1);
|
||||||
|
|
||||||
|
if !((minx..=maxx).contains(&coor.0) && (miny..=maxy).contains(&coor.1)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
let dx = corner1.0 as isize - corner2.0 as isize;
|
||||||
|
let dy = corner1.1 as isize - corner2.1 as isize;
|
||||||
|
if dx == 0 || dy == 0 {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
if (dx * dy).is_positive() {
|
||||||
|
found_normal = true;
|
||||||
|
}
|
||||||
|
if (dx * dy).is_negative() {
|
||||||
|
found_inverse = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if found_inverse && found_normal {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
false
|
||||||
|
}
|
||||||
|
|
||||||
|
fn parse_ln(ln: &[u8]) -> (usize, usize) {
|
||||||
|
let mut iter = ln.split(|&b| b == b',').map(|slice| {
|
||||||
|
slice
|
||||||
|
.iter()
|
||||||
|
.fold(0, |acc, b| acc * 10 + (b - b'0') as usize)
|
||||||
|
});
|
||||||
|
|
||||||
|
(iter.next().unwrap(), iter.next().unwrap())
|
||||||
|
}
|
||||||
133
2025/09/p2-hu2.rs
Normal file
133
2025/09/p2-hu2.rs
Normal file
@@ -0,0 +1,133 @@
|
|||||||
|
//! Half of the puzzle seems like a fancy way to say that the puzzle corners have to be within any
|
||||||
|
//! other rectangle or adyacent (as in same x or y as any other point) to other corners.
|
||||||
|
//!
|
||||||
|
//! I think even adyacent is within the "other rectangle thing", because
|
||||||
|
|
||||||
|
#[unsafe(no_mangle)]
|
||||||
|
pub extern "Rust" fn challenge_usize(buf: &[u8]) -> usize {
|
||||||
|
// I do see how to make this in idk if O(n) or O(nlogn), but ima O(n^2) just at first
|
||||||
|
let coords = buf[..(buf.len() - 1)]
|
||||||
|
.split(|&b| b == b'\n')
|
||||||
|
.map(parse_ln)
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let mut filtering_tiles = coords.clone();
|
||||||
|
loop {
|
||||||
|
let filtered_tiles = filtering_tiles
|
||||||
|
.iter()
|
||||||
|
.cloned()
|
||||||
|
.filter(|coor| {
|
||||||
|
for corner1 in &filtering_tiles {
|
||||||
|
for corner2 in &filtering_tiles {
|
||||||
|
if coor == corner1 || coor == corner2 {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
let minx = corner1.0.min(corner2.0);
|
||||||
|
let maxx = corner1.0.max(corner2.0);
|
||||||
|
let miny = corner1.1.min(corner2.1);
|
||||||
|
let maxy = corner1.1.max(corner2.1);
|
||||||
|
|
||||||
|
if (minx..=maxx).contains(&coor.0) && (miny..=maxy).contains(&coor.1) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
false
|
||||||
|
})
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let filtered_anything = filtered_tiles.len() != filtering_tiles.len();
|
||||||
|
filtering_tiles = filtered_tiles;
|
||||||
|
dbg!(filtered_anything);
|
||||||
|
if !filtered_anything {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut area = 0;
|
||||||
|
for coor1 in &coords {
|
||||||
|
for coor2 in &coords {
|
||||||
|
let dx = coor1.0.abs_diff(coor2.0) + 1;
|
||||||
|
let dy = coor1.1.abs_diff(coor2.1) + 1;
|
||||||
|
let this_area = dx * dy;
|
||||||
|
|
||||||
|
let conjugate1 = (coor1.0, coor2.1);
|
||||||
|
let conjugate2 = (coor2.0, coor1.1);
|
||||||
|
|
||||||
|
if !is_really_contained_in_any_rectangle(conjugate1, &coords) { continue; }
|
||||||
|
if !is_really_contained_in_any_rectangle(conjugate2, &coords) { continue; }
|
||||||
|
|
||||||
|
// println!(
|
||||||
|
// "{},{} {},{} | {this_area}",
|
||||||
|
// coor1.0, coor1.1, coor2.0, coor2.1
|
||||||
|
// );
|
||||||
|
|
||||||
|
area = area.max(this_area);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
area
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This should count
|
||||||
|
/// ....O.....O
|
||||||
|
/// .....X.....
|
||||||
|
/// ...........
|
||||||
|
/// ....O.....O
|
||||||
|
///
|
||||||
|
/// but not
|
||||||
|
/// ....O.....O
|
||||||
|
/// .....X.....
|
||||||
|
/// ...........
|
||||||
|
/// ..........O
|
||||||
|
///
|
||||||
|
/// I will refer to the second case as being normally included in a rectangle while the first case
|
||||||
|
/// is contained in both normally and inverse rectangles. Good way to identify is that dx and dy
|
||||||
|
/// have the same sign or not, if sgn(dx) == sgn(dy) its normal, otherwise antinormal.
|
||||||
|
fn is_really_contained_in_any_rectangle(coor: (usize, usize), inpoints: &[(usize, usize)]) -> bool {
|
||||||
|
let mut found_normal = false;
|
||||||
|
let mut found_inverse = false;
|
||||||
|
|
||||||
|
for corner1 in inpoints {
|
||||||
|
for corner2 in inpoints {
|
||||||
|
let minx = corner1.0.min(corner2.0);
|
||||||
|
let maxx = corner1.0.max(corner2.0);
|
||||||
|
let miny = corner1.1.min(corner2.1);
|
||||||
|
let maxy = corner1.1.max(corner2.1);
|
||||||
|
|
||||||
|
if !((minx..=maxx).contains(&coor.0) && (miny..=maxy).contains(&coor.1)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
let dx = corner1.0 as isize - corner2.0 as isize;
|
||||||
|
let dy = corner1.1 as isize - corner2.1 as isize;
|
||||||
|
if dx == 0 || dy == 0 {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
if (dx * dy).is_positive() {
|
||||||
|
found_normal = true;
|
||||||
|
}
|
||||||
|
if (dx * dy).is_negative() {
|
||||||
|
found_inverse = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if found_inverse && found_normal {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
false
|
||||||
|
}
|
||||||
|
|
||||||
|
fn parse_ln(ln: &[u8]) -> (usize, usize) {
|
||||||
|
let mut iter = ln.split(|&b| b == b',').map(|slice| {
|
||||||
|
slice
|
||||||
|
.iter()
|
||||||
|
.fold(0, |acc, b| acc * 10 + (b - b'0') as usize)
|
||||||
|
});
|
||||||
|
|
||||||
|
(iter.next().unwrap(), iter.next().unwrap())
|
||||||
|
}
|
||||||
89
2025/09/p2.rs
Normal file
89
2025/09/p2.rs
Normal file
@@ -0,0 +1,89 @@
|
|||||||
|
#![feature(iter_map_windows)]
|
||||||
|
//! Half of the puzzle seems like a fancy way to say that the puzzle corners have to be within any
|
||||||
|
//! other rectangle or adyacent (as in same x or y as any other point) to other corners.
|
||||||
|
//!
|
||||||
|
//! I think even adyacent is within the "other rectangle thing", because
|
||||||
|
|
||||||
|
#[unsafe(no_mangle)]
|
||||||
|
pub extern "Rust" fn challenge_usize(buf: &[u8]) -> usize {
|
||||||
|
// I do see how to make this in idk if O(n) or O(nlogn), but ima O(n^2) just at first
|
||||||
|
let coords = buf[..(buf.len() - 1)]
|
||||||
|
.split(|&b| b == b'\n')
|
||||||
|
.map(parse_ln)
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
// assuming each coord is contiguous to the prev one
|
||||||
|
let edges = coords
|
||||||
|
.iter()
|
||||||
|
.cloned()
|
||||||
|
.chain([coords[0]])
|
||||||
|
.map_windows(|&[a, b]| (a, b))
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let mut area = 0;
|
||||||
|
for coor1 in &coords {
|
||||||
|
for coor2 in &coords {
|
||||||
|
let dx = coor1.0.abs_diff(coor2.0) + 1;
|
||||||
|
let dy = coor1.1.abs_diff(coor2.1) + 1;
|
||||||
|
let this_area = dx * dy;
|
||||||
|
|
||||||
|
// println!("{coor1:?}, {coor2:?}");
|
||||||
|
if is_really_contained((*coor1, *coor2), &edges) {
|
||||||
|
area = area.max(this_area);
|
||||||
|
}
|
||||||
|
|
||||||
|
// println!(
|
||||||
|
// "{},{} {},{} | {this_area}",
|
||||||
|
// coor1.0, coor1.1, coor2.0, coor2.1
|
||||||
|
// );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
area
|
||||||
|
}
|
||||||
|
|
||||||
|
/// If any bouding vertex is well within (not sitting on a rectangle's edge), the rectangle is not
|
||||||
|
/// well contained
|
||||||
|
fn is_really_contained(
|
||||||
|
(rect0, rect1): ((usize, usize), (usize, usize)),
|
||||||
|
edges: &[((usize, usize), (usize, usize))],
|
||||||
|
) -> bool {
|
||||||
|
let (rect0, rect1) = (
|
||||||
|
(rect0.0.min(rect1.0), rect0.1.min(rect1.1)),
|
||||||
|
(rect0.0.max(rect1.0), rect0.1.max(rect1.1)),
|
||||||
|
);
|
||||||
|
|
||||||
|
let xran = (rect0.0 + 1)..=(rect1.0 - 1);
|
||||||
|
let yran = (rect0.1 + 1)..=(rect1.1 - 1);
|
||||||
|
|
||||||
|
// Optimization, no need to check each range's point
|
||||||
|
for (edge1, edge2) in edges {
|
||||||
|
if edge1.0 == edge2.0 && xran.contains(&edge1.0) {
|
||||||
|
for y in edge1.1.min(edge2.1)..edge1.1.max(edge2.1) {
|
||||||
|
if yran.contains(&y) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if edge1.1 == edge2.1 && yran.contains(&edge1.1) {
|
||||||
|
for x in edge1.0.min(edge2.0)..edge1.0.max(edge2.0) {
|
||||||
|
if xran.contains(&x) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
true
|
||||||
|
}
|
||||||
|
|
||||||
|
fn parse_ln(ln: &[u8]) -> (usize, usize) {
|
||||||
|
let mut iter = ln.split(|&b| b == b',').map(|slice| {
|
||||||
|
slice
|
||||||
|
.iter()
|
||||||
|
.fold(0, |acc, b| acc * 10 + (b - b'0') as usize)
|
||||||
|
});
|
||||||
|
|
||||||
|
(iter.next().unwrap(), iter.next().unwrap())
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user